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Proof of Proposition 1

First we note that

Ex

[
(ĝ(x)− gs(x))2

]
≤ Ex

( s∑
i=1

(γ∗i − αi)φi(x)

)2


= Ex

[
s∑
i=1

(γ∗i − αi)2φ2i (x)

]
+
∑
i 6=j

(γ∗i − αi)(γ∗j − αj)Ex [φi(x)φj(x)]

= ‖γ∗ − αs‖22

Second, since γ∗ is the optimal solution to L(γ), we have

L(αs) ≥ L(γ∗) + (αs − γ∗)ZZ>(αs − γ∗)

Since 0 ≤ L(γ∗) ≤ L(αs), we have
(αs − γ∗)ZZ>(αs − γ∗) ≤ L(αs).

Then ‖γ∗ − αs‖22 ≤ L(αs)/λmin(ZZ>). Third, since L(αs)/n is the empirical regression error of gs(x), by
the Talagrand inequality (Koltchinskii, 2011) and Lemma 1, we have , with a probability at least 1 − N−3,
L(αs)/n ≤ η2. We complete the proof by combining the above results.

Proof of Proposition 2

To bound λmin(ZZ>)/n, we need the following proposition.

Proposition 1 (Concentration Inequaltiy). (Proposition 1 (Smale & Zhou, 2009)) Let ξ be a random variable
on (X , PX ) with values in a Hilbert space (H, ‖ · ‖). Assume ‖ξ‖ ≤M <∞ almost sure. Then with a probability
at least 1− δ, we have ∥∥∥∥∥ 1

n

m∑
i=1

ξ(xi)− E[ξ]

∥∥∥∥∥ ≤ 4M ln(2/δ)√
n

.

We rewrite ZZ>/n as

1

n
ZZ> =

1

n

n∑
i=1

ziz
>
i
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Let ‖Z‖2, ‖Z‖F be the spectral norm and Frobenius norm of Z, repectively. Since

Ei[ziz
>
i ] = I, ‖ziz>i ‖F = z>i zi =

s∑
j=1

φ2j (xi) ≤M(s),

using the concentration inequality in above proposition 1 (Smale & Zhou, 2009, Proposition 1), we have, with a
probability at least 1− δ, ∥∥∥∥ 1

n
ZZ> − I

∥∥∥∥
2

≤
∥∥∥∥ 1

n
ZZ> − I

∥∥∥∥
F

≤ 4M(s) ln(2/δ)√
n

We complete the proof by setting δ = N−3 and using the fact that λmin(ZZ>/n) ≥ 1−
∥∥ 1
nZZ

> − I
∥∥
2
.

Proof of Lemma 3

We bound Ex

[
(hs(x)− f(x))2

]
by

Ex

[
(hs(x)− f(x))2

]
≤ 2Ex

[
(gs(x)− f(x))2

]
+ 2Ex

[
(hs(x)− gs(x))2

]
(1)

Below we will bound the two terms on R.H.S of the above inequality.

To bound the first term in (1), we use Proposition 1, and with a probability 1− 2N−3, we have

‖L− L̂N‖HS ≤
12 lnN√

N
= τN

According to Lidskii’s inequality, we have∑
i

|λi − λ̂i| ≤
12 lnN√

N
= τN

Following the same analysis as Lemma 1, we have

∞∑
i=s+1

α2
i ≤ R2

∞∑
i=s+1

λi ≤ R2
N∑

i=s+1

λ̂i +R2
∑
i

|λi − λ̂i|

≤ R2

(
a2

sp−1
+

12 lnN√
N

)
≤ 2R2a2

sp−1

where the last step we use the condition
12 lnN√

N
≤ a2

sp−1

Hence, by the same analysis in the proof of Lemma 1, with a probability 1− 2N−3, we have

Ex[(f(x)− gs(x))2] ≤ 4a2R2

sp−1
+ 2ε2 ≤ 2ε2s

To bound the second term on (1), we use the following corrolary.

