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A. Illustration of Algorithm 2

Figure 3. Illustration of AM-FLS Method. The figures on the top row depict the procedure to update r(k) using upper bound U(r(k)) .
The figures on the bottom row show when to stop the algorithm.

The geometric illustration of Algorithm 1 has already been given in Aravkin et al. (2016). In Figure 3, we illustrate
the intuition behind Algorithm 2. We choose θ = 2 as an example. In the top-left picture in Figure 3, we plot the
curve of a level function H(r) that has all the properties in Lemma 1. Moreover, the x-axis represents the value of
r and the point where the x-axis intersecting with the y-axis is (f∗, H(f∗)) = (f∗, 0). In the top-middle picture, we
consider a level parameter r(k) > f∗ such that H(r(k)) < 0, and use an oracle to find U(r(k)) and L(r(k)) such that
2U(r(k)) ≤ L(r(k)) ≤ H(r(k)) ≤ U(r(k)) (Property 4 in Definition 1 of an oracle with θ = 2). In the top-right figure, we
perform the update r(k+1) ← r(k) + U(r(k)) such that r(k) moves towards the root f∗ of H(r) as k increases. Note that, in
Algorithm 2, we use a slightly different updating step which is r(k+1) ← r(k) +U(r(k))/2. This is because the multiplier 1

2

(or any multiplier less than 1) applied to U(r(k)) can avoid the extreme scenario where r(k+1) = f∗. We want to avoid this
scenario because, if it happens, we can no longer find x̄ such that P(r(k+1); x̄) < 0 and thus cannot ensure the feasibility of
the returned solution. The impact of this multiplier to the complexity of a feasible level-set method is analyzed by Lin et al.
(2017).

In the bottom-left figure, we plot the curve (of r) minx∈X K(r;x,y(k),α(k)) in red where (y(k),α(k)) = w(k) is the dual
solution found by the oracle when it solves (7). According to (7), minx∈X K(r;x,y(k),α(k)) is a global lower bound of
H(r) and L(r(k)) = minx∈X K(r(k);x,y(k),α(k)). In the bottom-middle figure, we construct the tangent line for the
curve minx∈X K(r;x,y(k),α(k)) at r(k), namely, L(r(k)) + ∂r(minx∈X K(r;x,y(k),α(k)))(r− r(k)) which is the green
line in this figure. Therefore, we can choose S(r(k)) = ∂r(minx∈X K(r;x,y(k),α(k))) as the slope in the output of the
oracle, which will satisfy Property 5 in Definition 1. Finally, in the bottom-right picture, we show a line segment in the
x-axis whose length is L(r(k))

S(r(k))
which is no shorter than r(k) − f∗. Hence, to ensure r(k) − f∗ ≤ ε, it suffices to stop

Algorithm 2 when L(r(k))
S(r(k))

≤ ε, or equivalently, L(r(k)) ≥ εS(r(k)).

B. Proof of Lemma 3
Proof. According to the update step in Algorithm 4, we have, for t ≥ 0,

w(t+1) = (y(t+1),α(t+1)) ∈ arg min
w∈W

−α>v(t) +Gµ(w) +
D(w,w(t))

τ
. (15)
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By Proposition 1, we have y(t+1) ∈ int∆ and α(t+1) = y
(t+1)
i α̃

(t+1)
i where

α̃
(t+1)
i ∈ arg min

α̃i∈Rni

ν ‖α̃i‖22 +
1

τ

∥∥∥α̃i − α̃
(t)
i

∥∥∥2

2
+

ni∑
j=1

1

ni
φ∗ij
(
α̃ij
)
− α̃>i v

(t)
i

 . (16)

Therefore, to prove this lemma, it suffices to prove ‖α̃(t)
i ‖2 ≤ B for all t ≥ 0 and i = 0, 1, . . . ,m. We prove this result

under each of the two scenarios in Assumption 2.

Suppose scenario (b) in Assumption 2 holds such that B ≥ max
α̃ij∈domφij

‖α̃i‖2. Since α̃
(t)
i must stay in the domain of φ∗ij

according to (16), we have ‖α̃(t)
i ‖2 ≤ B for all t ≥ 0 and i = 0, 1, . . . ,m.

