Level-Set Methods for Finite-Sum Constrained Convex Optimization

A. Illustration of Algorithm 2
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Figure 3. Illustration of AM-FLS Method. The figures on the top row depict the procedure to update r®) using upper bound U (r(k)) .
The figures on the bottom row show when to stop the algorithm.

The geometric illustration of Algorithm 1 has already been given in Aravkin et al. (2016). In Figure 3, we illustrate
the intuition behind Algorithm 2. We choose § = 2 as an example. In the top-left picture in Figure 3, we plot the
curve of a level function H(r) that has all the properties in Lemma 1. Moreover, the x-axis represents the value of
r and the point where the z-axis intersecting with the y-axis is (f*, H(f*)) = (f*,0). In the top-middle picture, we
consider a level parameter 7(¥) > f* such that H(r(®)) < 0, and use an oracle to find U(r*)) and L(r*)) such that
2U () < L(r®) < H(r®)) < U(r*)) (Property 4 in Definition 1 of an oracle with # = 2). In the top-right figure, we
perform the update (1) « (&) 1 {7 ((k)) such that r(*) moves towards the root f* of H(r) as k increases. Note that, in
Algorithm 2, we use a slightly different updating step which is 7(**1) «— 7(*) 4+ 7 (r(k)) /2. This is because the multiplier 3
(or any multiplier less than 1) applied to U (r(*)) can avoid the extreme scenario where 7(**1) = f* We want to avoid this
scenario because, if it happens, we can no longer find % such that P((**1); %) < 0 and thus cannot ensure the feasibility of
the returned solution. The impact of this multiplier to the complexity of a feasible level-set method is analyzed by Lin et al.
(2017).

In the bottom-left figure, we plot the curve (of ) minyecx K (r;x, y*), a®)) in red where (y*), a(®)) = w(¥) is the dual
solution found by the oracle when it solves (7). According to (7), minyex K (r; X, y*) a(k)) is a global lower bound of
H(r) and L(r®) = minycx K(r®;x,y* a®). In the bottom-middle figure, we construct the tangent line for the
curve minye y K (r;x, y®), a®) at r*), namely, L(r*)) + 8, (minygex K (r;x, y*), a®))(r — #(¥)) which is the green
line in this figure. Therefore, we can choose S(r(F)) = 9, (minyex K (r;x,y®), a(®)) as the slope in the output of the
oracle, which will satisfy Property 5 in Definition 1. Finally, in the bottom-right picture, we show a line segment in the

z-axis whose length is 52:7533 which is no shorter than 7(*) — f*_ Hence, to ensure r(*) — f* < ¢, it suffices to stop
Algorithm 2 when % < g, or equivalently, L(r(k)) > ES(T‘(k)).
B. Proof of Lemma 3

Proof. According to the update step in Algorithm 4, we have, for ¢t > 0,

t
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By Proposition 1, we have y(**1) € intA and a(*+1) = ygtH)dz(-tH) where
dEtH) € argmin Z/Hole2 Hdz ~(t) +Z ¢m dij) — (t) . (16)
a cR"i
Therefore, to prove this lemma, it suffices to prove Hdgﬂ |2 < Bforallt > 0and¢ = 0,1,...,m. We prove this result

under each of the two scenarios in Assumption 2.

Suppose scenario (b) in Assumption 2 holds such that B >  max  ||&;l|2. Since dz(-t)

ajj€doma;

according to (16), we have ||dl(.t) |2 < Bforallt >0andi=0,1,...

must stay in the domain of ¢;;

, M.

In the next, we prove this result by assuming scenario (a) in Assumption 2 holds such that B is a constant that satisfies
2 }

4dman ||@ikHQBx —(0) ,_(0 ~ %
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m. We will first prove

pr— 2 y —
7 v P )

1&® — &z, < max{na:‘ng, an

for all ¢ > 0 by induction over the index ¢. Equation (17) holds trivially for ¢ = 0 because dgo) = dl(.o) / gz@. Now, we
assume (17) holds for iteration ¢ and prove it also holds for iteration ¢ + 1.

