Supplementary Material A Simple Algorithm for Semi-supervised Learning with Improved Generalization Error Bound

Your Name

EMAIL@YOURDOMAIN.EDU

Your Fantastic Institute, 314159 Pi St., Palo Alto, CA 94306 USA

Your CoAuthor's Name

EMAIL@COAUTHORDOMAIN.EDU

Their Fantastic Institute, 27182 Exp St., Toronto, ON M6H 2T1 CANADA

Proof of Proposition 1

First we note that

$$\begin{aligned} \mathbf{E}_{\mathbf{x}}\left[(\widehat{g}(\mathbf{x}) - g_{s}(\mathbf{x}))^{2}\right] &\leq \mathbf{E}_{\mathbf{x}}\left[\left(\sum_{i=1}^{s}(\gamma_{i}^{*} - \alpha_{i})\phi_{i}(\mathbf{x})\right)^{2}\right] \\ &= \mathbf{E}_{\mathbf{x}}\left[\sum_{i=1}^{s}(\gamma_{i}^{*} - \alpha_{i})^{2}\phi_{i}^{2}(\mathbf{x})\right] + \sum_{i\neq j}(\gamma_{i}^{*} - \alpha_{i})(\gamma_{j}^{*} - \alpha_{j})\mathbf{E}_{\mathbf{x}}\left[\phi_{i}(\mathbf{x})\phi_{j}(\mathbf{x})\right] \\ &= \|\gamma^{*} - \alpha^{s}\|_{2}^{2}\end{aligned}$$

Second, since γ^* is the optimal solution to $\mathcal{L}(\gamma)$, we have

$$\mathcal{L}(\alpha^s) \ge \mathcal{L}(\gamma^*) + (\alpha^s - \gamma^*) Z Z^\top (\alpha^s - \gamma^*)$$

Since $0 \leq \mathcal{L}(\gamma^*) \leq \mathcal{L}(\alpha^s)$, we have

$$(\alpha^s - \gamma^*)ZZ^{\top}(\alpha^s - \gamma^*) \le \mathcal{L}(\alpha^s).$$

Then $\|\gamma^* - \alpha^s\|_2^2 \leq \mathcal{L}(\alpha^s)/\lambda_{\min}(ZZ^{\top})$. Third, since $\mathcal{L}(\alpha^s)/n$ is the empirical regression error of $g_s(\mathbf{x})$, by the Talagrand inequality (Koltchinskii, 2011) and Lemma 1, we have , with a probability at least $1 - N^{-3}$, $\mathcal{L}(\alpha^s)/n \leq \eta^2$. We complete the proof by combining the above results.

Proof of Proposition 2

To bound $\lambda_{\min}(ZZ^{\top})/n$, we need the following proposition.

Proposition 1 (Concentration Inequality). (Proposition 1 (Smale & Zhou, 2009)) Let ξ be a random variable on $(\mathcal{X}, P_{\mathcal{X}})$ with values in a Hilbert space $(\mathcal{H}, \|\cdot\|)$. Assume $\|\xi\| \leq M < \infty$ almost sure. Then with a probability at least $1 - \delta$, we have

$$\left\|\frac{1}{n}\sum_{i=1}^{m}\xi(\mathbf{x}_{i}) - \mathbf{E}[\xi]\right\| \leq \frac{4M\ln(2/\delta)}{\sqrt{n}}.$$

We rewrite ZZ^{\top}/n as

$$\frac{1}{n}ZZ^{\top} = \frac{1}{n}\sum_{i=1}^{n}\mathbf{z}_{i}\mathbf{z}_{i}^{\top}$$

Let $||Z||_2$, $||Z||_F$ be the spectral norm and Frobenius norm of Z, repectively. Since

$$\mathbf{E}_{i}[\mathbf{z}_{i}\mathbf{z}_{i}^{\top}] = I, \|\mathbf{z}_{i}\mathbf{z}_{i}^{\top}\|_{F} = \mathbf{z}_{i}^{\top}\mathbf{z}_{i} = \sum_{j=1}^{s} \phi_{j}^{2}(\mathbf{x}_{i}) \leq M(s),$$

using the concentration inequality in above proposition 1 (Smale & Zhou, 2009, Proposition 1), we have, with a probability at least $1 - \delta$,

$$\left\|\frac{1}{n}ZZ^{\top} - I\right\|_{2} \le \left\|\frac{1}{n}ZZ^{\top} - I\right\|_{F} \le \frac{4M(s)\ln(2/\delta)}{\sqrt{n}}$$

We complete the proof by setting $\delta = N^{-3}$ and using the fact that $\lambda_{\min}(ZZ^{\top}/n) \ge 1 - \left\|\frac{1}{n}ZZ^{\top} - I\right\|_2$.