In the next, we prove this result by assuming scenario (a) in Assumption 2 holds such that B is a constant that satisfies

B ≥ max

{
2 ‖α̃∗i ‖2 ,

8dmaxk ‖Θik‖2Bx

γ
, 2

∥∥∥∥ ᾱ(0)
i

ȳ
(0)
i

− α̃∗i

∥∥∥∥
2

}
.

Let α̃(t)
i =

α
(t)
i

y
(t)
i

and α̃∗i =
α∗i
y∗i

for i = 0, 1, . . . ,m. We will first prove

‖α̃(t)
i − α̃∗i ‖2 ≤ max

{
‖α̃∗i ‖2 ,

4dmaxk ‖Θik‖2Bx

γ
, ‖ᾱ(0)

i /ȳ
(0)
i − α̃∗i ‖2

}
(17)

for all t ≥ 0 by induction over the index t. Equation (17) holds trivially for t = 0 because α̃
(0)
i = ᾱ

(0)
i /ȳ

(0)
i . Now, we

assume (17) holds for iteration t and prove it also holds for iteration t+ 1.

According to (16), we can independently update each coordinate of α̃(t+1)
i , denoted by α̃(t+1)

ij , by solving

α̃
(t+1)
ij ∈ arg min

α̃ij∈R

{
ν(α̃ij)

2 +
1

τ
(α̃ij − α̃(t)

ij )2 +
1

ni
φ∗ij
(
α̃ij
)
− α̃ijv(t)

ij

}
whose optimality condition implies

0 ∈ 2να̃
(t+1)
ij +

2

τ
(α̃

(t+1)
ij − α̃(t)

ij ) +
1
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∂φ∗ij

(
α̃

(t+1)
ij

)
− v(t)

ij . (18)

By the definition of the saddle point (x∗,y∗,α∗), the value α̃∗ij :=
α∗ij
y∗i

satisfies

α̃∗ij ∈ arg min
α̃ij∈R

{
− 1

ni
α̃ijξ

>
ijx
∗ +

1

ni
φ∗ij
(
α̃ij
)}

whose optimality condition implies

0 ∈ − 1

ni
ξ>ijx

∗ +
1

ni
∂φ∗ij

(
α̃∗ij
)

or, equivalently,

2να̃∗ij +
2

τ
(α̃∗ij − α̃

(t)
ij ) ∈ 2να̃∗ij +

2

τ
(α̃∗ij − α̃

(t)
ij ) +

1

ni
∂φ∗ij

(
α̃∗ij
)
− 1

ni
ξ>ijx

∗. (19)

Since φij is smooth with its gradient being 1
γ -Lipschitz continuous with respect to `2-norm, φ∗ij is γ strongly convex with

respect to `2-norm. Hence, the function ν(α)2 + 1
τ (α− α̃tij)2 + 1

ni
φ∗ij(α) is (2ν + 2

τ + γ
ni

)-strongly convex. Therefore,
the strong monotonicity property of the subdifferential of this function implies[

2να̃∗ij +
2
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(t)
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τ
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which implies ∣∣∣∣2να̃∗ij +
2

τ
(α̃∗ij − α̃

(t)
ij ) +

1

ni
∂φ∗ij

(
α̃∗ij
)
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ij − 2

τ
(α̃
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ij − α̃(t)
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(
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ij
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≥

(
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2

τ
+
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|α̃∗ij − α̃

(t+1)
ij |.

Applying the relationship (18) and (19) to the inequality above gives∣∣∣∣2να̃∗ij +
2

τ
(α̃∗ij − α̃

(t)
ij ) +

1

ni
ξ>ijx

∗ − v(t)
ij

∣∣∣∣ ≥ (2ν +
2

τ
+
γ
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)
|α̃∗ij − α̃
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which, by the triangle’s inequality, further implies

2ν
∥∥α̃∗i ∥∥2

+ 2
τ

∥∥α̃∗i − α̃
(t)
i

∥∥
2

+ γ
ni

∥∥Θix
∗

γ − niv
(t)
i

γ

∥∥
2

2ν + 2
τ + γ
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≥ ‖α̃∗i − α̃
(t+1)
i ‖2. (20)

Note that the relationship 1
ni
ξ>ijx

∗ = 1
ni
∂φ∗ij

(
α̃∗ij
)

implies ∇φij(ξ>ijx∗) = α̃∗ij . Moreover, the definition of v(t) in
Algorithm 4 indicates that

‖Θix
∗ − niv(t)

i ‖2 ≤ 2‖Θi‖2Bx + d‖Θik‖2‖x̄∗k − x
(t)
k ‖ ≤ 4dmax

k
‖Θik‖2Bx

where Θik is the kth column of Θi. By the induction hypothesis (17) and (20), we conclude that

‖α̃∗i − α̃
(t+1)
i ‖2 ≤ max

{
‖α̃∗i ‖2 ,

4dmaxk ‖Θik‖2Bx

γ
, ‖ᾱ(0)

i /ȳ
(0)
i − α̃∗i ‖2

}
so that the result (17) holds for t+ 1.