According to (16), we can independently update each coordinate of dgtﬂ), denoted by &Z(»;H), by solving

~ : jag 1 ~ o)
;") € argmin {”(aij)Q +—(aiy —af) + % (é4) = “”J’”g)}
Otij

whose optimality condition implies

0ewalth 2 ~(ay ™ —a) + 8(;5”( Uy oD, (18)

By the definition of the saddle point (x*,y*, &*), the value &;; := (Zi’ satisfies

1
aj; € arg mln{ auf X"+ ¢U (a”)}
a;; ER n;
whose optimality condition implies

1 T * 1 % [~k
0€ —-&x" + -0} (a})

or, equivalently,
w2, 2, . . 1 .
2wa; + (a5 — ay eaway + 2 ~(@; - (“)+ 6%( j) — g (19)
Since ¢;; is smooth with its gradient being %-Lipschitz continuous with respect to £2-norm, ¢;; is 7 strongly convex with

respect to £o-norm. Hence, the function v(a)? + (o — @&} )7+ d) () is (2v + 2 4+ L)-strongly convex. Therefore,
the strong monotonicity property of the subdifferent1a1 of thlS functlon 1mphes
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which implies

w2 Lo 1) 2 _(t41) (¢t 1w~
2vay; + *(ozij - agj)) + n—iaqbij (a7;) — QVO(( 1) ;(ozl(»f ) _ agj)) - n—ia% (ozl(»j+ ))
> <2u +24 ) & —alty).
Applying the relationship (18) and (19) to the inequality above gives

2 ~
> (24 24 2 fagy - o

] ) (%]

~ % 2 ~ % ~ 1 *
2vag; + ;(ozij — a(t»)) + — . Tx* — B>

which, by the triangle’s inequality, further implies

~ % 2| &% ~(t) O, (t)
2V||ai||2+F||ai oy Hz v H2 > & ~(t+1)
2 3 leg — l2- (20)
2v + e + .
Note that the relationship --¢[x* = 1 7o 007; (~fj) implies V¢, ( ;gx*) = &;;. Moreover, the definition of v(®) in

Algorithm 4 indicates that
19ix" = nivi”lla < 26illaBx + dl|Oir o[} — x;| < 4d max||©3]|2Bx

where O is the kth column of ©;. By the induction hypothesis (17) and (20), we conclude that

4dmaxy, ||Oik |2 Bx

3

lat — &), < max{ndz‘nz ,

a5 - &l
so that the result (17) holds for ¢ + 1.
Finally, using (17) and the fact that ||&; N(t llo < llafll2+ |laf — a(t)Hg, we can show

8dmaxy, ||Oix||2Bx
Y

e ||2<max{2| Il 72||a§°>/y§0>—a:||2}s3

which completes the proof. O

C. Proof of Theorem 1

Proof. The complexity of Algorithm 1 can be analyzed with a similar argument as in Section 2.1 in Aravkin et al. (2016)
by incorporating the complexity of oracle 4. Consider an iteration k that is not the last iteration of Algorithm 1, i.e.,
U(r®*)) > e. The property of A guarantees that 0H (r(¥)) > 0L(r(*)) > U(r(®)) > ¢ so that the complexity of A in
iteration £ is at most

C(max{H(r®) e}) < C(max{f'e,e}) = C(e).

On the other hand, in the last iteration Algorithm 1 where U(r*)) < ¢, we have H(r®)) < U(r(*)) < ¢ so that the

complexity of A here is still at most C(g). According to Theorem 2.4 in Aravkin et al. (2016), Algorithm 1 terminates

max r(© *—p(®) r(®
after at most max{1 + logy /( e )”fE OLLE® )})

C(e) max{1+ logQ/g(maX{IS(r(O))"fng(o)l’L(T(O))} ),2}. At the last iteration, we have P(r(F); x(®)) < U(r*)) < ¢, which
means the output solution x(*) is e-optimal and e-feasible by the definition of P.

