Supplementary Material
 A Simple Algorithm for Semi-supervised Learning with Improved Generalization Error Bound

Your Name

Your Fantastic Institute, 314159 Pi St., Palo Alto, CA 94306 USA

Your CoAuthor's Name

EMAIL@COAUTHORDOMAIN.EDU
Their Fantastic Institute, 27182 Exp St., Toronto, ON M6H 2T1 CANADA

Proof of Proposition 1

First we note that

$$
\begin{aligned}
\mathrm{E}_{\mathbf{x}} & {\left[\left(\widehat{g}(\mathbf{x})-g_{s}(\mathbf{x})\right)^{2}\right] \leq \mathrm{E}_{\mathbf{x}}\left[\left(\sum_{i=1}^{s}\left(\gamma_{i}^{*}-\alpha_{i}\right) \phi_{i}(\mathbf{x})\right)^{2}\right] } \\
& =\mathrm{E}_{\mathbf{x}}\left[\sum_{i=1}^{s}\left(\gamma_{i}^{*}-\alpha_{i}\right)^{2} \phi_{i}^{2}(\mathbf{x})\right]+\sum_{i \neq j}\left(\gamma_{i}^{*}-\alpha_{i}\right)\left(\gamma_{j}^{*}-\alpha_{j}\right) \mathrm{E}_{\mathbf{x}}\left[\phi_{i}(\mathbf{x}) \phi_{j}(\mathbf{x})\right] \\
& =\left\|\gamma^{*}-\alpha^{s}\right\|_{2}^{2}
\end{aligned}
$$

Second, since γ^{*} is the optimal solution to $\mathcal{L}(\gamma)$, we have

$$
\mathcal{L}\left(\alpha^{s}\right) \geq \mathcal{L}\left(\gamma^{*}\right)+\left(\alpha^{s}-\gamma^{*}\right) Z Z^{\top}\left(\alpha^{s}-\gamma^{*}\right)
$$

Since $0 \leq \mathcal{L}\left(\gamma^{*}\right) \leq \mathcal{L}\left(\alpha^{s}\right)$, we have

$$
\left(\alpha^{s}-\gamma^{*}\right) Z Z^{\top}\left(\alpha^{s}-\gamma^{*}\right) \leq \mathcal{L}\left(\alpha^{s}\right)
$$

Then $\left\|\gamma^{*}-\alpha^{s}\right\|_{2}^{2} \leq \mathcal{L}\left(\alpha^{s}\right) / \lambda_{\min }\left(Z Z^{\top}\right)$. Third, since $\mathcal{L}\left(\alpha^{s}\right) / n$ is the empirical regression error of $g_{s}(\mathbf{x})$, by the Talagrand inequality (Koltchinskii, 2011) and Lemma 1, we have, with a probability at least $1-N^{-3}$, $\mathcal{L}\left(\alpha^{s}\right) / n \leq \eta^{2}$. We complete the proof by combining the above results.

Proof of Proposition 2

To bound $\lambda_{\min }\left(Z Z^{\top}\right) / n$, we need the following proposition.
Proposition 1 (Concentration Inequaltiy). (Proposition 1 (Smale \& Zhou, 2009)) Let ξ be a random variable on $\left(\mathcal{X}, P_{\mathcal{X}}\right)$ with values in a Hilbert space $(\mathcal{H},\|\cdot\|)$. Assume $\|\xi\| \leq M<\infty$ almost sure. Then with a probability at least $1-\delta$, we have

$$
\left\|\frac{1}{n} \sum_{i=1}^{m} \xi\left(\mathbf{x}_{i}\right)-\mathrm{E}[\xi]\right\| \leq \frac{4 M \ln (2 / \delta)}{\sqrt{n}}
$$

We rewrite $Z Z^{\top} / n$ as

$$
\frac{1}{n} Z Z^{\top}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{z}_{i} \mathbf{z}_{i}^{\top}
$$