Finally, using (17) and the fact that ‖α̃(t)
i ‖2 ≤ ‖α̃∗i ‖2 + ‖α̃∗i − α̃

(t)
i ‖2, we can show

‖α̃(t)
i ‖2 ≤ max

{
2 ‖α̃∗i ‖2 ,

8dmaxk ‖Θik‖2Bx

γ
, 2‖ᾱ(0)

i /ȳ
(0)
i − α̃∗i ‖2

}
≤ B

which completes the proof.

C. Proof of Theorem 1
Proof. The complexity of Algorithm 1 can be analyzed with a similar argument as in Section 2.1 in Aravkin et al. (2016)
by incorporating the complexity of oracle A. Consider an iteration k that is not the last iteration of Algorithm 1, i.e.,
U(r(k)) > ε. The property of A guarantees that θH(r(k)) ≥ θL(r(k)) ≥ U(r(k)) > ε so that the complexity of A in
iteration k is at most

C(max{H(r(k)), ε}) ≤ C(max{θ−1ε, ε}) = C(ε).

On the other hand, in the last iteration Algorithm 1 where U(r(k)) ≤ ε, we have H(r(k)) ≤ U(r(k)) ≤ ε so that the
complexity of A here is still at most C(ε). According to Theorem 2.4 in Aravkin et al. (2016), Algorithm 1 terminates

after at most max{1 + log2/θ(
max{|S(r(0))||f∗−r(0)|,L(r(0))}

ε ), 2} iterations so that the total complexity of Algorithm 1 is

C(ε) max{1 + log2/θ(
max{|S(r(0))||f∗−r(0)|,L(r(0))}

ε ), 2}. At the last iteration, we have P(r(k);x(k)) ≤ U(r(k)) ≤ ε, which
means the output solution x(k) is ε-optimal and ε-feasible by the definition of P .

In the next, we analyze the complexity of Algorithm 2. The most part of the proof is from the proof of Theorem 2 in Lin et al.
(2017). However, one major difference in our proof from Lin et al. (2017) is that we analyze the complexity for Algorithm 2
under a termination condition different from the one used in Lin et al. (2017). This difference is essential because it is the
main reason for Algorithm 2 to ensure an absolute ε-optimal solution while Lin et al. (2017) ensures a relative ε-optimal
solution.
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First of all, we claim that S(r) ≤ 0 for any r. In fact, for any r′ > r, the property of S(r) promised by oracle A guarantees
H(r) ≥ H(r′) ≥ L(r) +S(r)(r′− r) which implies S(r) ≤ H(r)−L(r)

r′−r . Letting r′ goes to infinity leads to this conclusion.
According to Lemma 1(c) and convexity of H(r), we can show that

β(r − f∗) ≤ −H(r) ≤ r − f∗, ∀r ∈ (f∗, r(0)]. (21)

From (21), the updating equation for r(k+1) and the fact that H(r(k)) ≤ U(r(k)) ≤ L(r(k))/θ ≤ H(r(k))/θ ≤ 0, we have

r(k+1) − f∗ = r(k) − f∗ + U(r(k))/2 ≥ r(k) − f∗ +
H(r(k))

2
≥ 1

2
(r(k) − f∗) (22)

r(k+1) − f∗ = r(k) − f∗ + U(r(k))/2 ≤ r(k) − f∗ +
H(r(k))

2θ
≤
(

1− β

2θ

)
(r(k) − f∗). (23)

Recursively applying both inequalities gives

0 <
1

2k
(r(0) − f∗) ≤ r(k) − f∗ ≤

(
1− β

2θ

)k
(r(0) − f∗), for k = 0, 1, 2, . . . ,K. (24)

The inequality (21) for r = r(k), (24) and the property of L(r(k)) together imply

−L(r(k)) ≤ −θH(r(k)) ≤ θ(r(k) − f∗) ≤ θ
(

1− β

2θ

)k
(r(0) − f∗) ≤ −H(r(0))

2

for any given k ≥ 2θ
β log

(
2θ(r(0)−f∗)
|H(r(0))|

)
. With the same k, the definition of S(r(k)) and the fact that S(r(k)) ≤ 0 imply that

H(r(0)) ≥ L(r(k))+S(r(k))(r(0)−r(k)) ≥ H(r(0))
2 +S(r(k))(r(0)−f∗), or equivalently, S(r(k)) ≤ H(r(0))

2(r(0)−f∗) = −β2 < 0.