,2} iterations so that the total complexity of Algorithm 1 is

In the next, we analyze the complexity of Algorithm 2. The most part of the proof is from the proof of Theorem 2 in Lin et al.
(2017). However, one major difference in our proof from Lin et al. (2017) is that we analyze the complexity for Algorithm 2
under a termination condition different from the one used in Lin et al. (2017). This difference is essential because it is the
main reason for Algorithm 2 to ensure an absolute e-optimal solution while Lin et al. (2017) ensures a relative e-optimal
solution.
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First of all, we claim that S(r) < 0 for any r. In fact, for any 7' > r, the property of S(r) promised by oracle .4 guarantees
H(r) > H(r") > L(r) + S(r)(r" — r) which implies S(r) < w Letting ’ goes to infinity leads to this conclusion.
According to Lemma 1(c) and convexity of H(r), we can show that

B(r—f*)S—H(r)Sr—f*, V’I"E(f*,’l“(o)]. (21)

From (21), the updating equation for »(*+1) and the fact that H (r(*)) < U(r*)) < L(r®)) /0 < H(r*)) /6 < 0, we have

p) g B _ fa U(r(’“))/Q > k) _ ) (7“( )) %( (k) _ ) (22)
(k)
D ) () j2 < )y ( ) 8= 1) =

Recursively applying both inequalities gives

k
0< 5p(r® — f) < r®) - < (1—2%) (r® =), fork=0,1,2... K. @4)

The inequality (21) for 7 = r(*), (24) and the property of L(r(k)) together imply

i ©)
~L( W) < 06 W) <06 - ) <0 (1- L) (0 -y < D

for any given k > % log (M) With the same k, the definition of S(7(¥)) and the fact that S(r(*)) < 0 imply that

EIGR
H(r®) > Lr®)+5(r8) (r0) =8 > LE 4 5(09) (0) — f#), or equivalently, 5(r®) < ;G20 = 8 <o,
Therefore, if we simultaneously require k > E log (%), we will ensure —L(r(k)) < #74(;)) —ES( (k)).
Therefore, Algorithm 2 terminates after at most 22 1og (29‘;;(((:(0_){() max{ T(O);f* , 1}) =2 5 log ( max { , 1})

iterations.

To obtain the overall complexity, consider an iteration k that is not the last iteration of Algorithm 2, i.e., L(r(®)) < eS(r(®),
Without lose of generality, we assume r(®) — f* > ¢. The property of A guarantees that 0 H (r(*)) < L(r(®)) < £S(r(*))
which, together with the definition of S(r(*)), implies that H(r(®)) > L(r®)) + S(r®))(r©) — r*)) > 9H( (k)) +

PG (1(0) — f+). This inequality further implies [H (r®)| > 5 G = o BUTZl0 > 28 where the

equality is by the definition of 8 and the inequality is by the fact that #(9) — f* > ¢. Hence, the complexity of .A in iteration
k (non-terminating iteration) is at most

C(H (M) <c(o'ep/2).
On the other hand, in the last iteration Algorithm 2, we have —H (r*)) > g(r(®) — f*) > g(r(kfl) —f*) > w >
B

1o S0 that the complexity of A here is most

CH ™)) < C(6~"ep?/4).

Hence, the total complexity Algorithm 2 is C(0~ 132 /4) %9 log (%’ max{ T(o)gf* , 1})

Lastly, we analyze the quality of the output solution from Algorithm 2. We note that the affine-minorant property of
S(r®)Y implies H(r®) — L(r®))/S(r*))) > L(r®)) 4 S(r®E))(r*) — Lr*) /S (r*)) — (&)} = 0 such that we must
have +(*) — L(r®)) /S (r(®)) < f*, which further ensures +(*) — f* < L(r(*))/S(r(*)) < £ once Algorithm 2 terminates.
At the last iteration, we then have P(r(*);x;) < U(r®) < L(r®)/0 < H(r®)/0 < 0as r*) > f*. Because
0<r® — f* <¢eand P(r(k);x(k)) < 0, we have fo(x(k)) —f*<r) — f* < ¢cand maxizl,_wm[fi(xk) -7] <0
according to the definition of P. Hence, Algorithm 2 returns an e-optimal and feasible solution at termination.