A Simple Algorithm for Semi-supervised Learning

Let $\|Z\|_{2},\|Z\|_{F}$ be the spectral norm and Frobenius norm of Z, repectively. Since

$$
\mathrm{E}_{i}\left[\mathbf{z}_{i} \mathbf{z}_{i}^{\top}\right]=I,\left\|\mathbf{z}_{i} \mathbf{z}_{i}^{\top}\right\|_{F}=\mathbf{z}_{i}^{\top} \mathbf{z}_{i}=\sum_{j=1}^{s} \phi_{j}^{2}\left(\mathbf{x}_{i}\right) \leq M(s)
$$

using the concentration inequality in above proposition 1 (Smale \& Zhou, 2009, Proposition 1), we have, with a probability at least $1-\delta$,

$$
\left\|\frac{1}{n} Z Z^{\top}-I\right\|_{2} \leq\left\|\frac{1}{n} Z Z^{\top}-I\right\|_{F} \leq \frac{4 M(s) \ln (2 / \delta)}{\sqrt{n}}
$$

We complete the proof by setting $\delta=N^{-3}$ and using the fact that $\lambda_{\min }\left(Z Z^{\top} / n\right) \geq 1-\left\|\frac{1}{n} Z Z^{\top}-I\right\|_{2}$.

Proof of Lemma 3

We bound $\mathrm{E}_{\mathbf{x}}\left[\left(h_{s}(\mathbf{x})-f(\mathbf{x})\right)^{2}\right]$ by

$$
\begin{equation*}
\mathrm{E}_{\mathbf{x}}\left[\left(h_{s}(\mathbf{x})-f(\mathbf{x})\right)^{2}\right] \leq 2 \mathrm{E}_{\mathbf{x}}\left[\left(g_{s}(\mathbf{x})-f(\mathbf{x})\right)^{2}\right]+2 \mathrm{E}_{\mathbf{x}}\left[\left(h_{s}(\mathbf{x})-g_{s}(\mathbf{x})\right)^{2}\right] \tag{1}
\end{equation*}
$$

Below we will bound the two terms on R.H.S of the above inequality.
To bound the first term in (1), we use Proposition 1, and with a probability $1-2 N^{-3}$, we have

$$
\left\|L-\widehat{L}_{N}\right\|_{H S} \leq \frac{12 \ln N}{\sqrt{N}}=\tau_{N}
$$

According to Lidskii's inequality, we have

$$
\sum_{i}\left|\lambda_{i}-\widehat{\lambda}_{i}\right| \leq \frac{12 \ln N}{\sqrt{N}}=\tau_{N}
$$

Following the same analysis as Lemma 1, we have

$$
\begin{aligned}
\sum_{i=s+1}^{\infty} \alpha_{i}^{2} & \leq R^{2} \sum_{i=s+1}^{\infty} \lambda_{i} \leq R^{2} \sum_{i=s+1}^{N} \widehat{\lambda}_{i}+R^{2} \sum_{i}\left|\lambda_{i}-\widehat{\lambda}_{i}\right| \\
& \leq R^{2}\left(\frac{a^{2}}{s^{p-1}}+\frac{12 \ln N}{\sqrt{N}}\right) \leq \frac{2 R^{2} a^{2}}{s^{p-1}}
\end{aligned}
$$

where the last step we use the condition

$$
\frac{12 \ln N}{\sqrt{N}} \leq \frac{a^{2}}{s^{p-1}}
$$

Hence, by the same analysis in the proof of Lemma 1, with a probability $1-2 N^{-3}$, we have

$$
\mathrm{E}_{\mathbf{x}}\left[\left(f(\mathbf{x})-g_{s}(\mathbf{x})\right)^{2}\right] \leq \frac{4 a^{2} R^{2}}{s^{p-1}}+2 \varepsilon^{2} \leq 2 \varepsilon_{s}^{2}
$$