Therefore, if we simultaneously require k ≥ 2θ
β log

(
2θ(r(0)−f∗)2
|H(r(0))|ε

)
, we will ensure −L(r(k)) ≤ −H(r(0))ε

2(r(0)−f∗) ≤ −εS(r(k)).

Therefore, Algorithm 2 terminates after at most 2θ
β log

(
2θ(r(0)−f∗)
|H(r(0))| max{ r

(0)−f∗
ε , 1}

)
= 2θ

β log
(

2θ
β max{ r

(0)−f∗
ε , 1}

)
iterations.

To obtain the overall complexity, consider an iteration k that is not the last iteration of Algorithm 2, i.e., L(r(k)) < εS(r(k)).
Without lose of generality, we assume r(0) − f∗ > ε. The property of A guarantees that θH(r(k)) ≤ L(r(k)) < εS(r(k))
which, together with the definition of S(r(k)), implies that H(r(0)) ≥ L(r(k)) + S(r(k))(r(0) − r(k)) ≥ θH(r(k)) +
θH(r(k))

ε (r(0) − f∗). This inequality further implies |H(r(k))| ≥ |H(r(0))|
θ(1+(r(0)−f∗)/ε) = β(r(0)−f∗)

θ(1+(r(0)−f∗)/ε) ≥
εβ
2θ where the

equality is by the definition of β and the inequality is by the fact that r(0) − f∗ > ε. Hence, the complexity of A in iteration
k (non-terminating iteration) is at most

C(|H(r(k))|) ≤ C(θ−1εβ/2).

On the other hand, in the last iteration Algorithm 2, we have−H(r(k)) ≥ β(r(k)−f∗) ≥ β
2 (r(k−1)−f∗) ≥ β|H(r(k−1))|

2 ≥
β2ε
4θ so that the complexity of A here is most

C(|H(r(k))|) ≤ C(θ−1εβ2/4).

Hence, the total complexity Algorithm 2 is C(θ−1εβ2/4) 2θ
β log

(
2θ
β max{ r

(0)−f∗
ε , 1}

)
.

Lastly, we analyze the quality of the output solution from Algorithm 2. We note that the affine-minorant property of
S(r(k)) implies H(r(k) − L(r(k))/S(r(k))) ≥ L(r(k)) + S(r(k))(r(k) − L(r(k))/S(r(k))− r(k)) = 0 such that we must
have r(k) − L(r(k))/S(r(k)) ≤ f∗, which further ensures r(k) − f∗ ≤ L(r(k))/S(r(k)) ≤ ε once Algorithm 2 terminates.
At the last iteration, we then have P(r(k);xk) ≤ U(r(k)) ≤ L(r(k))/θ ≤ H(r(k))/θ < 0 as r(k) > f∗. Because
0 ≤ r(k) − f∗ ≤ ε and P(r(k);x(k)) < 0, we have f0(x(k)) − f∗ ≤ r(k) − f∗ ≤ ε and maxi=1,...,m[fi(x

k) − ri] ≤ 0
according to the definition of P . Hence, Algorithm 2 returns an ε-optimal and feasible solution at termination.
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D. Proof of Proposition 1
Proof of Proposition 1. By the definition of Gν , D and hB , after organizing terms, (12) can be formulated as

min
w∈W

 2(1 +B)2ν
∑m
i=0 yi ln yi + 2(1+B)2

τ

∑m
i=0 yi ln

(
yi
y′i

)
+ y>r

+
∑m
i=0 νyi

∥∥∥αi
yi

∥∥∥2

2
+
∑m
i=0

yi
τ

∥∥∥αi
yi
− α′i

y′i

∥∥∥2

2
+
∑m
i=0

∑ni
j=1

yi
ni
φ∗ij
(αij
yi

)
−
∑m
i=0 yi(

αi
yi

)>vi

 . (25)

