A. Illustration of Algorithm 2

Figure 3. Illustration of AM-FLS Method. The figures on the top row depict the procedure to update $r^{(k)}$ using upper bound $U\left(r^{(k)}\right)$. The figures on the bottom row show when to stop the algorithm.

The geometric illustration of Algorithm 1 has already been given in Aravkin et al. (2016). In Figure 3, we illustrate the intuition behind Algorithm 2. We choose $\theta=2$ as an example. In the top-left picture in Figure 3, we plot the curve of a level function $H(r)$ that has all the properties in Lemma 1. Moreover, the x-axis represents the value of r and the point where the x-axis intersecting with the y-axis is $\left(f^{*}, H\left(f^{*}\right)\right)=\left(f^{*}, 0\right)$. In the top-middle picture, we consider a level parameter $r^{(k)}>f^{*}$ such that $H\left(r^{(k)}\right)<0$, and use an oracle to find $U\left(r^{(k)}\right)$ and $L\left(r^{(k)}\right)$ such that $2 U\left(r^{(k)}\right) \leq L\left(r^{(k)}\right) \leq H\left(r^{(k)}\right) \leq U\left(r^{(k)}\right)$ (Property 4 in Definition 1 of an oracle with $\theta=2$). In the top-right figure, we perform the update $r^{(k+1)} \leftarrow r^{(k)}+U\left(r^{(k)}\right)$ such that $r^{(k)}$ moves towards the root f^{*} of $H(r)$ as k increases. Note that, in Algorithm 2, we use a slightly different updating step which is $r^{(k+1)} \leftarrow r^{(k)}+U\left(r^{(k)}\right) / 2$. This is because the multiplier $\frac{1}{2}$ (or any multiplier less than 1) applied to $U\left(r^{(k)}\right)$ can avoid the extreme scenario where $r^{(k+1)}=f^{*}$. We want to avoid this scenario because, if it happens, we can no longer find $\overline{\mathbf{x}}$ such that $\mathcal{P}\left(r^{(k+1)} ; \overline{\mathbf{x}}\right)<0$ and thus cannot ensure the feasibility of the returned solution. The impact of this multiplier to the complexity of a feasible level-set method is analyzed by Lin et al. (2017).

In the bottom-left figure, we plot the curve (of r) $\min _{\mathbf{x} \in \mathcal{X}} K\left(r ; \mathbf{x}, \mathbf{y}^{(k)}, \boldsymbol{\alpha}^{(k)}\right)$ in red where $\left(\mathbf{y}^{(k)}, \boldsymbol{\alpha}^{(k)}\right)=\mathbf{w}^{(k)}$ is the dual solution found by the oracle when it solves (7). According to (7), $\min _{\mathbf{x} \in \mathcal{X}} K\left(r ; \mathbf{x}, \mathbf{y}^{(k)}, \boldsymbol{\alpha}^{(k)}\right)$ is a global lower bound of $H(r)$ and $L\left(r^{(k)}\right)=\min _{\mathbf{x} \in \mathcal{X}} K\left(r^{(k)} ; \mathbf{x}, \mathbf{y}^{(k)}, \boldsymbol{\alpha}^{(k)}\right)$. In the bottom-middle figure, we construct the tangent line for the curve $\min _{\mathbf{x} \in \mathcal{X}} K\left(r ; \mathbf{x}, \mathbf{y}^{(k)}, \boldsymbol{\alpha}^{(k)}\right)$ at $r^{(k)}$, namely, $L\left(r^{(k)}\right)+\partial_{r}\left(\min _{\mathbf{x} \in \mathcal{X}} K\left(r ; \mathbf{x}, \mathbf{y}^{(k)}, \boldsymbol{\alpha}^{(k)}\right)\right)\left(r-r^{(k)}\right)$ which is the green line in this figure. Therefore, we can choose $S\left(r^{(k)}\right)=\partial_{r}\left(\min _{\mathbf{x} \in \mathcal{X}} K\left(r ; \mathbf{x}, \mathbf{y}^{(k)}, \boldsymbol{\alpha}^{(k)}\right)\right)$ as the slope in the output of the oracle, which will satisfy Property 5 in Definition 1. Finally, in the bottom-right picture, we show a line segment in the x-axis whose length is $\frac{L\left(r^{(k)}\right)}{S\left(r^{(k)}\right)}$ which is no shorter than $r^{(k)}-f^{*}$. Hence, to ensure $r^{(k)}-f^{*} \leq \varepsilon$, it suffices to stop Algorithm 2 when $\frac{L\left(r^{(k)}\right)}{S\left(r^{(k)}\right)} \leq \varepsilon$, or equivalently, $L\left(r^{(k)}\right) \geq \varepsilon S\left(r^{(k)}\right)$.

B. Proof of Lemma 3

Proof. According to the update step in Algorithm 4, we have, for $t \geq 0$,

$$
\begin{equation*}
\mathbf{w}^{(t+1)}=\left(\mathbf{y}^{(t+1)}, \boldsymbol{\alpha}^{(t+1)}\right) \in \underset{\mathbf{w} \in \mathcal{W}}{\arg \min }-\boldsymbol{\alpha}^{\top} \mathbf{v}^{(t)}+G_{\mu}(\mathbf{w})+\frac{D\left(\mathbf{w}, \mathbf{w}^{(t)}\right)}{\tau} \tag{15}
\end{equation*}
$$

By Proposition 1, we have $\mathbf{y}^{(t+1)} \in$ int Δ and $\boldsymbol{\alpha}^{(t+1)}=y_{i}^{(t+1)} \tilde{\boldsymbol{\alpha}}_{i}^{(t+1)}$ where

$$
\begin{equation*}
\tilde{\boldsymbol{\alpha}}_{i}^{(t+1)} \in \underset{\tilde{\boldsymbol{\alpha}}_{i} \in \mathbb{R}^{n_{i}}}{\arg \min }\left\{\nu\left\|\tilde{\boldsymbol{\alpha}}_{i}\right\|_{2}^{2}+\frac{1}{\tau}\left\|\tilde{\boldsymbol{\alpha}}_{i}-\tilde{\boldsymbol{\alpha}}_{i}^{(t)}\right\|_{2}^{2}+\sum_{j=1}^{n_{i}} \frac{1}{n_{i}} \phi_{i j}^{*}\left(\tilde{\alpha}_{i j}\right)-\tilde{\boldsymbol{\alpha}}_{i}^{\top} \mathbf{v}_{i}^{(t)}\right\} . \tag{16}
\end{equation*}
$$

Therefore, to prove this lemma, it suffices to prove $\left\|\tilde{\boldsymbol{\alpha}}_{i}^{(t)}\right\|_{2} \leq B$ for all $t \geq 0$ and $i=0,1, \ldots, m$. We prove this result under each of the two scenarios in Assumption 2.
Suppose scenario (b) in Assumption 2 holds such that $B \geq \max _{\tilde{\alpha}_{i j} \in \operatorname{dom} \phi_{i j}}\left\|\tilde{\boldsymbol{\alpha}}_{i}\right\|_{2}$. Since $\tilde{\boldsymbol{\alpha}}_{i}^{(t)}$ must stay in the domain of $\phi_{i j}^{*}$ according to (16), we have $\left\|\tilde{\boldsymbol{\alpha}}_{i}^{(t)}\right\|_{2} \leq B$ for all $t \geq 0$ and $i=0,1, \ldots, m$.

In the next, we prove this result by assuming scenario (a) in Assumption 2 holds such that B is a constant that satisfies

$$
B \geq \max \left\{2\left\|\tilde{\boldsymbol{\alpha}}_{i}^{*}\right\|_{2}, \frac{8 d \max _{k}\left\|\Theta_{i k}\right\|_{2} B_{\mathbf{x}}}{\gamma}, 2\left\|\frac{\overline{\boldsymbol{\alpha}}_{i}^{(0)}}{\bar{y}_{i}^{(0)}}-\tilde{\boldsymbol{\alpha}}_{i}^{*}\right\|_{2}\right\}
$$

Let $\tilde{\boldsymbol{\alpha}}_{i}^{(t)}=\frac{\boldsymbol{\alpha}_{i}^{(t)}}{y_{i}^{(t)}}$ and $\tilde{\boldsymbol{\alpha}}_{i}^{*}=\frac{\boldsymbol{\alpha}_{i}^{*}}{y_{i}^{*}}$ for $i=0,1, \ldots, m$. We will first prove

$$
\begin{equation*}
\left\|\tilde{\boldsymbol{\alpha}}_{i}^{(t)}-\tilde{\boldsymbol{\alpha}}_{i}^{*}\right\|_{2} \leq \max \left\{\left\|\tilde{\boldsymbol{\alpha}}_{i}^{*}\right\|_{2}, \frac{4 d \max _{k}\left\|\Theta_{i k}\right\|_{2} B_{\mathbf{x}}}{\gamma},\left\|\overline{\boldsymbol{\alpha}}_{i}^{(0)} / \bar{y}_{i}^{(0)}-\tilde{\boldsymbol{\alpha}}_{i}^{*}\right\|_{2}\right\} \tag{17}
\end{equation*}
$$

for all $t \geq 0$ by induction over the index t. Equation (17) holds trivially for $t=0$ because $\tilde{\boldsymbol{\alpha}}_{i}^{(0)}=\overline{\boldsymbol{\alpha}}_{i}^{(0)} / \bar{y}_{i}^{(0)}$. Now, we assume (17) holds for iteration t and prove it also holds for iteration $t+1$.