To bound the second term on (1), we use the following corrolary.
Corollary 1. Let N ba sufficiently large number such that $\widehat{\phi}_{i} \in \operatorname{span}\left(\phi_{1}, \ldots, \phi_{N}\right)$. Define

$$
\begin{aligned}
\Theta & =\left(\widehat{\phi}_{1}, \ldots, \widehat{\phi}_{s}\right) \\
\Phi & =\left(\sqrt{\lambda_{1}} \phi_{s}, \ldots, \sqrt{\lambda_{s}} \phi_{s}\right) \\
\bar{\Phi} & =\left(\sqrt{\lambda_{s+1}} \phi_{s+1}, \ldots, \sqrt{\lambda_{N}} \phi_{N}\right)
\end{aligned}
$$

Assume

$$
r_{s}=\left(\lambda_{s}-\lambda_{s+1}\right)>3\left\|L-\widehat{L}_{N}\right\|_{H S}
$$

Then, there exists a matrix $P \in \mathbb{R}^{(N-s) \times s}$ satisfying

$$
\|P\|_{F} \leq \frac{3\left\|L-\widehat{L}_{N}\right\|_{H S}}{r_{s}}
$$

such that

$$
\Theta=(\Phi+\bar{\Phi} P)\left(I+P^{\top} P\right)^{-1 / 2}
$$

The above lemma follows from the following perturbation result.
Corollary 2. (Theorem 2.7 of Chapter 6 (Stewart ξ^{3} guang Sun, 1990)) Let $\left(\lambda_{i}, \mathbf{v}_{i}\right), i \in[n]$ be the eigenvalues and eigenvectors of a symmetric matrix $A \in \mathbb{R}^{n \times n}$ ranked in the descending order of eigenvalues. Set $X=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right)$ and $Y=\left(\mathbf{v}_{r+1}, \ldots, \mathbf{v}_{n}\right)$. Given a symmetric perturbation matrix E, let

$$
\widehat{E}=(X, Y)^{\top} E(X, Y)=\left(\begin{array}{ll}
\widehat{E}_{11} & \widehat{E}_{12} \\
\widehat{E}_{21} & \widehat{E}_{22}
\end{array}\right)
$$

Let $\|\cdot\|$ represent a consistent family of norms and set

$$
\gamma=\left\|\widehat{E}_{21}\right\|, \delta=\lambda_{r}-\lambda_{r+1}-\left\|\widehat{E}_{11}\right\|-\left\|\widehat{E}_{22}\right\|
$$

If $\delta>0$ and $2 \gamma<\delta$, then there exists a unique matrix $P \in \mathbb{R}^{(n-r) \times r}$ satisfying $\|P\|<\frac{2 \gamma}{\delta}$ such that

$$
\begin{aligned}
X^{\prime} & =(X+Y P)\left(I+P^{\top} P\right)^{-1 / 2} \\
Y^{\prime} & =\left(Y-X P^{\top}\right)\left(I+P P^{\top}\right)^{-1 / 2}
\end{aligned}
$$

are the eigenvectors of $A+E$.
Proof of Corollary 1. Let $\varphi_{i}=\sqrt{\lambda_{i}} \phi_{i}$, it can be shown that $\left\langle\varphi_{i}, \varphi_{j}\right\rangle_{\mathcal{H}_{\kappa}}=\delta_{i j}$. Define matrix B as

$$
B_{i, j}=\frac{1}{N} \sum_{k=1}^{N} \widehat{\lambda}_{k}\left\langle\widehat{\phi}_{k}, \varphi_{i}\right\rangle\left\langle\widehat{\phi}_{k}, \varphi_{j}\right\rangle
$$

Let \mathbf{z}_{i} be the eigenvector of B corresponding to eigenvalue $\widehat{\lambda}_{i} / N$. It is straightforward to show that

$$
\mathbf{z}_{i}=\left(\left\langle\varphi_{1}, \widehat{\phi}_{i}\right\rangle_{\mathcal{H}_{\kappa}}, \ldots,\left\langle\varphi_{N}, \widehat{\phi}_{i}\right\rangle_{\mathcal{H}_{\kappa}}\right)^{\top}, i \in[N]
$$

and therefore we have

$$
\widehat{\phi}_{i}=\sum_{k=1}^{N} z_{i, k} \varphi_{k}, i \in[N], \text { or } \Theta=(\Phi, \bar{\Phi}) Z
$$

where $Z=\left(\mathbf{z}_{1}, \cdots, \mathbf{z}_{s}\right)$. To decide the relationship between $\left\{\widehat{\phi}_{i}\right\}_{i=1}^{s}$ and $\left\{\varphi_{i}\right\}_{i=1}^{N}$, we need to determine matrix Z. We define matrix $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ and matrix $E=B-D$, i.e.