We first fix y ∈ ∆ and only optimize α ∈ Rn in (25). It is easy to observe that each component αi in α can be optimized
independently. By changing variables with α̃i = αi

yi
and α̃′i =

α′i
y′i

, the minimization over αi can extracted from (25) and
formulated as (13), which has a closed-form for many commonly used loss function φij . Importantly, both the optimal value
ρi and the optimal solution α̃∗ do not depend on yi. Therefore, (25) is equivalent to

min
y∈∆

{
2(1 +B)2ν

m∑
i=0

yi ln yi +
2(1 +B)2

τ

m∑
i=0

yi ln

(
yi
y′i

)
+ y>(r + ρ)

}
.

whose solution in a closed form is y#
i defined in (14) which can be derived from the optimality condition. According to the

relationship that α̃i = αi
yi

, the optimal value of the original variable αi should be α#
i = α̃#

i y
#
i .

E. Proof of Theorem 2 and Theorem 3
In this section, we provide the proofs for Theorem 2 and Theorem 3.

Proof of Theorem 2. With a little abuse of notation, only in this proof, we denote by (x∗,w∗) the saddle point of (9) but
hide their dependency on µ and ν. For simplicity of notation, we define Fµ(x) :=

µ‖x‖22
2 . Let Et represent the conditional

expectation conditioning on all the stochastic outcomes up to the end of iteration t. The definition of (x(t+1),y(t+1)) and
the optimality conditions of (x∗,w∗) imply that, for any x ∈ X and w = (y,α) ∈ W ,

(
µ+

1

σ

)
‖x− x(t+1)‖22

2
+ (x(t+1))>u(t) + Fµ(x(t+1)) +

‖x(t) − x(t+1)‖22
2σ

≤ x>u(t) + Fµ(x) +
‖x− x(t)‖22

2σ
(26)

(
ν +

1

τ

)
D(w,w(t+1))− (α(t+1))>v(t) +Gν(w(t+1)) +

D(w(t+1),w(t))

τ
≤ −α>v(t) +Gν(w) +

D(w,w(t))

τ
(27)

Let

P̃(x) := α∗Ax + Fµ(x)−α∗Ax∗ − Fµ(x∗) and D̃(w) := αAx∗ −Gν(w)−α∗Ax∗ +Gν(w∗)

Note that minx∈X P̃(x) = P̃(x∗) = 0 and maxw∈W D̃(w) = D̃(w∗) = 0. By the strong convexity of Fµ with respect to
Euclidean distance and the strong convexity of Gν with respect to Bregman divergence D, we can show that

P̃(x) ≥ µ‖x− x∗‖22
2

and − D̃(w) ≥ νD(w,w∗) (28)
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We choose x = x∗ in (26) and w = w∗ in (27) and add (26), and (27) together. After organizing terms, we obtain(
µ+

1

σ

)
‖x∗ − x(t+1)‖22

2
+
‖x(t) − x(t+1)‖22

2σ
+

(
ν +

1

τ

)
D(w∗,w(t+1)) +

D(w(t+1),w(t))

τ

+P̃(x(t+1))− D̃(w(t+1))

≤ (x∗ − x(t+1))>u(t) +
‖x∗ − x(t)‖22

2σ
− (α∗ −α(t+1))>v(t) +

D(w∗,w(t))

τ
+ α∗Ax(t+1) −α(t+1)Ax∗

= (x∗ − x(t))>[u(t) −A>α(t)] + (α∗ −α(t))>[Ax(t) − v(t)] +
‖x∗ − x(t)‖22

2σ
+
D(w∗,w(t))

τ

+(x∗ − x(t))>A>α(t) − (α∗ −α(t))>Ax(t) − (x(t+1) − x(t))>A>α(t) + (α(t+1) −α(t))>Ax(t)

+(x(t+1) − x(t))>[A>α(t) − u(t)]− (α(t+1) −α(t))>[Ax(t) − v(t)] + α∗Ax(t+1) −α(t+1)Ax∗

= (x∗ − x(t))>[u(t) −A>α(t)] + (α∗ −α(t))>[Ax(t) − v(t)] +
‖x∗ − x(t)‖22

2σ
+
D(w∗,w(t))

τ
(29)

−(x(t+1) − x(t))>A>(α(t) −α∗) + (α(t+1) −α(t))>A(x(t) − x∗)

+(x(t+1) − x(t))>[A>α(t) − u(t)]− (α(t+1) −α(t))>[Ax(t) − v(t)]

Since the random indexes k and l are independent of x(t) and w(t), we have

Et[(x∗ − x(t))>(u(t) −A>α(t))] = 0 and Et[(α∗ −α(t))>(Ax(t) − v(t))] = 0 (30)

by the definition of u(t) and v(t).