According to (16), we can independently update each coordinate of $\tilde{\boldsymbol{\alpha}}_{i}^{(t+1)}$, denoted by $\tilde{\alpha}_{i j}^{(t+1)}$, by solving

$$
\tilde{\alpha}_{i j}^{(t+1)} \in \underset{\tilde{\alpha}_{i j} \in \mathbb{R}}{\arg \min }\left\{\nu\left(\tilde{\alpha}_{i j}\right)^{2}+\frac{1}{\tau}\left(\tilde{\alpha}_{i j}-\tilde{\alpha}_{i j}^{(t)}\right)^{2}+\frac{1}{n_{i}} \phi_{i j}^{*}\left(\tilde{\alpha}_{i j}\right)-\tilde{\alpha}_{i j} v_{i j}^{(t)}\right\}
$$

whose optimality condition implies

$$
\begin{equation*}
0 \in 2 \nu \tilde{\alpha}_{i j}^{(t+1)}+\frac{2}{\tau}\left(\tilde{\alpha}_{i j}^{(t+1)}-\tilde{\alpha}_{i j}^{(t)}\right)+\frac{1}{n_{i}} \partial \phi_{i j}^{*}\left(\tilde{\alpha}_{i j}^{(t+1)}\right)-v_{i j}^{(t)} . \tag{18}
\end{equation*}
$$

By the definition of the saddle point $\left(\mathbf{x}^{*}, \mathbf{y}^{*}, \boldsymbol{\alpha}^{*}\right)$, the value $\tilde{\alpha}_{i j}^{*}:=\frac{\alpha_{i j}^{*}}{y_{i}^{*}}$ satisfies

$$
\tilde{\alpha}_{i j}^{*} \in \underset{\tilde{\alpha}_{i j} \in \mathbb{R}}{\arg \min }\left\{-\frac{1}{n_{i}} \tilde{\alpha}_{i j} \xi_{i j}^{\top} \mathbf{x}^{*}+\frac{1}{n_{i}} \phi_{i j}^{*}\left(\tilde{\alpha}_{i j}\right)\right\}
$$

whose optimality condition implies

$$
0 \in-\frac{1}{n_{i}} \xi_{i j}^{\top} \mathbf{x}^{*}+\frac{1}{n_{i}} \partial \phi_{i j}^{*}\left(\tilde{\alpha}_{i j}^{*}\right)
$$

or, equivalently,

$$
\begin{equation*}
2 \nu \tilde{\alpha}_{i j}^{*}+\frac{2}{\tau}\left(\tilde{\alpha}_{i j}^{*}-\tilde{\alpha}_{i j}^{(t)}\right) \in 2 \nu \tilde{\alpha}_{i j}^{*}+\frac{2}{\tau}\left(\tilde{\alpha}_{i j}^{*}-\tilde{\alpha}_{i j}^{(t)}\right)+\frac{1}{n_{i}} \partial \phi_{i j}^{*}\left(\tilde{\alpha}_{i j}^{*}\right)-\frac{1}{n_{i}} \xi_{i j}^{\top} \mathbf{x}^{*} . \tag{19}
\end{equation*}
$$

Since $\phi_{i j}$ is smooth with its gradient being $\frac{1}{\gamma}$-Lipschitz continuous with respect to ℓ_{2}-norm, $\phi_{i j}^{*}$ is γ strongly convex with respect to ℓ_{2}-norm. Hence, the function $\nu(\alpha)^{2}+\frac{1}{\tau}\left(\alpha-\tilde{\alpha}_{i j}^{t}\right)^{2}+\frac{1}{n_{i}} \phi_{i j}^{*}(\alpha)$ is $\left(2 \nu+\frac{2}{\tau}+\frac{\gamma}{n_{i}}\right)$-strongly convex. Therefore, the strong monotonicity property of the subdifferential of this function implies

$$
\begin{aligned}
& {\left[2 \nu \tilde{\alpha}_{i j}^{*}+\frac{2}{\tau}\left(\tilde{\alpha}_{i j}^{*}-\tilde{\alpha}_{i j}^{(t)}\right)+\frac{1}{n_{i}} \partial \phi_{i j}^{*}\left(\tilde{\alpha}_{i j}^{*}\right)-2 \nu \tilde{\alpha}_{i j}^{(t+1)}-\frac{2}{\tau}\left(\tilde{\alpha}_{i j}^{(t+1)}-\tilde{\alpha}_{i j}^{(t)}\right)-\frac{1}{n_{i}} \partial \phi_{i j}^{*}\left(\tilde{\alpha}_{i j}^{(t+1)}\right)\right]\left[\tilde{\alpha}_{i j}^{*}-\tilde{\alpha}_{i j}^{(t+1)}\right] } \\
\geq & \left(2 \nu+\frac{2}{\tau}+\frac{\gamma}{n_{i}}\right)\left(\tilde{\alpha}_{i j}^{*}-\tilde{\alpha}_{i j}^{(t+1)}\right)^{2}
\end{aligned}
$$

which implies

$$
\begin{aligned}
& \left|2 \nu \tilde{\alpha}_{i j}^{*}+\frac{2}{\tau}\left(\tilde{\alpha}_{i j}^{*}-\tilde{\alpha}_{i j}^{(t)}\right)+\frac{1}{n_{i}} \partial \phi_{i j}^{*}\left(\tilde{\alpha}_{i j}^{*}\right)-2 \nu \tilde{\alpha}_{i j}^{(t+1)}-\frac{2}{\tau}\left(\tilde{\alpha}_{i j}^{(t+1)}-\tilde{\alpha}_{i j}^{(t)}\right)-\frac{1}{n_{i}} \partial \phi_{i j}^{*}\left(\tilde{\alpha}_{i j}^{(t+1)}\right)\right| \\
\geq & \left(2 \nu+\frac{2}{\tau}+\frac{\gamma}{n_{i}}\right)\left|\tilde{\alpha}_{i j}^{*}-\tilde{\alpha}_{i j}^{(t+1)}\right|
\end{aligned}
$$

Applying the relationship (18) and (19) to the inequality above gives

$$
\left|2 \nu \tilde{\alpha}_{i j}^{*}+\frac{2}{\tau}\left(\tilde{\alpha}_{i j}^{*}-\tilde{\alpha}_{i j}^{(t)}\right)+\frac{1}{n_{i}} \xi_{i j}^{\top} \mathbf{x}^{*}-v_{i j}^{(t)}\right| \geq\left(2 \nu+\frac{2}{\tau}+\frac{\gamma}{n_{i}}\right)\left|\tilde{\alpha}_{i j}^{*}-\tilde{\alpha}_{i j}^{(t+1)}\right|
$$

which, by the triangle's inequality, further implies

$$
\begin{equation*}
\frac{2 \nu\left\|\tilde{\boldsymbol{\alpha}}_{i}^{*}\right\|_{2}+\frac{2}{\tau}\left\|\tilde{\boldsymbol{\alpha}}_{i}^{*}-\tilde{\boldsymbol{\alpha}}_{i}^{(t)}\right\|_{2}+\frac{\gamma}{n_{i}}\left\|\frac{\Theta_{i} \mathbf{x}^{*}}{\gamma}-\frac{n_{i} \mathbf{v}_{i}^{(t)}}{\gamma}\right\|_{2}}{2 \nu+\frac{2}{\tau}+\frac{\gamma}{n_{i}}} \geq\left\|\tilde{\boldsymbol{\alpha}}_{i}^{*}-\tilde{\boldsymbol{\alpha}}_{i}^{(t+1)}\right\|_{2} \tag{20}
\end{equation*}
$$