$$
E_{i, j}=B_{i, j}-\lambda_{i} \delta_{i, j}=\left\langle\varphi_{i},\left(\widehat{L}_{N}-L\right) \varphi_{j}\right\rangle_{\mathcal{H}_{\kappa}}
$$

Following the notation of Theorem 2, we define $X=\left(e_{1}, \ldots, e_{s}\right)$ and $Y=\left(e_{s+1}, \ldots, e_{N}\right)$, where e_{1}, \ldots, e_{N} are the canonical bases of \mathbb{R}^{N}, which are also eigenvectors of D. Define δ and γ as follows

$$
\begin{aligned}
\gamma & =\sqrt{\sum_{i=1}^{s} \sum_{j=s+1}^{N}\left\langle\varphi_{i},\left(L-\widehat{L}_{N}\right) \varphi_{j}\right\rangle_{\mathcal{H}_{\kappa}}^{2}} \\
\delta & =r_{s}-\sqrt{\sum_{i, j=1}^{s}\left\langle\varphi_{i},\left(L-\widehat{L}_{N}\right) \varphi_{j}\right\rangle_{\mathcal{H}_{\kappa}}^{2}}-\sqrt{\sum_{i, j=s+1}^{N}\left\langle\varphi_{i},\left(L-\widehat{L}_{N}\right) \varphi_{j}\right\rangle_{\mathcal{H}_{\kappa}}^{2}}
\end{aligned}
$$

A Simple Algorithm for Semi-supervised Learning

where $r_{s}=\lambda_{s}-\lambda_{s+1}$. It is easy to verify that γ, δ are defined with respect to the Frobenius norm of \widehat{E} in Theorem 2. In order to apply the result in Theorem 2, we need to show $\delta>0$ and $\gamma<\delta / 2$. To this end, we need to provide the lower and upper bounds for γ and δ, respectively. We first bound δ as

$$
\delta-r_{s} \geq-\sqrt{\sum_{i, j=1}^{N}\left\langle\varphi_{i},\left(L-\widehat{L}_{N}\right) \varphi_{j}\right\rangle_{\mathcal{H}_{\kappa}}^{2}}=-\left\|L-\widehat{L}_{N}\right\|_{H S}
$$

We then bound γ as

$$
\gamma=\sqrt{\sum_{i=1}^{r} \sum_{j=r+1}^{N}\left\langle\varphi_{i},\left(L-\widehat{L}_{N}\right) \varphi_{j}\right\rangle_{\mathcal{H}_{\kappa}}^{2}} \leq \sqrt{\sum_{i=1}^{N} \sum_{j=1}^{N}\left\langle\varphi_{i},\left(L-\widehat{L}_{N}\right) \varphi_{j}\right\rangle_{\mathcal{H}_{\kappa}}^{2}}=\left\|L-\widehat{L}_{N}\right\|_{H S}
$$

Hence, when $r_{s}>3\left\|L-\widehat{L}_{N}\right\|_{H S}$, we have $\delta>2 \gamma>0$, which satisfies the condition specified in Theorem 2. Thus, according to Theorem 2, there exists a $P \in \mathbb{R}^{(N-s) \times s}$ satisfying $\|P\|<2 \gamma / \delta$, such that

$$
Z=\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{s}\right)=(X+Y P)\left(I+P^{\top} P\right)^{-1 / 2}
$$

implying

$$
\Theta=(\Phi, \bar{\Phi}) Z=(\Phi+\bar{\Phi} P)\left(I+P^{\top} P\right)^{-1 / 2}
$$