Proof of Lemma 3

We bound $\mathbf{E}_{\mathbf{x}}\left[(h_s(\mathbf{x}) - f(\mathbf{x}))^2\right]$ by

$$\mathbf{E}_{\mathbf{x}}\left[(h_s(\mathbf{x}) - f(\mathbf{x}))^2\right] \le 2\mathbf{E}_{\mathbf{x}}\left[(g_s(\mathbf{x}) - f(\mathbf{x}))^2\right] + 2\mathbf{E}_{\mathbf{x}}\left[(h_s(\mathbf{x}) - g_s(\mathbf{x}))^2\right]$$
(1)

Below we will bound the two terms on R.H.S of the above inequality.

To bound the first term in (1), we use Proposition 1, and with a probability $1 - 2N^{-3}$, we have

$$\|L - \hat{L}_N\|_{HS} \le \frac{12\ln N}{\sqrt{N}} = \tau_N$$

According to Lidskii's inequality, we have

$$\sum_{i} |\lambda_i - \widehat{\lambda}_i| \le \frac{12 \ln N}{\sqrt{N}} = \tau_N$$

Following the same analysis as Lemma 1, we have

$$\sum_{i=s+1}^{\infty} \alpha_i^2 \leq R^2 \sum_{i=s+1}^{\infty} \lambda_i \leq R^2 \sum_{i=s+1}^N \widehat{\lambda}_i + R^2 \sum_i |\lambda_i - \widehat{\lambda}_i|$$
$$\leq R^2 \left(\frac{a^2}{s^{p-1}} + \frac{12\ln N}{\sqrt{N}}\right) \leq \frac{2R^2 a^2}{s^{p-1}}$$

where the last step we use the condition

$$\frac{12\ln N}{\sqrt{N}} \le \frac{a^2}{s^{p-1}}$$

Hence, by the same analysis in the proof of Lemma 1, with a probability $1 - 2N^{-3}$, we have

$$\mathbf{E}_{\mathbf{x}}[(f(\mathbf{x}) - g_s(\mathbf{x}))^2] \le \frac{4a^2R^2}{s^{p-1}} + 2\varepsilon^2 \le 2\varepsilon_s^2$$

To bound the second term on (1), we use the following corrolary.

Corollary 1. Let N be sufficiently large number such that $\hat{\phi}_i \in span(\phi_1, \ldots, \phi_N)$. Define

$$\Theta = \left(\widehat{\phi}_1, \dots, \widehat{\phi}_s\right),$$

$$\Phi = \left(\sqrt{\lambda_1}\phi_s, \dots, \sqrt{\lambda_s}\phi_s\right),$$

$$\overline{\Phi} = \left(\sqrt{\lambda_{s+1}}\phi_{s+1}, \dots, \sqrt{\lambda_N}\phi_N\right)$$

Assume

$$r_s = (\lambda_s - \lambda_{s+1}) > 3 \|L - \widehat{L}_N\|_{HS}.$$

Then, there exists a matrix $P \in \mathbb{R}^{(N-s) \times s}$ satisfying

$$||P||_F \le \frac{3||L - \hat{L}_N||_{HS}}{r_s}$$

such that

$$\Theta = (\Phi + \overline{\Phi}P)(I + P^{\top}P)^{-1/2}$$

The above lemma follows from the following perturbation result.

Corollary 2. (Theorem 2.7 of Chapter 6 (Stewart & guang Sun, 1990)) Let $(\lambda_i, \mathbf{v}_i), i \in [n]$ be the eigenvalues and eigenvectors of a symmetric matrix $A \in \mathbb{R}^{n \times n}$ ranked in the descending order of eigenvalues. Set $X = (\mathbf{v}_1, \dots, \mathbf{v}_r)$ and $Y = (\mathbf{v}_{r+1}, \dots, \mathbf{v}_n)$. Given a symmetric perturbation matrix E, let

$$\widehat{E} = (X, Y)^{\top} E(X, Y) = \left(\begin{array}{cc} \widehat{E}_{11} & \widehat{E}_{12} \\ \widehat{E}_{21} & \widehat{E}_{22} \end{array}\right)$$

Let $\|\cdot\|$ represent a consistent family of norms and set

$$\gamma = \|\widehat{E}_{21}\|, \delta = \lambda_r - \lambda_{r+1} - \|\widehat{E}_{11}\| - \|\widehat{E}_{22}\|$$

If $\delta > 0$ and $2\gamma < \delta$, then there exists a unique matrix $P \in \mathbb{R}^{(n-r) \times r}$ satisfying $\|P\| < \frac{2\gamma}{\delta}$ such that

$$X' = (X + YP)(I + P^{\top}P)^{-1/2}$$

Y' = (Y - XP^{\top})(I + PP^{\top})^{-1/2}

are the eigenvectors of A + E.