Next, we study the three lines on the right hand side of (29), respectively. By the definition of u(t), Cauchy-Schwarz
inequality and Young’s inequality, we have

Et
[
(x(t) − x(t+1))>(u(t) −A>α(t))

]
≤ 1

2at
Et‖x(t) − x(t+1)‖22 +

at
2
Et‖A>ᾱ(s) + nA>l: α

(t)
l − nA

>
l: ᾱ

(s)
l −A

>α(t)‖22

≤ 1

2at
Et‖x(t) − x(t+1)‖22 + atnmax

l
‖Al:‖22‖α(t) −α∗‖22 + atnmax

l
‖Al:‖22‖ᾱ(s) −α∗‖22

≤ 1

2at
Et‖x(t) − x(t+1)‖22 + 2atnmax

l
‖Al:‖22D(w∗,w(t)) + 2atnmax

l
‖Al:‖22D(w∗, w̄(s)) (31)

Similarly, we can prove that

Et
[
(α(t) −α(t+1))>(Ax(t) − v(t))

]
≤ 1

2bt
Et‖α(t) −α(t+1)‖22 + btdmax

k
‖A:k‖22‖x(t) − x∗‖22 + btdmax

k
‖A:k‖22‖x̄(s) − x∗‖22

≤ 1

bt
EtD(w(t+1),w(t)) + btdmax

k
‖A:k‖22‖x(t) − x∗‖22 + btdmax

k
‖A:k‖22‖x̄(s) − x∗‖22 (32)

Applying Cauchy-Schwarz inequality and Young’s inequality in a similar way gives

Et
[
(x(t) − x(t+1))>A>(α(t) −α∗)

]
≤ 1

2at
Et‖x(t) − x(t+1)‖22 + at‖A‖22D(w∗,w(t)) (33)

Et
[
(α(t+1) −α(t))>A(x(t) − x∗)

]
≤ 1

bt
EtD(w(t+1),w(t)) +

bt‖A‖22
2
‖x(t) − x∗‖22 (34)

Choosing at = 2σ and bt = 2τ and applying (30), (31), (32), (33) and (34) to (29) lead to(
µ+

1

σ

)
Et‖x∗ − x(t+1)‖22

2
+

(
ν +

1

τ

)
EtD(w∗,w(t+1)) + P̃(x(t+1))− D̃(w(t+1))

≤
(

2τ‖A‖22 + 4τdmax
k
‖A:k‖22 +

1

σ

)
‖x∗ − x(t)‖22

2
+

(
2σ‖A‖22 + 4σnmax

l
‖Al:‖22 +

1

τ

)
D(w∗,w(t))

+2τdmax
k
‖A:k‖22‖x∗ − x̄(s)‖22 + 4σnmax

l
‖Al:‖22D(w∗, w̄(s)) (35)
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Note that the operator norm of A, i.e., ‖A‖2, satisfies ‖A‖2 ≤ ‖A‖max so that κ =
2‖A‖2max

µν =
2 max{dmaxk ‖A:k‖22,nmaxl ‖Al:‖22}

µν . Let η be a constant to be determined later. Choosing σ = η
κµ and τ = η

κν in (35),
we obtain the following inequality(

1 +
κ

η

)
µEt
‖x∗ − x(t+1)‖22

2
+

(
1 +

κ

η

)
νEtD(w∗,w(t+1)) + EtP̃(x(t+1))− EtD̃(w(t+1))

≤
(

4η +
κ

η

)
µ
‖x∗ − x(t)‖22

2
+

(
4η +

κ

η

)
νD(w∗,w(t)) + 2ηµ‖x∗ − x̄(s)‖22 + 4ηνD(w∗, w̄(s)),

which, if divided by
(

1 + κ
η

)
, further implies

1

1 + κ
η

[P̃(x(t+1))− D̃(w(t+1))] + Eδ(t+1) ≤

(
1− 1− 4η

1 + κ
η

)
Eδ(t) +

4η

1 + κ
η

Eδ̄(s), (36)

where

δ(t) =
µE‖x∗ − x(t)‖22

2
+ νED(w∗,w(t))

and

δ̄(s) =
µE‖x∗ − x̄(s)‖22

2
+ νED(w∗, w̄(s)).