O
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D. Proof of Proposition 1

Proof of Proposition 1. By the definition of G,,, D and hp, after organizing terms, (12) can be formulated as

21+ B)*v Y " yyilny; + M Z;noyi In (£> +y'r

2 y .
ol D D "‘Zm i Bl (52) = o wi(5) T

[e7]
Yi ||g

min p (25)
wew + E:i() vy; oy &y

7

Yi Y;

We first fix y € A and only optimize o € R™ in (25). It is easy to observe that each component ¢; in o can be optimized
independently. By changing variables with &; = ‘;‘ and &; o the minimization over o; can extracted from (25) and

formulated as (13), which has a closed-form for many commonly used loss function ¢;;. Importantly, both the optimal value
p; and the optimal solution &* do not depend on y;. Therefore, (25) is equivalent to

; - 2(1+B)2 - Yi T
;rgg{ (1+ )z/g yi Iny; + . E y n(y{ +y ' (r+p)

=0 =0 g

whose solution in a closed form is yl# defined in (14) which can be derived from the optimality condition. According to the

relationship that o; = %, the optimal value of the original variable «; should be a# = a#yl# . O

E. Proof of Theorem 2 and Theorem 3

In this section, we provide the proofs for Theorem 2 and Theorem 3.

Proof of Theorem 2. With a little abuse of notation, only in this proof, we denote by (x*, w*) the saddle point of (9) but

hide their dependency on y and v. For simplicity of notation, we define F),(x) := %x”g Let E; represent the conditional
expectation conditioning on all the stochastic outcomes up to the end of iteration ¢. The definition of (x(t“)7 y(t“)) and
the optimality conditions of (x*, w*) imply that, for any x € X and w = (y, ) € W,

(t+1) (t) _ (t+1))2 _ )2
u+ Il = xFDYE (kD) Tu® 4 g ey X=X vy 4 XX o
2 20 20
(t+1) ()
(V+ 1> D(w, w1 — (N Tv® 4 G, (wlttD) 4+ DwtD, wi) < —a v 4 G (w) + D(w,w®) 27
T T T

P(x) := a*Ax + F,(x) — a*Ax* — F,(x*) and D(w):= aAx* — G, (w) — a*Ax* + G, (w")

Note that minye x P(x) = P(x*) = 0 and maxyeyy D(w) = D(w*) = 0. By the strong convexity of F), with respect to
Euclidean distance and the strong convexity of GG, with respect to Bregman divergence D, we can show that

*”2

P(x) > @ and —D(w)>vD(w,w") (28)
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We choose x = x* in (26) and w = w™ in (27) and add (26), and (27) together. After organizing terms, we obtain

L LY I OO X 1y D w )
o 2 20 T ’ T

+P(x"V) — D(w)

D) T @ Ix* —xW3

20

IN

(x (ar — a0y Ty® 4 DOVWY) ) ) g
T

x* = x| Diw",w®)

20 T
+(x* - X(t))TATa(t) —(a* = a(t))TAX(t) _ (X(t+1) _ X(t))TATa(t) + (a(t+1) _ a(t))TAX(t)
+(X(t+1) _ X(t))T[ATa(t) _ u(t)] _ (a(t+1) _ a<t))T[Ax(t> _ V(t)] + at AxOHD D gy
b = xOl3 |, Dw*,w')
20 T

= x = x®)Tu® - ATa®] + (0 — a®)T[Ax® — v®) 4 |

= (x"—x")Tu" —ATa"] + (a" — ™) T[Ax® — v + (29)

_(X(t+1) _ X(t))TAT(a(t) —a’)+ (a(t+1) _ a(t))TA(x(t) —x")

+(x(t+1) _ X(t))T[ATa(t) _ u(t)] _ (a(i+1) _ a(t))T[Ax(t) _ V(t)]
Since the random indexes k and [ are independent of x(*) and w(*), we have

Ef(x* —x)T(u® —ATa®)] =0 and Ef(a* —a®)T(Ax® — v =0 (30)
by the definition of u® and v(®.