Proof of Corollary 1. Let $\varphi_i = \sqrt{\lambda_i} \phi_i$, it can be shown that $\langle \varphi_i, \varphi_j \rangle_{\mathcal{H}_\kappa} = \delta_{ij}$. Define matrix B as

$$B_{i,j} = \frac{1}{N} \sum_{k=1}^{N} \widehat{\lambda}_k \langle \widehat{\phi}_k, \varphi_i \rangle \langle \widehat{\phi}_k, \varphi_j \rangle.$$

Let \mathbf{z}_i be the eigenvector of B corresponding to eigenvalue $\widehat{\lambda}_i/N$. It is straightforward to show that

$$\mathbf{z}_{i} = (\langle \varphi_{1}, \widehat{\phi}_{i} \rangle_{\mathcal{H}_{\kappa}}, \dots, \langle \varphi_{N}, \widehat{\phi}_{i} \rangle_{\mathcal{H}_{\kappa}})^{\top}, i \in [N]$$

and therefore we have

$$\widehat{\phi}_i = \sum_{k=1}^N z_{i,k} \varphi_k, i \in [N], \text{ or } \Theta = (\Phi, \overline{\Phi})Z$$

where $Z = (\mathbf{z}_1, \dots, \mathbf{z}_s)$. To decide the relationship between $\{\widehat{\phi}_i\}_{i=1}^s$ and $\{\varphi_i\}_{i=1}^N$, we need to determine matrix Z. We define matrix $D = \operatorname{diag}(\lambda_1, \dots, \lambda_N)$ and matrix E = B - D, i.e.

$$E_{i,j} = B_{i,j} - \lambda_i \delta_{i,j} = \langle \varphi_i, (\widehat{L}_N - L) \varphi_j \rangle_{\mathcal{H}_{\kappa}}.$$

Following the notation of Theorem 2, we define $X = (e_1, \ldots, e_s)$ and $Y = (e_{s+1}, \ldots, e_N)$, where e_1, \ldots, e_N are the canonical bases of \mathbb{R}^N , which are also eigenvectors of D. Define δ and γ as follows

$$\gamma = \sqrt{\sum_{i=1}^{s} \sum_{j=s+1}^{N} \langle \varphi_i, (L - \widehat{L}_N) \varphi_j \rangle_{\mathcal{H}_{\kappa}}^2}$$
$$\delta = r_s - \sqrt{\sum_{i,j=1}^{s} \langle \varphi_i, (L - \widehat{L}_N) \varphi_j \rangle_{\mathcal{H}_{\kappa}}^2} - \sqrt{\sum_{i,j=s+1}^{N} \langle \varphi_i, (L - \widehat{L}_N) \varphi_j \rangle_{\mathcal{H}_{\kappa}}^2}$$

where $r_s = \lambda_s - \lambda_{s+1}$. It is easy to verify that γ, δ are defined with respect to the Frobenius norm of \hat{E} in Theorem 2. In order to apply the result in Theorem 2, we need to show $\delta > 0$ and $\gamma < \delta/2$. To this end, we need to provide the lower and upper bounds for γ and δ , respectively. We first bound δ as

$$\delta - r_s \geq -\sqrt{\sum_{i,j=1}^N \langle \varphi_i, (L - \widehat{L}_N) \varphi_j \rangle_{\mathcal{H}_\kappa}^2} = -\|L - \widehat{L}_N\|_{HS}$$

We then bound γ as

$$\gamma = \sqrt{\sum_{i=1}^{r} \sum_{j=r+1}^{N} \langle \varphi_i, (L - \hat{L}_N) \varphi_j \rangle_{\mathcal{H}_{\kappa}}^2} \le \sqrt{\sum_{i=1}^{N} \sum_{j=1}^{N} \langle \varphi_i, (L - \hat{L}_N) \varphi_j \rangle_{\mathcal{H}_{\kappa}}^2} = \|L - \hat{L}_N\|_{HS}$$

Hence, when $r_s > 3 \|L - \hat{L}_N\|_{HS}$, we have $\delta > 2\gamma > 0$, which satisfies the condition specified in Theorem 2. Thus, according to Theorem 2, there exists a $P \in \mathbb{R}^{(N-s) \times s}$ satisfying $\|P\| < 2\gamma/\delta$, such that

$$Z = (\mathbf{z}_1, \dots, \mathbf{z}_s) = (X + YP)(I + P^{\top}P)^{-1/2}$$

implying

$$\Theta = (\Phi, \overline{\Phi})Z = (\Phi + \overline{\Phi}P)(I + P^{\top}P)^{-1/2}$$