Since δ(0) = δ̄(s) and δ(T ) = δ̄(s+1), applying (36) recursively for t = 0, 1, . . . , T − 1 yields

1

1 + κ
η

[P̃(x̄(s+1))− D̃(w̄(s+1))] + δ̄(s+1) ≤


(

1− 1− 4η

1 + κ
η

)T
+

4η

1− 4η

 δ̄(s)

Choosing η = 1
20 in this inequality gives

1

1 + 20κ
[P̃(x̄(s+1))− D̃(w̄(s+1))] + δ̄(s+1) ≤

{(
1− 1

5/4 + 20κ

)T
+

1

4

}
δ̄(s)

The following inequality is then obtained when T = (5/4 + 20κ) log(2) so that
(

1− 1
5/4+20κ

)T
≤ 1

2 :

1

1 + 20κ
[P̃(x̄(s+1))− D̃(w̄(s+1))] + δ̄(s+1) ≤ 1

2
δ̄(s). (37)

Because P̃(x)− D̃(w) ≥ 0 for any x ∈ X and w ∈ W , the inequality above, if applied recursively for s = 0, 1, . . . , S − 1,
implies

δ̄(s) ≤
(

1

2

)s
δ̄(0). (38)

According to Lemma 8 in Xiao et al. (2017), we have

Pµ,ν(r;x)−Dµ,ν(r;w) ≤ P̃(x)− D̃(w) +
‖A‖2

2ν
‖x− x∗‖22 +

‖A‖2

2µ
‖α−α∗‖22

≤ P̃(x)− D̃(w) +
‖A‖2

2ν
‖x− x∗‖22 +

‖A‖2

µ
D(α∗,α)

for any x ∈ X and w ∈ W , which implies

Pµ,ν(r; x̄(s+1))−Dµ,ν(r; w̄(s+1)) ≤ P̃(x̄(s+1))− D̃(w̄(s+1)) + κδ̄(s+1).
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Applying this inequality to (37) and combining it with (38) yield

Pµ,ν(r; x̄(s))−Dµ,ν(r; w̄(s)) ≤ (1 + κ)

{
1

1 + 20κ
[P̃(x̄(s))− D̃(w̄(s))] + δ̄(s)

}
≤
(

1

2

)s
(1 + κ) δ̄(0)

The first conclusion of this theorem comes from this inequality and the fact that δ̄(0) ≤ Pµ,ν(r; x̄(0))−Dµ,ν(r; w̄(0))

In the next, we prove the second conclusion of Theorem 2, namely, the expected number of stages before Algorithm 4
terminates. The argument in this proof is originally developed in Section C in the Appendix of (Lin et al., 2015). Let S(ζ)
be the stage index when Algorithm 4 terminates. By Markov’s inequality, we have

Prob(S(ζ) ≥ s+ 1) = Prob(Pµ,ν(r; x̄(s))−Dµ,ν(r; w̄(s)) > ζ)

≤ E[Pµ,ν(r; x̄(s))−Dµ,ν(r; w̄(s))]

ζ

≤ (1 + κ)

(
1

2

)s Pµ,ν(r; x̄(0))−Dµ,ν(r; w̄(0))

ζ

Therefore, let S0 = 2 log
(

(2+2κ)[Pµ,ν(r;x̄(0))−Dµ,ν(r;w̄(0))]
ζ

)
. We can show that

ES(ζ) =

∞∑
s=0

Prob(S(ζ) ≥ s)

≤ S0 +

∞∑
s=S0

Prob(S(ζ) ≥ s)

≤ S0 +

(
1

2

)S0 ( ∞∑
s=0

(
1

2

)s)
(1 + κ)

Pµ,ν(r; x̄(0))−Dµ,ν(r; w̄(0))

ζ

≤ S0 +

(
1

2

)S0
(2 + 2κ)

Pµ,ν(r; x̄(0))−Dµ,ν(r; w̄(0))

ζ

≤ S0 + 1

and the second conclusion follows.