Note that the relationship $\frac{1}{n_{i}} \xi_{i j}^{\top} \mathbf{x}^{*}=\frac{1}{n_{i}} \partial \phi_{i j}^{*}\left(\tilde{\alpha}_{i j}^{*}\right)$ implies $\nabla \phi_{i j}\left(\xi_{i j}^{\top} \mathbf{x}^{*}\right)=\tilde{\alpha}_{i j}^{*}$. Moreover, the definition of $\mathbf{v}^{(t)}$ in Algorithm 4 indicates that

$$
\left\|\Theta_{i} \mathbf{x}^{*}-n_{i} \mathbf{v}_{i}^{(t)}\right\|_{2} \leq 2\left\|\Theta_{i}\right\|_{2} B_{\mathbf{x}}+d\left\|\Theta_{i k}\right\|_{2}\left\|\overline{\mathbf{x}}_{k}^{*}-\mathbf{x}_{k}^{(t)}\right\| \leq 4 d \max _{k}\left\|\Theta_{i k}\right\|_{2} B_{\mathbf{x}}
$$

where $\Theta_{i k}$ is the k th column of Θ_{i}. By the induction hypothesis (17) and (20), we conclude that

$$
\left\|\tilde{\boldsymbol{\alpha}}_{i}^{*}-\tilde{\boldsymbol{\alpha}}_{i}^{(t+1)}\right\|_{2} \leq \max \left\{\left\|\tilde{\boldsymbol{\alpha}}_{i}^{*}\right\|_{2}, \frac{4 d \max _{k}\left\|\Theta_{i k}\right\|_{2} B_{\mathbf{x}}}{\gamma},\left\|\overline{\boldsymbol{\alpha}}_{i}^{(0)} / \bar{y}_{i}^{(0)}-\tilde{\boldsymbol{\alpha}}_{i}^{*}\right\|_{2}\right\}
$$

so that the result (17) holds for $t+1$.
Finally, using (17) and the fact that $\left\|\tilde{\boldsymbol{\alpha}}_{i}^{(t)}\right\|_{2} \leq\left\|\tilde{\boldsymbol{\alpha}}_{i}^{*}\right\|_{2}+\left\|\tilde{\boldsymbol{\alpha}}_{i}^{*}-\tilde{\boldsymbol{\alpha}}_{i}^{(t)}\right\|_{2}$, we can show

$$
\left\|\tilde{\boldsymbol{\alpha}}_{i}^{(t)}\right\|_{2} \leq \max \left\{2\left\|\tilde{\boldsymbol{\alpha}}_{i}^{*}\right\|_{2}, \frac{8 d \max _{k}\left\|\Theta_{i k}\right\|_{2} B_{\mathbf{x}}}{\gamma}, 2\left\|\overline{\boldsymbol{\alpha}}_{i}^{(0)} / \bar{y}_{i}^{(0)}-\tilde{\boldsymbol{\alpha}}_{i}^{*}\right\|_{2}\right\} \leq B
$$

which completes the proof.

C. Proof of Theorem 1

Proof. The complexity of Algorithm 1 can be analyzed with a similar argument as in Section 2.1 in Aravkin et al. (2016) by incorporating the complexity of oracle \mathcal{A}. Consider an iteration k that is not the last iteration of Algorithm 1, i.e., $U\left(r^{(k)}\right)>\varepsilon$. The property of \mathcal{A} guarantees that $\theta H\left(r^{(k)}\right) \geq \theta L\left(r^{(k)}\right) \geq U\left(r^{(k)}\right)>\varepsilon$ so that the complexity of \mathcal{A} in iteration k is at most

$$
\mathcal{C}\left(\max \left\{H\left(r^{(k)}\right), \varepsilon\right\}\right) \leq \mathcal{C}\left(\max \left\{\theta^{-1} \varepsilon, \varepsilon\right\}\right)=\mathcal{C}(\varepsilon)
$$

On the other hand, in the last iteration Algorithm 1 where $U\left(r^{(k)}\right) \leq \varepsilon$, we have $H\left(r^{(k)}\right) \leq U\left(r^{(k)}\right) \leq \varepsilon$ so that the complexity of \mathcal{A} here is still at most $\mathcal{C}(\varepsilon)$. According to Theorem 2.4 in Aravkin et al. (2016), Algorithm 1 terminates after at most $\max \left\{1+\log _{2 / \theta}\left(\frac{\max \left\{\left|S\left(r^{(0)}\right) \| f^{*}-r^{(0)}\right|, L\left(r^{(0)}\right)\right\}}{\varepsilon}\right), 2\right\}$ iterations so that the total complexity of Algorithm 1 is $\mathcal{C}(\varepsilon) \max \left\{1+\log _{2 / \theta}\left(\frac{\max \left\{\left|S\left(r^{(0)}\right) \| f^{*}-r^{(0)}\right|, L\left(r^{(0)}\right)\right\}}{\varepsilon}\right), 2\right\}$. At the last iteration, we have $\mathcal{P}\left(r^{(k)} ; \mathbf{x}^{(k)}\right) \leq U\left(r^{(k)}\right) \leq \varepsilon$, which means the output solution $\mathbf{x}^{(k)}$ is ε-optimal and ε-feasible by the definition of \mathcal{P}.
In the next, we analyze the complexity of Algorithm 2. The most part of the proof is from the proof of Theorem 2 in Lin et al. (2017). However, one major difference in our proof from Lin et al. (2017) is that we analyze the complexity for Algorithm 2 under a termination condition different from the one used in Lin et al. (2017). This difference is essential because it is the main reason for Algorithm 2 to ensure an absolute ϵ-optimal solution while Lin et al. (2017) ensures a relative ϵ-optimal solution.

First of all, we claim that $S(r) \leq 0$ for any r. In fact, for any $r^{\prime}>r$, the property of $S(r)$ promised by oracle \mathcal{A} guarantees $H(r) \geq H\left(r^{\prime}\right) \geq L(r)+S(r)\left(r^{\prime}-r\right)$ which implies $S(r) \leq \frac{H(r)-L(r)}{r^{\prime}-r}$. Letting r^{\prime} goes to infinity leads to this conclusion. According to Lemma 1(c) and convexity of $H(r)$, we can show that

$$
\begin{equation*}
\beta\left(r-f^{*}\right) \leq-H(r) \leq r-f^{*}, \quad \forall r \in\left(f^{*}, r^{(0)}\right] \tag{21}
\end{equation*}
$$

From (21), the updating equation for $r^{(k+1)}$ and the fact that $H\left(r^{(k)}\right) \leq U\left(r^{(k)}\right) \leq L\left(r^{(k)}\right) / \theta \leq H\left(r^{(k)}\right) / \theta \leq 0$, we have

$$
\begin{align*}
& r^{(k+1)}-f^{*}=r^{(k)}-f^{*}+U\left(r^{(k)}\right) / 2 \geq r^{(k)}-f^{*}+\frac{H\left(r^{(k)}\right)}{2} \geq \frac{1}{2}\left(r^{(k)}-f^{*}\right) \tag{22}\\
& r^{(k+1)}-f^{*}=r^{(k)}-f^{*}+U\left(r^{(k)}\right) / 2 \leq r^{(k)}-f^{*}+\frac{H\left(r^{(k)}\right)}{2 \theta} \leq\left(1-\frac{\beta}{2 \theta}\right)\left(r^{(k)}-f^{*}\right) \tag{23}
\end{align*}
$$

Recursively applying both inequalities gives

$$
\begin{equation*}
0<\frac{1}{2^{k}}\left(r^{(0)}-f^{*}\right) \leq r^{(k)}-f^{*} \leq\left(1-\frac{\beta}{2 \theta}\right)^{k}\left(r^{(0)}-f^{*}\right), \quad \text { for } k=0,1,2, \ldots, K \tag{24}
\end{equation*}
$$

The inequality (21) for $r=r^{(k)}$, (24) and the property of $L\left(r^{(k)}\right)$ together imply

$$
-L\left(r^{(k)}\right) \leq-\theta H\left(r^{(k)}\right) \leq \theta\left(r^{(k)}-f^{*}\right) \leq \theta\left(1-\frac{\beta}{2 \theta}\right)^{k}\left(r^{(0)}-f^{*}\right) \leq-\frac{H\left(r^{(0)}\right)}{2}
$$

for any given $k \geq \frac{2 \theta}{\beta} \log \left(\frac{2 \theta\left(r^{(0)}-f^{*}\right)}{\left|H\left(r^{(0)}\right)\right|}\right)$. With the same k, the definition of $S\left(r^{(k)}\right)$ and the fact that $S\left(r^{(k)}\right) \leq 0$ imply that $H\left(r^{(0)}\right) \geq L\left(r^{(k)}\right)+S\left(r^{(k)}\right)\left(r^{(0)}-r^{(k)}\right) \geq \frac{H\left(r^{(0)}\right)}{2}+S\left(r^{(k)}\right)\left(r^{(0)}-f^{*}\right)$, or equivalently, $S\left(r^{(k)}\right) \leq \frac{H\left(r^{(0)}\right)}{2\left(r^{(0)}-f^{*}\right)}=-\frac{\beta}{2}<0$. Therefore, if we simultaneously require $k \geq \frac{2 \theta}{\beta} \log \left(\frac{2 \theta\left(r^{(0)}-f^{*}\right)^{2}}{\left|H\left(r^{(0)}\right)\right| \varepsilon}\right)$, we will ensure $-L\left(r^{(k)}\right) \leq \frac{-H\left(r^{(0)}\right) \varepsilon}{2\left(r^{(0)}-f^{*}\right)} \leq-\varepsilon S\left(r^{(k)}\right)$. Therefore, Algorithm 2 terminates after at most $\frac{2 \theta}{\beta} \log \left(\frac{2 \theta\left(r^{(0)}-f^{*}\right)}{\left|H\left(r^{(0)}\right)\right|} \max \left\{\frac{r^{(0)}-f^{*}}{\varepsilon}, 1\right\}\right)=\frac{2 \theta}{\beta} \log \left(\frac{2 \theta}{\beta} \max \left\{\frac{r^{(0)}-f^{*}}{\varepsilon}, 1\right\}\right)$ iterations.