By Corollary 1, since $r_{s} \geq 3 \tau_{N}^{2 / 3}>3 \tau_{N} \geq 3\left\|L-\widehat{L}_{N}\right\|_{H S}$, by the above theorem, we have

$$
\begin{aligned}
& \sum_{i=1}^{s}\left\|\widehat{\phi}_{i}-\sqrt{\lambda_{i}} \phi_{i}\right\|_{\mathcal{H}_{\kappa}}^{2}=\|\Theta-\Phi\|_{F}^{2}=\left\|\Phi\left(I-\left[I+P^{\top} P\right]^{-1 / 2}\right)\right\|_{F}^{2}+\left\|\bar{\Phi} P\left(I+P^{\top} P\right)^{-1 / 2}\right\|_{F}^{2} \\
& \quad \leq 2\left\|P^{\top} P\right\|_{F}^{2} \leq \frac{18\left\|L-\widehat{L}_{N}\right\|_{H S}^{2}}{r_{s}^{2}} \leq \frac{18 \tau_{N}^{2}}{r_{s}^{2}}\left(\text { w.p. } 1-2 N^{-3}\right)
\end{aligned}
$$

Then, we have

$$
\begin{aligned}
\mathrm{E}_{\mathbf{x}} & {\left[\left(h_{s}(\mathbf{x})-g_{s}(\mathbf{x})\right)^{2}\right]=\mathrm{E}_{\mathbf{x}}\left[\left(\sum_{i=1}^{s} \frac{\alpha_{i}}{\sqrt{\lambda_{i}}}\left(\widehat{\phi}_{i}(\mathbf{x})-\sqrt{\lambda_{i}} \phi_{i}(\mathbf{x})\right)\right)^{2}\right] } \\
& =\sum_{i=1}^{s} \frac{\alpha_{i}^{2}}{\lambda_{i}} \mathrm{E}_{\mathbf{x}}\left[\sum_{i=1}^{s}\left(\widehat{\phi}_{i}(\mathbf{x})-\sqrt{\lambda_{i}} \phi_{i}(\mathbf{x})\right)^{2}\right] \leq \sum_{i=1}^{s} \frac{\alpha_{i}^{2}}{\lambda_{i}} \sum_{i=1}^{s}\left\|\widehat{\phi}_{i}(\cdot)-\sqrt{\lambda_{i}} \phi_{i}(\cdot)\right\|_{\mathcal{H}_{\kappa}}^{2} \leq \frac{18 \tau_{N}^{2} R^{2}}{r_{s}^{2}}\left(\text { w.p. } 1-2 N^{-3}\right)
\end{aligned}
$$

Combining the above results, with a probability $1-2 N^{-3}$, we have

$$
\mathrm{E}_{\mathbf{x}}\left[\left(h_{s}(\mathbf{x})-f(\mathbf{x})\right)^{2}\right] \leq 4 \varepsilon_{s}^{2}+\frac{36 \tau_{N}^{2} R^{2}}{N r_{s}^{2}}
$$

1. Proof of Lemma 4

We bound as follows:

$$
\begin{aligned}
& \mathrm{E}_{\mathbf{x}}\left[\left(\widehat{g}(\mathbf{x})-h_{s}(\mathbf{x})\right)^{2}\right] \leq \mathrm{E}_{\mathbf{x}}\left[\left(\sum_{i=1}^{s}\left(\widehat{\gamma}_{i}^{*}-\alpha_{i}\right) \frac{\widehat{\phi}_{i}(\mathbf{x})}{\sqrt{\lambda_{i}}}\right)^{2}\right] \\
& =\mathrm{E}_{\mathbf{x}}\left[\left(\sum_{i=1}^{s}\left(\widehat{\gamma}_{i}^{*}-\alpha_{i}\right) \phi_{i}(\mathbf{x})+\left(\widehat{\gamma}_{i}^{*}-\alpha_{i}\right)\left(\frac{\widehat{\phi}_{i}(\mathbf{x})}{\sqrt{\lambda_{i}}}-\phi_{i}(\mathbf{x})\right)\right)^{2}\right] \\
& \leq 2 \mathrm{E}_{\mathbf{x}}\left[\left(\sum_{i=1}^{s}\left(\widehat{\gamma}_{i}^{*}-\alpha_{i}\right) \phi_{i}(\mathbf{x})\right)^{2}\right]+2 \mathrm{E}_{\mathbf{x}}\left[\left(\sum_{i=1}^{s}\left(\widehat{\gamma}_{i}^{*}-\alpha_{i}\right)\left(\frac{\widehat{\phi}_{i}(\mathbf{x})}{\sqrt{\lambda_{i}}}-\phi_{i}(\mathbf{x})\right)^{2}\right]\right.
\end{aligned}
$$