Proof of Theorem 3. We first claim

P(r; x̂(p))−D(r; ŵ(p)) ≤ P(r; x̂(0))−D(r; ŵ(0))

2p
=
ζ0
2p

(39)

Obviously, this is true for p = 0 by the definition of ζ0. Suppose it holds for iteration p. According to Lemma 4 and
Theorem 2, we have

P(r; x̂(p+1))−D(r; ŵ(p+1)) ≤ ζ0
2p+3Qx

Qx +
ζ0

2p+3Qw
Qw +

ζ0
2p+2

=
ζ0

2p+1

which implies our claim (39) by induction.

In the next, we want to show that Algorithm 5 satisfies the property of an affine minorant oracle. Suppose r > f∗ so
that H(r) < 0. According to (39), with p = log2

(
ζ0θ

(θ−1)|H(r)|

)
, Algorithm 5 can ensure P(r; x̂(p)) − D(r; ŵ(p)) ≤

θ−1
θ |H(r)| ≤ θ−1

θ |D(r; ŵ(p))| which implies θP(r; x̂(p)) ≤ D(r; ŵ(p)).

Suppose r ≤ f∗ so that H(r) ≥ 0. We must consider two cases, H(r) ≥ ε
2 and H(r) < ε

2 , separately. In the case where

H(r) ≥ ε
2 , with p = log2

(
ζ0θ

(θ−1)|H(r)|

)
, Algorithm 5 can ensure P(r; x̂(p))−D(r; ŵ(p)) ≤ θ−1

θ |H(r)| ≤ θ−1
θ P(r; ŵ(p))

which implies P(r; x̂(p)) ≤ θD(r; ŵ(p)). In the case where H(r) < ε
2 , with p = log2

(
2ζ0
ε

)
, Algorithm 5 can ensure

P(r; x̂(p))−D(r; ŵ(p)) ≤ ε
2 which implies P(r; x̂(p)) ≤ D(r; ŵ(p)) + ε

2 ≤ H(r) + ε
2 ≤ ε. Based on the argument above,
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at least one of the three conditions in Algorithm 3 will be satisfied and Algorithm 5 will terminate and return the desired
L(r), U(r) and S(r), in no more than

P = log2

(
2ζ0θ

(θ − 1) max{|H(r)|, ε}

)
(40)

iterations.

In the pth call of SVRG in Algorithm 5 , the parameters are set as µ = ζ0
2p+3Qx

, ν = ζ0
2p+3Qw

and ζ = ζ0
2p+2 . Hence,

Pµ,ν(r; x̂(p))−Dµ,ν(r; ŵ(p)) ≤ P(r; x̂(p))−D(r; ŵ(p)) +
ζ0

2p+3Qx
Qx +

ζ0
2p+3Qw

Qw ≤
ζ0

2p−1

According to Theorem 2, the expected number of outer iterations in the pth call of SVRG is at most

S ≤ 1 + 2 log

(
(2 + 2κ) [Pµ,ν(r; x̂(p))−Dµ,ν(r; ŵ(p))]

ζ

)
≤ O

(
log

(
[‖A‖22 + max{dmaxk ‖A:k‖22, nmaxl ‖Al:‖22}]ζ0

2pµν

))
= Õ (p) .

Given the upper bound (40) for the total number of calls of SVRG, the total expected complexity of Algorithm 5 is at most

P∑
p=0

Õ

((
nd+ (n+ d)

[‖A‖22 + max{dmaxk ‖A:k‖22, nmaxl ‖Al:‖22}]
µν

)
p

)

≤
P∑
p=0

Õ

((
nd+ (n+ d)QxQw[‖A‖22 + max{dmax

k
‖A:k‖22, nmax

l
‖Al:‖22}]22p

)
p

)

≤ Õ (ndP ) + Õ

(
(n+ d)QxQw[‖A‖22 + max{dmax

k
‖A:k‖22, nmax

l
‖Al:‖22}]P

)
× Õ

(
P∑
p=0

22p

)

= Õ

(
nd+

(n+ d)QxQw[‖A‖22 + max{dmaxk ‖A:k‖22, nmaxl ‖Al:‖22}]
max{|H(r)|2, ε2}

)
= Õ

(
nd+ (n+ d)

‖A‖2max

ε2

)
,

where, in the first equality, we use the fact that P is a logarithmic term and Õ
(∑P

p=0 22p
)

= Õ
(
22P
)

=

Õ
(

1
max{|H(r)|2,ε2}

)
.