To obtain the overall complexity, consider an iteration k that is not the last iteration of Algorithm 2, i.e., $L\left(r^{(k)}\right)<\varepsilon S\left(r^{(k)}\right)$. Without lose of generality, we assume $r^{(0)}-f^{*}>\varepsilon$. The property of \mathcal{A} guarantees that $\theta H\left(r^{(k)}\right) \leq L\left(r^{(k)}\right)<\varepsilon S\left(r^{(k)}\right)$ which, together with the definition of $S\left(r^{(k)}\right)$, implies that $H\left(r^{(0)}\right) \geq L\left(r^{(k)}\right)+S\left(r^{(k)}\right)\left(r^{(0)}-r^{(k)}\right) \geq \theta H\left(r^{(k)}\right)+$ $\frac{\theta H\left(r^{(k)}\right)}{\varepsilon}\left(r^{(0)}-f^{*}\right)$. This inequality further implies $\left|H\left(r^{(k)}\right)\right| \geq \frac{\left|H\left(r^{(0)}\right)\right|}{\theta\left(1+\left(r^{(0)}-f^{*}\right) / \varepsilon\right)}=\frac{\beta\left(r^{(0)}-f^{*}\right)}{\theta\left(1+\left(r^{(0)}-f^{*}\right) / \varepsilon\right)} \geq \frac{\varepsilon \beta}{2 \theta}$ where the equality is by the definition of β and the inequality is by the fact that $r^{(0)}-f^{*}>\varepsilon$. Hence, the complexity of \mathcal{A} in iteration k (non-terminating iteration) is at most

$$
\mathcal{C}\left(\left|H\left(r^{(k)}\right)\right|\right) \leq \mathcal{C}\left(\theta^{-1} \varepsilon \beta / 2\right)
$$

On the other hand, in the last iteration Algorithm 2, we have $-H\left(r^{(k)}\right) \geq \beta\left(r^{(k)}-f^{*}\right) \geq \frac{\beta}{2}\left(r^{(k-1)}-f^{*}\right) \geq \frac{\beta\left|H\left(r^{(k-1)}\right)\right|}{2} \geq$ $\frac{\beta^{2} \varepsilon}{4 \theta}$ so that the complexity of \mathcal{A} here is most

$$
\mathcal{C}\left(\left|H\left(r^{(k)}\right)\right|\right) \leq \mathcal{C}\left(\theta^{-1} \varepsilon \beta^{2} / 4\right)
$$

Hence, the total complexity Algorithm 2 is $\mathcal{C}\left(\theta^{-1} \varepsilon \beta^{2} / 4\right) \frac{2 \theta}{\beta} \log \left(\frac{2 \theta}{\beta} \max \left\{\frac{r^{(0)}-f^{*}}{\varepsilon}, 1\right\}\right)$.
Lastly, we analyze the quality of the output solution from Algorithm 2. We note that the affine-minorant property of $S\left(r^{(k)}\right)$ implies $H\left(r^{(k)}-L\left(r^{(k)}\right) / S\left(r^{(k)}\right)\right) \geq L\left(r^{(k)}\right)+S\left(r^{(k)}\right)\left(r^{(k)}-L\left(r^{(k)}\right) / S\left(r^{(k)}\right)-r^{(k)}\right)=0$ such that we must have $r^{(k)}-L\left(r^{(k)}\right) / S\left(r^{(k)}\right) \leq f^{*}$, which further ensures $r^{(k)}-f^{*} \leq L\left(r^{(k)}\right) / S\left(r^{(k)}\right) \leq \varepsilon$ once Algorithm 2 terminates. At the last iteration, we then have $\mathcal{P}\left(r^{(k)} ; \mathbf{x}_{k}\right) \leq U\left(r^{(k)}\right) \leq L\left(r^{(k)}\right) / \theta \leq H\left(r^{(k)}\right) / \theta<0$ as $r^{(k)}>f^{*}$. Because $0 \leq r^{(k)}-f^{*} \leq \varepsilon$ and $\mathcal{P}\left(r^{(k)} ; \mathbf{x}^{(k)}\right)<0$, we have $f_{0}\left(\mathbf{x}^{(k)}\right)-f^{*} \leq r^{(k)}-f^{*} \leq \varepsilon$ and $\max _{i=1, \ldots, m}\left[f_{i}\left(\mathbf{x}^{k}\right)-r_{i}\right] \leq 0$ according to the definition of \mathcal{P}. Hence, Algorithm 2 returns an ε-optimal and feasible solution at termination.

D. Proof of Proposition 1

Proof of Proposition 1. By the definition of G_{ν}, D and h_{B}, after organizing terms, (12) can be formulated as

$$
\min _{\mathbf{w} \in \mathcal{W}}\left\{\begin{array}{l}
2(1+B)^{2} \nu \sum_{i=0}^{m} y_{i} \ln y_{i}+\frac{2(1+B)^{2}}{\tau} \sum_{i=0}^{m} y_{i} \ln \left(\frac{y_{i}}{y_{i}^{\prime}}\right)+\mathbf{y}^{\top} \mathbf{r} \tag{25}\\
+\sum_{i=0}^{m} \nu y_{i}\left\|\frac{\boldsymbol{\alpha}_{i}}{y_{i}}\right\|_{2}^{2}+\sum_{i=0}^{m} \frac{y_{i}}{\tau}\left\|\frac{\boldsymbol{\alpha}_{i}}{y_{i}}-\frac{\boldsymbol{\alpha}_{i}^{\prime}}{y_{i}^{\prime}}\right\|_{2}^{2}+\sum_{i=0}^{m} \sum_{j=1}^{n_{i}} \frac{y_{i}}{n_{i}} \phi_{i j}^{*}\left(\frac{\alpha_{i j}}{y_{i}}\right)-\sum_{i=0}^{m} y_{i}\left(\frac{\boldsymbol{\alpha}_{i}}{y_{i}}\right)^{\top} \mathbf{v}_{i}
\end{array}\right\} .
$$

We first fix $\mathbf{y} \in \Delta$ and only optimize $\boldsymbol{\alpha} \in \mathbb{R}^{n}$ in (25). It is easy to observe that each component $\boldsymbol{\alpha}_{i}$ in $\boldsymbol{\alpha}$ can be optimized independently. By changing variables with $\tilde{\boldsymbol{\alpha}}_{i}=\frac{\boldsymbol{\alpha}_{i}}{y_{i}}$ and $\tilde{\boldsymbol{\alpha}}_{i}^{\prime}=\frac{\boldsymbol{\alpha}_{i}^{\prime}}{y_{i}^{\prime}}$, the minimization over $\boldsymbol{\alpha}_{i}$ can extracted from (25) and formulated as (13), which has a closed-form for many commonly used loss function $\phi_{i j}$. Importantly, both the optimal value ρ_{i} and the optimal solution $\tilde{\boldsymbol{\alpha}}^{*}$ do not depend on y_{i}. Therefore, (25) is equivalent to

$$
\min _{\mathbf{y} \in \Delta}\left\{2(1+B)^{2} \nu \sum_{i=0}^{m} y_{i} \ln y_{i}+\frac{2(1+B)^{2}}{\tau} \sum_{i=0}^{m} y_{i} \ln \left(\frac{y_{i}}{y_{i}^{\prime}}\right)+\mathbf{y}^{\top}(\mathbf{r}+\boldsymbol{\rho})\right\}
$$

whose solution in a closed form is $y_{i}^{\#}$ defined in (14) which can be derived from the optimality condition. According to the relationship that $\tilde{\boldsymbol{\alpha}}_{i}=\frac{\boldsymbol{\alpha}_{i}}{y_{i}}$, the optimal value of the original variable $\boldsymbol{\alpha}_{i}$ should be $\boldsymbol{\alpha}_{i}^{\#}=\tilde{\boldsymbol{\alpha}}_{i}^{\#} y_{i}^{\#}$.

E. Proof of Theorem 2 and Theorem 3

In this section, we provide the proofs for Theorem 2 and Theorem 3.

Proof of Theorem 2. With a little abuse of notation, only in this proof, we denote by ($\mathbf{x}^{*}, \mathbf{w}^{*}$) the saddle point of (9) but hide their dependency on μ and ν. For simplicity of notation, we define $F_{\mu}(\mathbf{x}):=\frac{\mu\|\mathbf{x}\|_{2}^{2}}{2}$. Let \mathbb{E}_{t} represent the conditional expectation conditioning on all the stochastic outcomes up to the end of iteration t. The definition of $\left(\mathbf{x}^{(t+1)}, \mathbf{y}^{(t+1)}\right)$ and the optimality conditions of $\left(\mathbf{x}^{*}, \mathbf{w}^{*}\right)$ imply that, for any $\mathbf{x} \in \mathcal{X}$ and $\mathbf{w}=(\mathbf{y}, \boldsymbol{\alpha}) \in \mathcal{W}$,

$$
\begin{align*}
& \left(\mu+\frac{1}{\sigma}\right) \frac{\left\|\mathbf{x}-\mathbf{x}^{(t+1)}\right\|_{2}^{2}}{2}+\left(\mathbf{x}^{(t+1)}\right)^{\top} \mathbf{u}^{(t)}+F_{\mu}\left(\mathbf{x}^{(t+1)}\right)+\frac{\left\|\mathbf{x}^{(t)}-\mathbf{x}^{(t+1)}\right\|_{2}^{2}}{2 \sigma} \leq \mathbf{x}^{\top} \mathbf{u}^{(t)}+F_{\mu}(\mathbf{x})+\frac{\left\|\mathbf{x}-\mathbf{x}^{(t)}\right\|_{2}^{2}}{2 \sigma} \tag{26}\\
& \left(\nu+\frac{1}{\tau}\right) D\left(\mathbf{w}, \mathbf{w}^{(t+1)}\right)-\left(\boldsymbol{\alpha}^{(t+1)}\right)^{\top} \mathbf{v}^{(t)}+G_{\nu}\left(\mathbf{w}^{(t+1)}\right)+\frac{D\left(\mathbf{w}^{(t+1)}, \mathbf{w}^{(t)}\right)}{\tau} \leq-\boldsymbol{\alpha}^{\top} \mathbf{v}^{(t)}+G_{\nu}(\mathbf{w})+\frac{D\left(\mathbf{w}, \mathbf{w}^{(t)}\right)}{\tau} \tag{27}
\end{align*}
$$