Next, we study the three lines on the right hand side of (29), respectively. By the definition of u(*), Cauchy-Schwarz
inequality and Young’s inequality, we have

E, [(X(t) —xEDY T (g® ATa(t))}

1
< gEtHX(t) _ x(t+1)||§ + %Et”ATd(s) + "AzT;Oél(t) . nAlT:dl(S) . ATa(t)”g
t

1 . » )
< o Bilx® — xR a4 et - o3 + anma | 4436 - o3
1
< SR D 4 2anma | ALZD(w, W) + 20mmax [ A3D(W %) @D
t

Similarly, we can prove that
E, [(am —atD)T (Ax® — )

1 \ _ ]
< g Ealla — o3 4 byd max [ Au 3]1x ) — x5 + brd ma || Ak |3 — x|I3

2bs
1
< ED(wWY, w) o bydmax | Ag|3x® - x| + brdmax [ A 3% - x5 (32)
¢
Applying Cauchy-Schwarz inequality and Young’s inequality in a similar way gives
1
B[ = xT)TAT (@ —an)] = gl = xCYE + aABDw w ) (33)
5
(D) _ )T A(x® _ x* 1 (1) 0y 4 Ol AE ) o
E: |[(a o) A(x x*)| < 5 E.D(w S W) 5 |Ix x*||3 34)
t

Choosing a; = 20 and b, = 27 and applying (30), (31), (32), (33) and (34) to (29) lead to

1\ E * _ L(t+1)2 1 . ~ _
(H + ;) w + (1/ + ;) E.D(w*, wD) 4 P(x*+D) - DwttD)

* _ ()2
< (2T||A||§ + drdmax || A} + %) w

—&—QTdmgx [ Axll3]lx* — %3 + 4on max | As|3D(w", &) (35)

+ (QUHAHg + 4anmlax||Al;||§ + 1) D(w*,w)
T
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Note that the operator norm of A, i.e., ||A]|2, satisfies ||[All2 < [|A||lmax sO that k = % =

2 max{d max; || A, k”zvn maxi | Aullzh e 7 be a constant to be determined later. Choosing o = ;L and 7 = L in (35),
we obtain the followmg 1nequa11ty

* _ (t+1)2 _ _
(1 - %) ”Etw * (1 - %) VvED(w", w ) + EP(x)) — E,D(w )
R llx—xP)3 K £ ) £ o(o))2 o (®)
< () e (e ) D w ) 2l = O g D(w W),

which, if divided by (1 n g), further implies

1 = . 1—4 4 -
ﬁ[p(x(ﬂrl)) _ D(w(t+1))] + RS < 1— ;7 Es® + LKE(;(S)’ (36)
1+ = 1+ = 1+ =
n n n
where o112
* t
and 12
5 — pE[[x* — x93 + VED(w*, W),

2
Since 6(*) = §(*) and §(7) = §(s+ 1) applying (36) recursively for t = 0, 1,...,T — 1 yields

T
1 ~ = 1—-14 4 -
(s+1 — (s+1) (s+1) < 1— Ui Ui (s)
1+W[P( ) = D) 48070 < < 1+;> oo (?

Choosing n = 2% in this inequality gives

L s o(s41) (s+1)y] . 5(s+1) 1 ! (s)
< R -
1+201<;[P( )~ D(w +9 =\ 5/4 4 20k +4 o

T
The following inequality is then obtained when T' = (5/4 + 20k ) log(2) so that (1 - M) <3

1
14 20k

[75( (s+1) (va(s+1))}+g(s+1 }g (37)

[\)

Because P (x) — @(w) > 0 for any x € X and w € W, the inequality above, if applied recursively for s = 0,1,...,5 — 1,
implies

50) < (;) 50, (38)

According to Lemma 8 in Xiao et al. (2017), we have

. . Al o A|? o
P (1) = Dyriw) < Plog) — Dlw) + 10 e et 4 14 ” o — a2
~ A 2 < All2 N
< Px) - Dlw) + 1AL ” I \|3+—” Epar.a)

for any x € & and w € W, which implies

P RETD) Z D (1w T) < P(RETD) - D) 4 5D,
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Applying this inequality to (37) and combining it with (38) yield

P (X)) =Dy (W) < (14 4) { [P(x*)) = D(w!)] + 6(S>} < (;) (1430

14 20k

The first conclusion of this theorem comes from this inequality and the fact that (%) < Puw(r; x(0)) — Dy, (13 v‘v(o))

In the next, we prove the second conclusion of Theorem 2, namely, the expected number of stages before Algorithm 4
terminates. The argument in this proof is originally developed in Section C in the Appendix of (Lin et al., 2015). Let S(¢)
be the stage index when Algorithm 4 terminates. By Markov’s inequality, we have