Corollary 1. Let N ba sufficiently large number such that φ̂i ∈ span(φ1, . . . , φN ). Define

Θ =
(
φ̂1, . . . , φ̂s

)
,

Φ =
(√

λ1φs, . . . ,
√
λsφs

)
,

Φ =
(√

λs+1φs+1, . . . ,
√
λNφN

)
Assume

rs = (λs − λs+1) > 3‖L− L̂N‖HS .
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Then, there exists a matrix P ∈ R(N−s)×s satisfying

‖P‖F ≤
3‖L− L̂N‖HS

rs

such that
Θ = (Φ + ΦP )(I + P>P )−1/2

The above lemma follows from the following perturbation result.

Corollary 2. (Theorem 2.7 of Chapter 6 (Stewart & guang Sun, 1990)) Let (λi,vi), i ∈ [n] be the eigenvalues and
eigenvectors of a symmetric matrix A ∈ Rn×n ranked in the descending order of eigenvalues. Set X = (v1, . . . ,vr)
and Y = (vr+1, . . . ,vn). Given a symmetric perturbation matrix E, let

Ê = (X,Y )>E(X,Y ) =

(
Ê11 Ê12

Ê21 Ê22

)

Let ‖ · ‖ represent a consistent family of norms and set

γ = ‖Ê21‖, δ = λr − λr+1 − ‖Ê11‖ − ‖Ê22‖

If δ > 0 and 2γ < δ, then there exists a unique matrix P ∈ R(n−r)×r satisfying ‖P‖ < 2γ
δ such that

X ′ = (X + Y P )(I + P>P )−1/2

Y ′ = (Y −XP>)(I + PP>)−1/2

are the eigenvectors of A+ E.

Proof of Corollary 1. Let ϕi =
√
λiφi, it can be shown that 〈ϕi, ϕj〉Hκ

= δij . Define matrix B as

Bi,j =
1

N

N∑
k=1

λ̂k〈φ̂k, ϕi〉〈φ̂k, ϕj〉.

Let zi be the eigenvector of B corresponding to eigenvalue λ̂i/N . It is straightforward to show that

zi = (〈ϕ1, φ̂i〉Hκ
, . . . , 〈ϕN , φ̂i〉Hκ

)>, i ∈ [N ]

and therefore we have

φ̂i =

N∑
k=1

zi,kϕk, i ∈ [N ], or Θ = (Φ,Φ)Z

where Z = (z1, · · · , zs). To decide the relationship between {φ̂i}si=1 and {ϕi}Ni=1, we need to determine matrix
Z. We define matrix D = diag(λ1, . . . , λN ) and matrix E = B −D, i.e.

Ei,j = Bi,j − λiδi,j = 〈ϕi, (L̂N − L)ϕj〉Hκ
.

Following the notation of Theorem 2, we define X = (e1, . . . , es) and Y = (es+1, . . . , eN ), where e1, . . . , eN are
the canonical bases of RN , which are also eigenvectors of D. Define δ and γ as follows

γ =

√√√√ s∑
i=1

N∑
j=s+1

〈ϕi, (L− L̂N )ϕj〉2Hκ

δ = rs −

√√√√ s∑
i,j=1

〈ϕi, (L− L̂N )ϕj〉2Hκ
−

√√√√ N∑
i,j=s+1

〈ϕi, (L− L̂N )ϕj〉2Hκ
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where rs = λs − λs+1. It is easy to verify that γ, δ are defined with respect to the Frobenius norm of Ê in
Theorem 2. In order to apply the result in Theorem 2, we need to show δ > 0 and γ < δ/2. To this end, we
need to provide the lower and upper bounds for γ and δ, respectively. We first bound δ as