Let

$$
\tilde{\mathcal{P}}(\mathbf{x}):=\boldsymbol{\alpha}^{*} A \mathbf{x}+F_{\mu}(\mathbf{x})-\boldsymbol{\alpha}^{*} A \mathbf{x}^{*}-F_{\mu}\left(\mathbf{x}^{*}\right) \quad \text { and } \quad \tilde{\mathcal{D}}(\mathbf{w}):=\boldsymbol{\alpha} A \mathbf{x}^{*}-G_{\nu}(\mathbf{w})-\boldsymbol{\alpha}^{*} A \mathbf{x}^{*}+G_{\nu}\left(\mathbf{w}^{*}\right)
$$

Note that $\min _{\mathbf{x} \in \mathcal{X}} \tilde{\mathcal{P}}(\mathbf{x})=\tilde{\mathcal{P}}\left(\mathbf{x}^{*}\right)=0$ and $\max _{\mathbf{w} \in \mathcal{W}} \tilde{\mathcal{D}}(\mathbf{w})=\tilde{\mathcal{D}}\left(\mathbf{w}^{*}\right)=0$. By the strong convexity of F_{μ} with respect to Euclidean distance and the strong convexity of G_{ν} with respect to Bregman divergence D, we can show that

$$
\begin{equation*}
\tilde{\mathcal{P}}(\mathbf{x}) \geq \frac{\mu\left\|\mathbf{x}-\mathbf{x}^{*}\right\|_{2}^{2}}{2} \quad \text { and } \quad-\tilde{\mathcal{D}}(\mathbf{w}) \geq \nu D\left(\mathbf{w}, \mathbf{w}^{*}\right) \tag{28}
\end{equation*}
$$

We choose $\mathbf{x}=\mathbf{x}^{*}$ in (26) and $\mathbf{w}=\mathbf{w}^{*}$ in (27) and add (26), and (27) together. After organizing terms, we obtain

$$
\begin{align*}
& \left(\mu+\frac{1}{\sigma}\right) \frac{\left\|\mathbf{x}^{*}-\mathbf{x}^{(t+1)}\right\|_{2}^{2}}{2}+\frac{\left\|\mathbf{x}^{(t)}-\mathbf{x}^{(t+1)}\right\|_{2}^{2}}{2 \sigma}+\left(\nu+\frac{1}{\tau}\right) D\left(\mathbf{w}^{*}, \mathbf{w}^{(t+1)}\right)+\frac{D\left(\mathbf{w}^{(t+1)}, \mathbf{w}^{(t)}\right)}{\tau} \\
& +\tilde{\mathcal{P}}\left(\mathbf{x}^{(t+1)}\right)-\tilde{\mathcal{D}}\left(\mathbf{w}^{(t+1)}\right) \\
\leq & \left(\mathbf{x}^{*}-\mathbf{x}^{(t+1)}\right)^{\top} \mathbf{u}^{(t)}+\frac{\left\|\mathbf{x}^{*}-\mathbf{x}^{(t)}\right\|_{2}^{2}}{2 \sigma}-\left(\boldsymbol{\alpha}^{*}-\boldsymbol{\alpha}^{(t+1)}\right)^{\top} \mathbf{v}^{(t)}+\frac{D\left(\mathbf{w}^{*}, \mathbf{w}^{(t)}\right)}{\tau}+\boldsymbol{\alpha}^{*} A \mathbf{x}^{(t+1)}-\boldsymbol{\alpha}^{(t+1)} A \mathbf{x}^{*} \\
= & \left(\mathbf{x}^{*}-\mathbf{x}^{(t)}\right)^{\top}\left[\mathbf{u}^{(t)}-A^{\top} \boldsymbol{\alpha}^{(t)}\right]+\left(\boldsymbol{\alpha}^{*}-\boldsymbol{\alpha}^{(t)}\right)^{\top}\left[A \mathbf{x}^{(t)}-\mathbf{v}^{(t)}\right]+\frac{\left\|\mathbf{x}^{*}-\mathbf{x}^{(t)}\right\|_{2}^{2}}{2 \sigma}+\frac{D\left(\mathbf{w}^{*}, \mathbf{w}^{(t)}\right)}{\tau} \\
& +\left(\mathbf{x}^{*}-\mathbf{x}^{(t)}\right)^{\top} A^{\top} \boldsymbol{\alpha}^{(t)}-\left(\boldsymbol{\alpha}^{*}-\boldsymbol{\alpha}^{(t)}\right)^{\top} A \mathbf{x}^{(t)}-\left(\mathbf{x}^{(t+1)}-\mathbf{x}^{(t)}\right)^{\top} A^{\top} \boldsymbol{\alpha}^{(t)}+\left(\boldsymbol{\alpha}^{(t+1)}-\boldsymbol{\alpha}^{(t)}\right)^{\top} A \mathbf{x}^{(t)} \\
& +\left(\mathbf{x}^{(t+1)}-\mathbf{x}^{(t)}\right)^{\top}\left[A^{\top} \boldsymbol{\alpha}^{(t)}-\mathbf{u}^{(t)}\right]-\left(\boldsymbol{\alpha}^{(t+1)}-\boldsymbol{\alpha}^{(t)}\right)^{\top}\left[A \mathbf{x}^{(t)}-\mathbf{v}^{(t)}\right]+\boldsymbol{\alpha}^{*} A \mathbf{x}^{(t+1)}-\boldsymbol{\alpha}^{(t+1)} A \mathbf{x}^{*} \\
= & \left(\mathbf{x}^{*}-\mathbf{x}^{(t)}\right)^{\top}\left[\mathbf{u}^{(t)}-A^{\top} \boldsymbol{\alpha}^{(t)}\right]+\left(\boldsymbol{\alpha}^{*}-\boldsymbol{\alpha}^{(t)}\right)^{\top}\left[A \mathbf{x}^{(t)}-\mathbf{v}^{(t)}\right]+\frac{\left\|\mathbf{x}^{*}-\mathbf{x}^{(t)}\right\|_{2}^{2}}{2 \sigma}+\frac{D\left(\mathbf{w}^{*}, \mathbf{w}^{(t)}\right)}{\tau} \tag{29}\\
& -\left(\mathbf{x}^{(t+1)}-\mathbf{x}^{(t)}\right)^{\top} A^{\top}\left(\boldsymbol{\alpha}^{(t)}-\boldsymbol{\alpha}^{*}\right)+\left(\boldsymbol{\alpha}^{(t+1)}-\boldsymbol{\alpha}^{(t)}\right)^{\top} A\left(\mathbf{x}^{(t)}-\mathbf{x}^{*}\right) \\
& +\left(\mathbf{x}^{(t+1)}-\mathbf{x}^{(t)}\right)^{\top}\left[A^{\top} \boldsymbol{\alpha}^{(t)}-\mathbf{u}^{(t)}\right]-\left(\boldsymbol{\alpha}^{(t+1)}-\boldsymbol{\alpha}^{(t)}\right)^{\top}\left[A \mathbf{x}^{(t)}-\mathbf{v}^{(t)}\right]
\end{align*}
$$