Prob(S(¢) > s+1) = Prob(Py,,(r;x*)) = D, (r;w)) > ()
< EPuuy(rx)) — Dy (r; w)]
B ¢
s -x(0)y _ . - (0)
< () (§) Pl Pustriw®)

Therefore, let Sy = 2log ((2+2K)[P“’”(T;i(z))fp“’”(mw(m)] ) We can show that
ES(¢) = > Prob(S(¢) > s)
s=0

So+ > Prob(S(¢) > s)

<
S:SO
S e’} s _ _
1\°° 1 Puo(r;x0) =D, ,(r;w®)
< S = = 1 e A
<o (3)7(SG))om <
S _ _
1\°° L(r:x©) =D, (r;w®
< S+ () (@) PearixX?) = D (riw)
2 ¢
< S+1
and the second conclusion follows. ]

Proof of Theorem 3. We first claim

P(r;x@) =D W) G

Py _ . (P)
P(r;xP)) —D(r;w'?) < 5 =%

(39)

Obviously, this is true for p = 0 by the definition of (y. Suppose it holds for iteration p. According to Lemma 4 and
Theorem 2, we have

Co
p+3 Qw

Co o

Qw+ =

A A o
P(T; X(P""l)) _ D(r, W(;D+1)> < Qx + 2p+2 op+1

T 2P0y

which implies our claim (39) by induction.

In the next, we want to show that Algorithm 5 satisfies the property of an affine minorant oracle. Suppose r > f* so
that H(r) < 0. According to (39), with p = log, (%), Algorithm 5 can ensure P(r; %) — D(r; w®)) <
=L H(r)| < %52 D(r; w®))| which implies P (r; xP)) < D(r; w(P)).
Suppose r < f* so that H(r) > 0. We must consider two cases, H(r) > 5 and H(r) < §, separately. In the case where
H(r) > £, with p = log, (%), Algorithm 5 can ensure P(r; xP)) — D(r; wP)) < L H (r)| < L2 P(r; wP))
which implies P(r;%®)) < 6D(r; w(?)). In the case where H(r) < £, with p = log, <%), Algorithm 5 can ensure

P(r; %)) — D(r; wP)) < £ which implies P(r; x?)) < D(r; W) + £ < H(r) + £ < . Based on the argument above,
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at least one of the three conditions in Algorithm 3 will be satisfied and Algorithm 5 will terminate and return the desired
L(r), U(r) and S(r), in no more than

o 2(o0
P =log, <<9 - 1>max{|H<r>|7s}> 0

iterations.

In the pth call of SVRG in Algorithm 5, the parameters are set as y = 2pf§Qx , V= 21’+€’0Qw and ( = 2p+2 Hence,

Co
230

Co
2p+3QW

Go

Ppun(r; %Py =D, (1, w®) < P(r; xP)) — D(r; wP)) 4 .

Qx +

<
Qu <5

According to Theorem 2, the expected number of outer iterations in the pth call of SVRG is at most

S < 1+2log <(2 + 26) [Pup(r;XP) — Dy, (15 v;,(p))]>
) ¢
< 0Oflog [I|Al|3 4+ max{d maxy, || Az |3, n max; | A3} o

- 2Py

= O(p).

Given the upper bound (40) for the total number of calls of SVRG, the total expected complexity of Algorithm 5 is at most

P
30 ((ua+ (4 @y 1N+ manc{dmass | A 3, ma ||Al:||§}]> ’)
nv

((nd—i— n+d)Qwa[||A||2+max{dmax\|A k|\27nmax||Al II5 }]22p> )

IN
EM_U 3

P

< O(ndP)+0 (<n + D)QuQul A3 + max{dmax | A3, 0 max ||Az:||§}]P> x 0 (Z 22p>
p=0

. (n + d)QxQuwll|All3 + max{dmaxy, || A:x[|3, n max; || Ar||3}]

= O(nd+

max{|H (r)|?,e?}
~ A
= 0 (o s M),
where, in the first equality, we use the fact that P is a logarithmic term and O (Z;I::o 22”) =0 (22P ) =

A 1
o (max{\H(r)|2,€2}>'