δ − rs ≥ −

√√√√ N∑
i,j=1

〈ϕi, (L− L̂N )ϕj〉2Hκ
= −‖L− L̂N‖HS

We then bound γ as

γ =

√√√√ r∑
i=1

N∑
j=r+1

〈ϕi, (L− L̂N )ϕj〉2Hκ
≤

√√√√ N∑
i=1

N∑
j=1

〈ϕi, (L− L̂N )ϕj〉2Hκ
= ‖L− L̂N‖HS

Hence, when rs > 3‖L − L̂N‖HS , we have δ > 2γ > 0, which satisfies the condition specified in Theorem 2.
Thus, according to Theorem 2, there exists a P ∈ R(N−s)×s satisfying ‖P‖ < 2γ/δ, such that

Z = (z1, . . . , zs) = (X + Y P )(I + P>P )−1/2

implying
Θ = (Φ,Φ)Z = (Φ + ΦP )(I + P>P )−1/2

By Corollary 1, since rs ≥ 3τ
2/3
N > 3τN ≥ 3‖L− L̂N‖HS , by the above theorem, we have

s∑
i=1

‖φ̂i −
√
λiφi‖2Hκ

= ‖Θ− Φ‖2F = ‖Φ(I − [I + P>P ]−1/2)‖2F + ‖ΦP (I + P>P )−1/2‖2F

≤ 2‖P>P‖2F ≤
18‖L− L̂N‖2HS

r2s
≤ 18τ2N

r2s
(w.p. 1− 2N−3)

Then, we have

Ex

[
(hs(x)− gs(x))2

]
= Ex

( s∑
i=1

αi√
λi

(
φ̂i(x)−

√
λiφi(x)

))2


=

s∑
i=1

α2
i

λi
Ex

[
s∑
i=1

(
φ̂i(x)−

√
λiφi(x)

)2]
≤

s∑
i=1

α2
i

λi

s∑
i=1

∥∥∥φ̂i(·)−√λiφi(·)∥∥∥2
Hκ

≤ 18τ2NR
2

r2s
(w.p. 1− 2N−3)

Combining the above results, with a probability 1− 2N−3, we have

Ex

[
(hs(x)− f(x))2

]
≤ 4ε2s +

36τ2NR
2

Nr2s

1. Proof of Lemma 4

We bound as follows:

Ex

[
(ĝ(x)− hs(x))2

]
≤ Ex

( s∑
i=1

(γ̂∗i − αi)
φ̂i(x)√
λi

)2


= Ex

( s∑
i=1

(γ̂∗i − αi)φi(x) + (γ̂∗i − αi)

(
φ̂i(x)√
λi
− φi(x)

))2


≤ 2Ex

( s∑
i=1

(γ̂∗i − αi)φi(x)

)2
+ 2Ex

( s∑
i=1

(γ̂∗i − αi)

(
φ̂i(x)√
λi
− φi(x)

))2
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For the first term in the above inequality, using the fact Ex[φi(x)φj(x)] = δij , we have

Ex

( s∑
i=1

(γ̂∗i − αi)φi(x)

)2
 = ‖γ∗ − αs‖22

For the second term, we bound it as

Ex

( s∑
i=1

(γ̂∗i − αi)

(
φ̂i(x)√
λi
− φi(x)

))2
 ≤ ‖γ̂∗ − αs‖22Ex

 s∑
i=1

(
φ̂i(x)√
λi
− φi(x)

)2


≤ ‖γ̂
∗ − αs‖22
λs

Ex

[
s∑
i=1

(
φ̂i(x)−

√
λiφi(x)

)2]
≤ 18τ2N‖γ̂∗ − αs‖22

λsr2s
≤ 18τ2N‖γ̂∗ − αs‖22

r3s
(w.p. 1− 2N−3)

Similar to the infinite case, we introduce zi = (φ̂1(xi)/
√
λ1, . . . , φ̂s(xi)/

√
λs)
> and Z = (z1, . . . , zn). Then by

the similar analysis to Proposition 1 and Proposition 2, with a probability 1 − 2N−3, we have ‖αs − γ̂∗‖2 ≤
nη̂2/λmin(ZZ>) ≤ 2η̂2. We then complete the proof by using the assumption B3 that r3s ≥ 27τ2N .
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