Since the random indexes k and l are independent of $\mathbf{x}^{(t)}$ and $\mathbf{w}^{(t)}$, we have

$$
\begin{equation*}
\mathbb{E}_{t}\left[\left(\mathbf{x}^{*}-\mathbf{x}^{(t)}\right)^{\top}\left(\mathbf{u}^{(t)}-A^{\top} \boldsymbol{\alpha}^{(t)}\right)\right]=0 \quad \text { and } \quad \mathbb{E}_{t}\left[\left(\boldsymbol{\alpha}^{*}-\boldsymbol{\alpha}^{(t)}\right)^{\top}\left(A \mathbf{x}^{(t)}-\mathbf{v}^{(t)}\right)\right]=0 \tag{30}
\end{equation*}
$$

by the definition of $\mathbf{u}^{(t)}$ and $\mathbf{v}^{(t)}$.
Next, we study the three lines on the right hand side of (29), respectively. By the definition of $\mathbf{u}^{(t)}$, Cauchy-Schwarz inequality and Young's inequality, we have

$$
\begin{align*}
& \mathbb{E}_{t}\left[\left(\mathbf{x}^{(t)}-\mathbf{x}^{(t+1)}\right)^{\top}\left(\mathbf{u}^{(t)}-A^{\top} \boldsymbol{\alpha}^{(t)}\right)\right] \\
\leq & \frac{1}{2 a_{t}} \mathbb{E}_{t}\left\|\mathbf{x}^{(t)}-\mathbf{x}^{(t+1)}\right\|_{2}^{2}+\frac{a_{t}}{2} \mathbb{E}_{t}\left\|A^{\top} \overline{\boldsymbol{\alpha}}^{(s)}+n A_{l:}^{\top} \boldsymbol{\alpha}_{l}^{(t)}-n A_{l:}^{\top} \overline{\boldsymbol{\alpha}}_{l}^{(s)}-A^{\top} \boldsymbol{\alpha}^{(t)}\right\|_{2}^{2} \\
\leq & \frac{1}{2 a_{t}} \mathbb{E}_{t}\left\|\mathbf{x}^{(t)}-\mathbf{x}^{(t+1)}\right\|_{2}^{2}+a_{t} n \max _{l}\left\|A_{l:}\right\|_{2}^{2}\left\|\boldsymbol{\alpha}^{(t)}-\boldsymbol{\alpha}^{*}\right\|_{2}^{2}+a_{t} n \max _{l}\left\|A_{l:}\right\|_{2}^{2}\left\|\overline{\boldsymbol{\alpha}}^{(s)}-\boldsymbol{\alpha}^{*}\right\|_{2}^{2} \\
\leq & \frac{1}{2 a_{t}} \mathbb{E}_{t}\left\|\mathbf{x}^{(t)}-\mathbf{x}^{(t+1)}\right\|_{2}^{2}+2 a_{t} n \max _{l}\left\|A_{l:}\right\|_{2}^{2} D\left(\mathbf{w}^{*}, \mathbf{w}^{(t)}\right)+2 a_{t} n \max _{l}\left\|A_{l:}\right\|_{2}^{2} D\left(\mathbf{w}^{*}, \overline{\mathbf{w}}^{(s)}\right) \tag{31}
\end{align*}
$$

Similarly, we can prove that

$$
\begin{align*}
& \mathbb{E}_{t}\left[\left(\boldsymbol{\alpha}^{(t)}-\boldsymbol{\alpha}^{(t+1)}\right)^{\top}\left(A \mathbf{x}^{(t)}-\mathbf{v}^{(t)}\right)\right] \\
\leq & \frac{1}{2 b_{t}} \mathbb{E}_{t}\left\|\boldsymbol{\alpha}^{(t)}-\boldsymbol{\alpha}^{(t+1)}\right\|_{2}^{2}+b_{t} d \max _{k}\left\|A_{: k}\right\|_{2}^{2}\left\|\mathbf{x}^{(t)}-\mathbf{x}^{*}\right\|_{2}^{2}+b_{t} d \max _{k}\left\|A_{: k}\right\|_{2}^{2}\left\|\overline{\mathbf{x}}^{(s)}-\mathbf{x}^{*}\right\|_{2}^{2} \\
\leq & \frac{1}{b_{t}} \mathbb{E}_{t} D\left(\mathbf{w}^{(t+1)}, \mathbf{w}^{(t)}\right)+b_{t} d \max _{k}\left\|A_{: k}\right\|_{2}^{2}\left\|\mathbf{x}^{(t)}-\mathbf{x}^{*}\right\|_{2}^{2}+b_{t} d \max _{k}\left\|A_{: k}\right\|_{2}^{2}\left\|\overline{\mathbf{x}}^{(s)}-\mathbf{x}^{*}\right\|_{2}^{2} \tag{32}
\end{align*}
$$

Applying Cauchy-Schwarz inequality and Young's inequality in a similar way gives

$$
\begin{align*}
\mathbb{E}_{t}\left[\left(\mathbf{x}^{(t)}-\mathbf{x}^{(t+1)}\right)^{\top} A^{\top}\left(\boldsymbol{\alpha}^{(t)}-\boldsymbol{\alpha}^{*}\right)\right] & \leq \frac{1}{2 a_{t}} \mathbb{E}_{t}\left\|\mathbf{x}^{(t)}-\mathbf{x}^{(t+1)}\right\|_{2}^{2}+a_{t}\|A\|_{2}^{2} D\left(\mathbf{w}^{*}, \mathbf{w}^{(t)}\right) \tag{33}\\
\mathbb{E}_{t}\left[\left(\boldsymbol{\alpha}^{(t+1)}-\boldsymbol{\alpha}^{(t)}\right)^{\top} A\left(\mathbf{x}^{(t)}-\mathbf{x}^{*}\right)\right] & \leq \frac{1}{b_{t}} \mathbb{E}_{t} D\left(\mathbf{w}^{(t+1)}, \mathbf{w}^{(t)}\right)+\frac{b_{t}\|A\|_{2}^{2}}{2}\left\|\mathbf{x}^{(t)}-\mathbf{x}^{*}\right\|_{2}^{2} \tag{34}
\end{align*}
$$

Choosing $a_{t}=2 \sigma$ and $b_{t}=2 \tau$ and applying (30), (31), (32), (33) and (34) to (29) lead to

$$
\begin{align*}
& \left(\mu+\frac{1}{\sigma}\right) \frac{\mathbb{E}_{t}\left\|\mathbf{x}^{*}-\mathbf{x}^{(t+1)}\right\|_{2}^{2}}{2}+\left(\nu+\frac{1}{\tau}\right) \mathbb{E}_{t} D\left(\mathbf{w}^{*}, \mathbf{w}^{(t+1)}\right)+\tilde{\mathcal{P}}\left(\mathbf{x}^{(t+1)}\right)-\tilde{\mathcal{D}}\left(\mathbf{w}^{(t+1)}\right) \\
\leq & \left(2 \tau\|A\|_{2}^{2}+4 \tau d \max _{k}\left\|A_{: k}\right\|_{2}^{2}+\frac{1}{\sigma}\right) \frac{\left\|\mathbf{x}^{*}-\mathbf{x}^{(t)}\right\|_{2}^{2}}{2}+\left(2 \sigma\|A\|_{2}^{2}+4 \sigma n \max _{l}\left\|A_{l:}\right\|_{2}^{2}+\frac{1}{\tau}\right) D\left(\mathbf{w}^{*}, \mathbf{w}^{(t)}\right) \\
& +2 \tau d \max _{k}\left\|A_{: k}\right\|_{2}^{2}\left\|\mathbf{x}^{*}-\overline{\mathbf{x}}^{(s)}\right\|_{2}^{2}+4 \sigma n \max _{l}\left\|A_{l:}\right\|_{2}^{2} D\left(\mathbf{w}^{*}, \overline{\mathbf{w}}^{(s)}\right) \tag{35}
\end{align*}
$$

Note that the operator norm of A, i.e., $\|A\|_{2}$, satisfies $\|A\|_{2} \leq\|A\|_{\max }$ so that $\kappa=\frac{2\|A\|_{\max }^{2}}{\mu \nu}=$ $\frac{2 \max \left\{d \max _{k}\left\|A_{: k}\right\|_{2}^{2}, n \max _{l}\left\|A_{l:}\right\|_{2}^{2}\right\}}{\mu \nu}$. Let η be a constant to be determined later. Choosing $\sigma=\frac{\eta}{\kappa \mu}$ and $\tau=\frac{\eta}{\kappa \nu}$ in (35), we obtain the following inequality

$$
\begin{aligned}
& \left(1+\frac{\kappa}{\eta}\right) \mu \mathbb{E}_{t} \frac{\left\|\mathbf{x}^{*}-\mathbf{x}^{(t+1)}\right\|_{2}^{2}}{2}+\left(1+\frac{\kappa}{\eta}\right) \nu \mathbb{E}_{t} D\left(\mathbf{w}^{*}, \mathbf{w}^{(t+1)}\right)+\mathbb{E}_{t} \tilde{\mathcal{P}}\left(\mathbf{x}^{(t+1)}\right)-\mathbb{E}_{t} \tilde{\mathcal{D}}\left(\mathbf{w}^{(t+1)}\right) \\
\leq & \left(4 \eta+\frac{\kappa}{\eta}\right) \mu \frac{\left\|\mathbf{x}^{*}-\mathbf{x}^{(t)}\right\|_{2}^{2}}{2}+\left(4 \eta+\frac{\kappa}{\eta}\right) \nu D\left(\mathbf{w}^{*}, \mathbf{w}^{(t)}\right)+2 \eta \mu\left\|\mathbf{x}^{*}-\overline{\mathbf{x}}^{(s)}\right\|_{2}^{2}+4 \eta \nu D\left(\mathbf{w}^{*}, \overline{\mathbf{w}}^{(s)}\right),
\end{aligned}
$$

which, if divided by $\left(1+\frac{\kappa}{\eta}\right)$, further implies

$$
\begin{equation*}
\frac{1}{1+\frac{\kappa}{\eta}}\left[\tilde{\mathcal{P}}\left(\mathbf{x}^{(t+1)}\right)-\tilde{\mathcal{D}}\left(\mathbf{w}^{(t+1)}\right)\right]+\mathbb{E} \delta^{(t+1)} \leq\left(1-\frac{1-4 \eta}{1+\frac{\kappa}{\eta}}\right) \mathbb{E} \delta^{(t)}+\frac{4 \eta}{1+\frac{\kappa}{\eta}} \mathbb{E} \bar{\delta}^{(s)} \tag{36}
\end{equation*}
$$

where

$$
\delta^{(t)}=\frac{\mu \mathbb{E}\left\|\mathbf{x}^{*}-\mathbf{x}^{(t)}\right\|_{2}^{2}}{2}+\nu \mathbb{E} D\left(\mathbf{w}^{*}, \mathbf{w}^{(t)}\right)
$$

and

$$
\bar{\delta}^{(s)}=\frac{\mu \mathbb{E}\left\|\mathbf{x}^{*}-\overline{\mathbf{x}}^{(s)}\right\|_{2}^{2}}{2}+\nu \mathbb{E} D\left(\mathbf{w}^{*}, \overline{\mathbf{w}}^{(s)}\right)
$$

