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Proof of Proposition 1

First we note that

+) (07 = @) (9 — @)Ex [4i(x)8; (x)]
i#]

- E. lsz‘ — 0?2 (x)

i=1

= v -3
Second, since v* is the optimal solution to £(7), we have
L(a®) > L(v*) + (a® =) ZZ (0 = 7")
Since 0 < L(v*) < L(a®), we have
(0® =7)ZZ"(a® —7") < L(a®).
Then ||[v* — o®||3 < L(a®)/Auin(ZZ 7). Third, since £(a®)/n is the empirical regression error of gs(x), by

the Talagrand inequality (Koltchinskii, 2011) and Lemma 1, we have , with a probability at least 1 — N3,
L(a®)/n < n*. We complete the proof by combining the above results.

Proof of Proposition 2

To bound Awin(ZZ ) /n, we need the following proposition.

Proposition 1 (Concentration Inequaltiy). (Proposition 1 (Smale & Zhou, 2009)) Let £ be a random variable
on (X, Py) with values in a Hilbert space (H,| - ||). Assume ||£]| < M < oo almost sure. Then with a probability
at least 1 — §, we have

1 o) 4M In(2/6)
o> &) E[ﬂH<\/ﬁ .

=1

We rewrite ZZ " /n as
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Let || Z]|2, || Z]|F be the spectral norm and Frobenius norm of Z, repectively. Since
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using the concentration inequality in above proposition 1 (Smale & Zhou, 2009, Proposition 1), we have, with a

probability at least 1 — 9,
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We complete the proof by setting § = N2 and using the fact that Apin(ZZ 7 /n) > 1 — H%ZZT - IHQ.
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Proof of Lemma 3

We bound Ey [(hs(x) — f(x))?] by

Ex [(hs(x) = f(x))?] < 2Bx [(g5(x) = f(x))?] + 2Ex [(hs(x) — g5(x))?] (1)
Below we will bound the two terms on R.H.S of the above inequality.
To bound the first term in (1), we use Proposition 1, and with a probability 1 — 2N ~3, we have
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According to Lidskii’s inequality, we have
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Following the same analysis as Lemma 1, we have
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where the last step we use the condition
12In N < a®

VN T sl

Hence, by the same analysis in the proof of Lemma 1, with a probability 1 — 2N 3, we have

B((£60) - gu())?) < 2250 02 < o

To bound the second term on (1), we use the following corrolary.

Corollary 1. Let N ba sufficiently large number such that ¢; € span(ér, ..., éx). Define
0 = (251,...,58),
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Then, there exists a matrizc P € RWN=9)%5 satisfying

3|IL — Ln|lms

S

I1PllF <

such that -
©=(®+dP)(I+PTP)"1/?

The above lemma follows from the following perturbation result.

Corollary 2. (Theorem 2.7 of Chapter 6 (Stewart & guang Sun, 1990)) Let (A\;, v;),i € [n] be the eigenvalues and
eigenvectors of a symmetric matriz A € R™*™ ranked in the descending order of eigenvalues. Set X = (vq,...,v,)
and Y = (Vog1,...,Vy). Given a symmetric perturbation matriz E, let

F—(x,V) EX,Y)= [ 1 Lo
By Eaa

Let || - || represent a consistent family of norms and set
= |E21[l,6 = A = A1 — | Ena || — || E2z|
If § > 0 and 2v < 6, then there exists a unique matriz P € R satisfying || P|| < 277 such that

X' =(X+YP)I+PTP)"1/2
Y' =(Y —XP")(I+PP")"1/?

are the eigenvectors of A+ E.

Proof of Corollary 1. Let ¢; = /Ai¢;, it can be shown that (¢;, ;). = ;. Define matrix B as
N
Bi; = Z (Drs 0i) (Brs 05).
k:
Let z; be the eigenvector of B corresponding to eigenvalue Xz /N. Tt is straightforward to show that
(<<P1; ¢ >Hm IR <<PN, ¢i>H~)T’i € [N]

and therefore we have

qAbi = Zzi,kgok,i €[N], or © = (®,9)Z

where Z = (21, -+ ,25). To decide the relationship between {(EZ _, and {p;}¥ |, we need to determine matrix
Z. We define matrix D = diag(A1,...,An) and matrix £ = B — D ie.

Eij=B;j—Ndi; = (pi,(Lv — L)g;)n,

Following the notation of Theorem 2, we define X = (ey,...,e5) and Y = (esy1,...,en), where e1,...,ex are
the canonical bases of R, which are also eigenvectors of D. Define § and v as follows

s N
v=4>0 D (i (L—Ln)ey),

i=1 j=s+1

S

N
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where ry = A\s — Agq1. It is easy to verify that «,d are defined with respect to the Frobenius norm of F in
Theorem 2. In order to apply the result in Theorem 2, we need to show § > 0 and v < 6/2. To this end, we
need to provide the lower and upper bounds for v and §, respectively. We first bound ¢ as

N
§—ry = —\| > (i (L—Ln)enk, = —IL - Lyllus

ij=1

We then bound v as

T N N N
Y= Z Z (@i,(L—EN)SOjﬁ{N < ZZ ¢i,(L—Ly )ei)3. = =|IL - Lullus

i=1 j=r+1 i=1 j=1

Hence, when ry > 3||L — ENH s, we have § > 2v > 0, which satisfies the condition specified in Theorem 2.
Thus, according to Theorem 2, there exists a P € R(N=%)%¢ gatisfying || P|| < 2v/6, such that

Z=(21,...,2,) = (X +YP)(I+PTP)~/2

implying - -
0= (0,0)Z = (®+PP)(I+P"P)"/?

2/3

By Corollary 1, since rs > 375/~ > 37n > 3||L — ENHHS, by the above theorem, we have

D ldi = VAgilld, =10 = @7 = |9 — ([ + PTP]"V2)|% + 8P + PTP)"'3
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Then, we have

Ex [(hs(x) = 9,(x))%] = (Z - (6 )—JAT»@(x)))
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Combining the above results, with a probability 1 — 2N 3, we have
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1. Proof of Lemma 4

We bound as follows:
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For the first term in the above inequality, using the fact Ex[¢;(x)¢;(x)] = d;;, we have
s 2
Ex (Z@? - ai)@(x)) = v =3
i=1

For the second term, we bound it as

E. (Z@: ><¢j§> ¢i<x>>> < 5" - a*|2Ex Z(‘é})—m ))
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Similar to the infinite case, we introduce z; = (G1(x;)/v/ A, - .., ds(x:)/vAs) " and Z = (z1,...,2,). Then by
the similar analysis to Proposition 1 and Proposition 2, with a probability 1 — 2N =3, we have [|a® — 7% <
2/ Amin(ZZ ) < 272, We then complete the proof by using the assumption B3 that 73 > 2773,
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