A Simple Algorithm for Semi-supervised Learning

For the first term in the above inequality, using the fact $\mathrm{E}_{\mathbf{x}}\left[\phi_{i}(\mathbf{x}) \phi_{j}(\mathbf{x})\right]=\delta_{i j}$, we have

$$
\mathrm{E}_{\mathbf{x}}\left[\left(\sum_{i=1}^{s}\left(\widehat{\gamma}_{i}^{*}-\alpha_{i}\right) \phi_{i}(\mathbf{x})\right)^{2}\right]=\left\|\gamma^{*}-\alpha^{s}\right\|_{2}^{2}
$$

For the second term, we bound it as

$$
\begin{aligned}
\mathrm{E}_{\mathbf{x}} & {\left[\left(\sum_{i=1}^{s}\left(\widehat{\gamma}_{i}^{*}-\alpha_{i}\right)\left(\frac{\widehat{\phi}_{i}(\mathbf{x})}{\sqrt{\lambda_{i}}}-\phi_{i}(\mathbf{x})\right)\right)^{2}\right] \leq\left\|\widehat{\gamma}^{*}-\alpha^{s}\right\|_{2}^{2} \mathrm{E}_{\mathbf{x}}\left[\sum_{i=1}^{s}\left(\frac{\widehat{\phi}_{i}(\mathbf{x})}{\sqrt{\lambda_{i}}}-\phi_{i}(\mathbf{x})\right)^{2}\right] } \\
& \leq \frac{\left\|\widehat{\gamma}^{*}-\alpha^{s}\right\|_{2}^{2}}{\lambda_{s}} \mathrm{E}_{\mathbf{x}}\left[\sum_{i=1}^{s}\left(\widehat{\phi}_{i}(\mathbf{x})-\sqrt{\lambda_{i}} \phi_{i}(\mathbf{x})\right)^{2}\right] \leq \frac{18 \tau_{N}^{2}\left\|\widehat{\gamma}^{*}-\alpha^{s}\right\|_{2}^{2}}{\lambda_{s} r_{s}^{2}} \leq \frac{18 \tau_{N}^{2}\left\|\widehat{\gamma}^{*}-\alpha^{s}\right\|_{2}^{2}}{r_{s}^{3}}\left(\text { w.p. } 1-2 N^{-3}\right)
\end{aligned}
$$

Similar to the infinite case, we introduce $\mathbf{z}_{i}=\left(\widehat{\phi}_{1}\left(\mathbf{x}_{i}\right) / \sqrt{\lambda_{1}}, \ldots, \widehat{\phi}_{s}\left(\mathbf{x}_{i}\right) / \sqrt{\lambda_{s}}\right)^{\top}$ and $Z=\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right)$. Then by the similar analysis to Proposition 1 and Proposition 2 , with a probability $1-2 N^{-3}$, we have $\left\|\alpha^{s}-\widehat{\gamma}^{*}\right\|_{2} \leq$ $n \widehat{\eta}^{2} / \lambda_{\min }\left(Z Z^{\top}\right) \leq 2 \widehat{\eta}^{2}$. We then complete the proof by using the assumption B3 that $r_{s}^{3} \geq 27 \tau_{N}^{2}$.

References

Koltchinskii, Vladimir. Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery Problems. Springer, 2011.

Smale, Steve and Zhou, Ding-Xuan. Geometry on probability spaces. Constructive Approximation, 30:311-323, 2009.

Stewart, G. W. and guang Sun, Ji. Matrix Perturbation Theory. Academic Press, 1990.