Since $\delta^{(0)}=\bar{\delta}^{(s)}$ and $\delta^{(T)}=\bar{\delta}^{(s+1)}$, applying (36) recursively for $t=0,1, \ldots, T-1$ yields

$$
\frac{1}{1+\frac{\kappa}{\eta}}\left[\tilde{\mathcal{P}}\left(\overline{\mathbf{x}}^{(s+1)}\right)-\tilde{\mathcal{D}}\left(\overline{\mathbf{w}}^{(s+1)}\right)\right]+\bar{\delta}^{(s+1)} \leq\left\{\left(1-\frac{1-4 \eta}{1+\frac{\kappa}{\eta}}\right)^{T}+\frac{4 \eta}{1-4 \eta}\right\} \bar{\delta}^{(s)}
$$

Choosing $\eta=\frac{1}{20}$ in this inequality gives

$$
\frac{1}{1+20 \kappa}\left[\tilde{\mathcal{P}}\left(\overline{\mathbf{x}}^{(s+1)}\right)-\tilde{\mathcal{D}}\left(\overline{\mathbf{w}}^{(s+1)}\right)\right]+\bar{\delta}^{(s+1)} \leq\left\{\left(1-\frac{1}{5 / 4+20 \kappa}\right)^{T}+\frac{1}{4}\right\} \bar{\delta}^{(s)}
$$

The following inequality is then obtained when $T=(5 / 4+20 \kappa) \log (2)$ so that $\left(1-\frac{1}{5 / 4+20 \kappa}\right)^{T} \leq \frac{1}{2}$:

$$
\begin{equation*}
\frac{1}{1+20 \kappa}\left[\tilde{\mathcal{P}}\left(\overline{\mathbf{x}}^{(s+1)}\right)-\tilde{\mathcal{D}}\left(\overline{\mathbf{w}}^{(s+1)}\right)\right]+\bar{\delta}^{(s+1)} \leq \frac{1}{2} \bar{\delta}^{(s)} \tag{37}
\end{equation*}
$$

Because $\tilde{\mathcal{P}}(\mathbf{x})-\tilde{\mathcal{D}}(\mathbf{w}) \geq 0$ for any $\mathbf{x} \in \mathcal{X}$ and $\mathbf{w} \in \mathcal{W}$, the inequality above, if applied recursively for $s=0,1, \ldots, S-1$, implies

$$
\begin{equation*}
\bar{\delta}^{(s)} \leq\left(\frac{1}{2}\right)^{s} \bar{\delta}^{(0)} \tag{38}
\end{equation*}
$$

According to Lemma 8 in Xiao et al. (2017), we have

$$
\begin{aligned}
\mathcal{P}_{\mu, \nu}(r ; \mathbf{x})-\mathcal{D}_{\mu, \nu}(r ; \mathbf{w}) & \leq \tilde{\mathcal{P}}(\mathbf{x})-\tilde{\mathcal{D}}(\mathbf{w})+\frac{\|A\|^{2}}{2 \nu}\left\|\mathbf{x}-\mathbf{x}^{*}\right\|_{2}^{2}+\frac{\|A\|^{2}}{2 \mu}\left\|\boldsymbol{\alpha}-\boldsymbol{\alpha}^{*}\right\|_{2}^{2} \\
& \leq \tilde{\mathcal{P}}(\mathbf{x})-\tilde{\mathcal{D}}(\mathbf{w})+\frac{\|A\|^{2}}{2 \nu}\left\|\mathbf{x}-\mathbf{x}^{*}\right\|_{2}^{2}+\frac{\|A\|^{2}}{\mu} D\left(\boldsymbol{\alpha}^{*}, \boldsymbol{\alpha}\right)
\end{aligned}
$$

for any $\mathbf{x} \in \mathcal{X}$ and $\mathbf{w} \in \mathcal{W}$, which implies

$$
\mathcal{P}_{\mu, \nu}\left(r ; \overline{\mathbf{x}}^{(s+1)}\right)-\mathcal{D}_{\mu, \nu}\left(r ; \overline{\mathbf{w}}^{(s+1)}\right) \leq \tilde{\mathcal{P}}\left(\overline{\mathbf{x}}^{(s+1)}\right)-\tilde{\mathcal{D}}\left(\overline{\mathbf{w}}^{(s+1)}\right)+\kappa \bar{\delta}^{(s+1)}
$$

Applying this inequality to (37) and combining it with (38) yield

$$
\mathcal{P}_{\mu, \nu}\left(r ; \overline{\mathbf{x}}^{(s)}\right)-\mathcal{D}_{\mu, \nu}\left(r ; \overline{\mathbf{w}}^{(s)}\right) \leq(1+\kappa)\left\{\frac{1}{1+20 \kappa}\left[\tilde{\mathcal{P}}\left(\overline{\mathbf{x}}^{(s)}\right)-\tilde{\mathcal{D}}\left(\overline{\mathbf{w}}^{(s)}\right)\right]+\bar{\delta}^{(s)}\right\} \leq\left(\frac{1}{2}\right)^{s}(1+\kappa) \bar{\delta}^{(0)}
$$

The first conclusion of this theorem comes from this inequality and the fact that $\bar{\delta}^{(0)} \leq \mathcal{P}_{\mu, \nu}\left(r ; \overline{\mathbf{x}}^{(0)}\right)-\mathcal{D}_{\mu, \nu}\left(r ; \overline{\mathbf{w}}^{(0)}\right)$
In the next, we prove the second conclusion of Theorem 2, namely, the expected number of stages before Algorithm 4 terminates. The argument in this proof is originally developed in Section C in the Appendix of (Lin et al., 2015). Let $\mathcal{S}(\zeta)$ be the stage index when Algorithm 4 terminates. By Markov's inequality, we have

$$
\begin{aligned}
\operatorname{Prob}(\mathcal{S}(\zeta) \geq s+1) & =\operatorname{Prob}\left(\mathcal{P}_{\mu, \nu}\left(r ; \overline{\mathbf{x}}^{(s)}\right)-\mathcal{D}_{\mu, \nu}\left(r ; \overline{\mathbf{w}}^{(s)}\right)>\zeta\right) \\
& \leq \frac{\mathbb{E}\left[\mathcal{P}_{\mu, \nu}\left(r ; \overline{\mathbf{x}}^{(s)}\right)-\mathcal{D}_{\mu, \nu}\left(r ; \overline{\mathbf{w}}^{(s)}\right)\right]}{\zeta} \\
& \leq(1+\kappa)\left(\frac{1}{2}\right)^{s} \frac{\mathcal{P}_{\mu, \nu}\left(r ; \overline{\mathbf{x}}^{(0)}\right)-\mathcal{D}_{\mu, \nu}\left(r ; \overline{\mathbf{w}}^{(0)}\right)}{\zeta}
\end{aligned}
$$

Therefore, let $\mathcal{S}_{0}=2 \log \left(\frac{(2+2 \kappa)\left[\mathcal{P}_{\mu, \nu}\left(r ; \overline{\mathbf{x}}^{(0)}\right)-\mathcal{D}_{\mu, \nu}\left(r ; \overline{\mathbf{w}}^{(0)}\right)\right]}{\zeta}\right)$. We can show that

$$
\begin{aligned}
\mathbb{E} S(\zeta) & =\sum_{s=0}^{\infty} \operatorname{Prob}(S(\zeta) \geq s) \\
& \leq \mathcal{S}_{0}+\sum_{s=\mathcal{S}_{0}}^{\infty} \operatorname{Prob}(S(\zeta) \geq s) \\
& \leq \mathcal{S}_{0}+\left(\frac{1}{2}\right)^{\mathcal{S}_{0}}\left(\sum_{s=0}^{\infty}\left(\frac{1}{2}\right)^{s}\right)(1+\kappa) \frac{\mathcal{P}_{\mu, \nu}\left(r ; \overline{\mathbf{x}}^{(0)}\right)-\mathcal{D}_{\mu, \nu}\left(r ; \overline{\mathbf{w}}^{(0)}\right)}{\zeta} \\
& \leq \mathcal{S}_{0}+\left(\frac{1}{2}\right)^{\mathcal{S}_{0}}(2+2 \kappa) \frac{\mathcal{P}_{\mu, \nu}\left(r ; \overline{\mathbf{x}}^{(0)}\right)-\mathcal{D}_{\mu, \nu}\left(r ; \overline{\mathbf{w}}^{(0)}\right)}{\zeta} \\
& \leq \mathcal{S}_{0}+1
\end{aligned}
$$

and the second conclusion follows.
Proof of Theorem 3. We first claim

$$
\begin{equation*}
\mathcal{P}\left(r ; \hat{\mathbf{x}}^{(p)}\right)-\mathcal{D}\left(r ; \hat{\mathbf{w}}^{(p)}\right) \leq \frac{\mathcal{P}\left(r ; \hat{\mathbf{x}}^{(0)}\right)-\mathcal{D}\left(r ; \hat{\mathbf{w}}^{(0)}\right)}{2^{p}}=\frac{\zeta_{0}}{2^{p}} \tag{39}
\end{equation*}
$$

Obviously, this is true for $p=0$ by the definition of ζ_{0}. Suppose it holds for iteration p. According to Lemma 4 and Theorem 2, we have

$$
\mathcal{P}\left(r ; \hat{\mathbf{x}}^{(p+1)}\right)-\mathcal{D}\left(r ; \hat{\mathbf{w}}^{(p+1)}\right) \leq \frac{\zeta_{0}}{2^{p+3} Q_{\mathbf{x}}} Q_{\mathbf{x}}+\frac{\zeta_{0}}{2^{p+3} Q_{\mathbf{w}}} Q_{\mathbf{w}}+\frac{\zeta_{0}}{2^{p+2}}=\frac{\zeta_{0}}{2^{p+1}}
$$

which implies our claim (39) by induction.
In the next, we want to show that Algorithm 5 satisfies the property of an affine minorant oracle. Suppose $r>f^{*}$ so that $H(r)<0$. According to (39), with $p=\log _{2}\left(\frac{\zeta_{0} \theta}{(\theta-1)|H(r)|}\right)$, Algorithm 5 can ensure $\mathcal{P}\left(r ; \hat{\mathbf{x}}^{(p)}\right)-\mathcal{D}\left(r ; \hat{\mathbf{w}}^{(p)}\right) \leq$ $\frac{\theta-1}{\theta}|H(r)| \leq \frac{\theta-1}{\theta}\left|\mathcal{D}\left(r ; \hat{\mathbf{w}}^{(p)}\right)\right|$ which implies $\theta \mathcal{P}\left(r ; \hat{\mathbf{x}}^{(p)}\right) \leq \mathcal{D}\left(r ; \hat{\mathbf{w}}^{(p)}\right)$.
Suppose $r \leq f^{*}$ so that $H(r) \geq 0$. We must consider two cases, $H(r) \geq \frac{\varepsilon}{2}$ and $H(r)<\frac{\varepsilon}{2}$, separately. In the case where $H(r) \geq \frac{\varepsilon}{2}$, with $p=\log _{2}\left(\frac{\zeta_{0} \theta}{(\theta-1)|H(r)|}\right)$, Algorithm 5 can ensure $\mathcal{P}\left(r ; \hat{\mathbf{x}}^{(p)}\right)-\mathcal{D}\left(r ; \hat{\mathbf{w}}^{(p)}\right) \leq \frac{\theta-1}{\theta}|H(r)| \leq \frac{\theta-1}{\theta} \mathcal{P}\left(r ; \hat{\mathbf{w}}^{(p)}\right)$ which implies $\mathcal{P}\left(r ; \hat{\mathbf{x}}^{(p)}\right) \leq \theta \mathcal{D}\left(r ; \hat{\mathbf{w}}^{(p)}\right)$. In the case where $H(r)<\frac{\varepsilon}{2}$, with $p=\log _{2}\left(\frac{2 \zeta_{0}}{\varepsilon}\right)$, Algorithm 5 can ensure $\mathcal{P}\left(r ; \hat{\mathbf{x}}^{(p)}\right)-\mathcal{D}\left(r ; \hat{\mathbf{w}}^{(p)}\right) \leq \frac{\varepsilon}{2}$ which implies $\mathcal{P}\left(r ; \hat{\mathbf{x}}^{(p)}\right) \leq \mathcal{D}\left(r ; \hat{\mathbf{w}}^{(p)}\right)+\frac{\varepsilon}{2} \leq H(r)+\frac{\varepsilon}{2} \leq \varepsilon$. Based on the argument above,
at least one of the three conditions in Algorithm 3 will be satisfied and Algorithm 5 will terminate and return the desired $L(r), U(r)$ and $S(r)$, in no more than

$$
\begin{equation*}
P=\log _{2}\left(\frac{2 \zeta_{0} \theta}{(\theta-1) \max \{|H(r)|, \varepsilon\}}\right) \tag{40}
\end{equation*}
$$

iterations.
In the p th call of SVRG in Algorithm 5, the parameters are set as $\mu=\frac{\zeta_{0}}{2^{p+3} Q_{\mathbf{x}}}, \nu=\frac{\zeta_{0}}{2^{p+3} Q_{\mathbf{w}}}$ and $\zeta=\frac{\zeta_{0}}{2^{p+2}}$. Hence,

$$
\mathcal{P}_{\mu, \nu}\left(r ; \hat{\mathbf{x}}^{(p)}\right)-\mathcal{D}_{\mu, \nu}\left(r ; \hat{\mathbf{w}}^{(p)}\right) \leq \mathcal{P}\left(r ; \hat{\mathbf{x}}^{(p)}\right)-\mathcal{D}\left(r ; \hat{\mathbf{w}}^{(p)}\right)+\frac{\zeta_{0}}{2^{p+3} Q_{\mathbf{x}}} Q_{\mathbf{x}}+\frac{\zeta_{0}}{2^{p+3} Q_{\mathbf{w}}} Q_{\mathbf{w}} \leq \frac{\zeta_{0}}{2^{p-1}}
$$

According to Theorem 2, the expected number of outer iterations in the p th call of SVRG is at most

$$
\begin{aligned}
\mathcal{S} & \leq 1+2 \log \left(\frac{(2+2 \kappa)\left[\mathcal{P}_{\mu, \nu}\left(r ; \hat{\mathbf{x}}^{(p)}\right)-\mathcal{D}_{\mu, \nu}\left(r ; \hat{\mathbf{w}}^{(p)}\right)\right]}{\zeta}\right) \\
& \leq O\left(\log \left(\frac{\left[\|A\|_{2}^{2}+\max \left\{d \max _{k}\left\|A_{: k}\right\|_{2}^{2}, n \max _{l}\left\|A_{l:}\right\|_{2}^{2}\right\}\right] \zeta_{0}}{2^{p} \mu \nu}\right)\right) \\
& =\tilde{O}(p)
\end{aligned}
$$

Given the upper bound (40) for the total number of calls of SVRG, the total expected complexity of Algorithm 5 is at most

$$
\begin{aligned}
& \sum_{p=0}^{P} \tilde{O}\left(\left(n d+(n+d) \frac{\left[\|A\|_{2}^{2}+\max \left\{d \max _{k}\left\|A_{: k}\right\|_{2}^{2}, n \max _{l}\left\|A_{l:}\right\|_{2}^{2}\right\}\right]}{\mu \nu}\right) p\right) \\
\leq & \sum_{p=0}^{P} \tilde{O}\left(\left(n d+(n+d) Q_{\mathbf{x}} Q_{\mathbf{w}}\left[\|A\|_{2}^{2}+\max \left\{d \max _{k}\left\|A_{: k}\right\|_{2}^{2}, n \max _{l}\left\|A_{l:}\right\|_{2}^{2}\right\}\right] 2^{2 p}\right) p\right) \\
\leq & \tilde{O}(n d P)+\tilde{O}\left((n+d) Q_{\mathbf{x}} Q_{\mathbf{w}}\left[\|A\|_{2}^{2}+\max \left\{d \max _{k}\left\|A_{: k}\right\|_{2}^{2}, n \max _{l}\left\|A_{l:}\right\|_{2}^{2}\right\}\right] P\right) \times \tilde{O}\left(\sum_{p=0}^{P} 2^{2 p}\right) \\
= & \tilde{O}\left(n d+\frac{(n+d) Q_{\mathbf{x}} Q_{\mathbf{w}}\left[\|A\|_{2}^{2}+\max \left\{d \max _{k}\left\|A_{: k}\right\|_{2}^{2}, n \max _{l}\left\|A_{l:}\right\|_{2}^{2}\right\}\right]}{\max \left\{|H(r)|^{2}, \varepsilon^{2}\right\}}\right) \\
= & \tilde{O}\left(n d+(n+d) \frac{\|A\|_{\max }^{2}}{\varepsilon^{2}}\right),
\end{aligned}
$$

where, in the first equality, we use the fact that P is a logarithmic term and $\tilde{O}\left(\sum_{p=0}^{P} 2^{2 p}\right)=\tilde{O}\left(2^{2 P}\right)=$ $\tilde{O}\left(\frac{1}{\max \left\{|H(r)|^{2}, \varepsilon^{2}\right\}}\right)$.