By Corollary 1, since $r_s \ge 3\tau_N^{2/3} > 3\tau_N \ge 3||L - \widehat{L}_N||_{HS}$, by the above theorem, we have

$$\sum_{i=1}^{s} \|\widehat{\phi}_{i} - \sqrt{\lambda_{i}}\phi_{i}\|_{\mathcal{H}_{\kappa}}^{2} = \|\Theta - \Phi\|_{F}^{2} = \|\Phi(I - [I + P^{\top}P]^{-1/2})\|_{F}^{2} + \|\overline{\Phi}P(I + P^{\top}P)^{-1/2}\|_{F}^{2}$$
$$\leq 2\|P^{\top}P\|_{F}^{2} \leq \frac{18\|L - \widehat{L}_{N}\|_{HS}^{2}}{r_{s}^{2}} \leq \frac{18\tau_{N}^{2}}{r_{s}^{2}} \text{ (w.p. } 1 - 2N^{-3})$$

Then, we have

$$\begin{aligned} \mathbf{E}_{\mathbf{x}}\left[(h_{s}(\mathbf{x}) - g_{s}(\mathbf{x}))^{2}\right] &= \mathbf{E}_{\mathbf{x}}\left[\left(\sum_{i=1}^{s} \frac{\alpha_{i}}{\sqrt{\lambda_{i}}} \left(\widehat{\phi}_{i}(\mathbf{x}) - \sqrt{\lambda_{i}}\phi_{i}(\mathbf{x})\right)\right)^{2}\right] \\ &= \sum_{i=1}^{s} \frac{\alpha_{i}^{2}}{\lambda_{i}} \mathbf{E}_{\mathbf{x}}\left[\sum_{i=1}^{s} \left(\widehat{\phi}_{i}(\mathbf{x}) - \sqrt{\lambda_{i}}\phi_{i}(\mathbf{x})\right)^{2}\right] \leq \sum_{i=1}^{s} \frac{\alpha_{i}^{2}}{\lambda_{i}} \sum_{i=1}^{s} \left\|\widehat{\phi}_{i}(\cdot) - \sqrt{\lambda_{i}}\phi_{i}(\cdot)\right\|_{\mathcal{H}_{\kappa}}^{2} \leq \frac{18\tau_{N}^{2}R^{2}}{r_{s}^{2}} \text{ (w.p. } 1 - 2N^{-3}) \end{aligned}$$

Combining the above results, with a probability $1 - 2N^{-3}$, we have

$$\mathbb{E}_{\mathbf{x}}\left[(h_s(\mathbf{x}) - f(\mathbf{x}))^2\right] \le 4\varepsilon_s^2 + \frac{36\tau_N^2 R^2}{Nr_s^2}$$

1. Proof of Lemma 4

We bound as follows:

$$\begin{aligned} \mathbf{E}_{\mathbf{x}} \left[\left(\widehat{g}(\mathbf{x}) - h_{s}(\mathbf{x}) \right)^{2} \right] &\leq \mathbf{E}_{\mathbf{x}} \left[\left(\sum_{i=1}^{s} \left(\widehat{\gamma}_{i}^{*} - \alpha_{i} \right) \frac{\widehat{\phi}_{i}(\mathbf{x})}{\sqrt{\lambda_{i}}} \right)^{2} \right] \\ &= \mathbf{E}_{\mathbf{x}} \left[\left(\sum_{i=1}^{s} \left(\widehat{\gamma}_{i}^{*} - \alpha_{i} \right) \phi_{i}(\mathbf{x}) + \left(\widehat{\gamma}_{i}^{*} - \alpha_{i} \right) \left(\frac{\widehat{\phi}_{i}(\mathbf{x})}{\sqrt{\lambda_{i}}} - \phi_{i}(\mathbf{x}) \right) \right)^{2} \right] \\ &\leq 2\mathbf{E}_{\mathbf{x}} \left[\left(\sum_{i=1}^{s} \left(\widehat{\gamma}_{i}^{*} - \alpha_{i} \right) \phi_{i}(\mathbf{x}) \right)^{2} \right] + 2\mathbf{E}_{\mathbf{x}} \left[\left(\sum_{i=1}^{s} \left(\widehat{\gamma}_{i}^{*} - \alpha_{i} \right) \left(\frac{\widehat{\phi}_{i}(\mathbf{x})}{\sqrt{\lambda_{i}}} - \phi_{i}(\mathbf{x}) \right) \right)^{2} \right] \end{aligned}$$

For the first term in the above inequality, using the fact $E_{\mathbf{x}}[\phi_i(\mathbf{x})\phi_j(\mathbf{x})] = \delta_{ij}$, we have

$$\mathbf{E}_{\mathbf{x}}\left[\left(\sum_{i=1}^{s} (\widehat{\gamma}_{i}^{*} - \alpha_{i})\phi_{i}(\mathbf{x})\right)^{2}\right] = \|\gamma^{*} - \alpha^{s}\|_{2}^{2}$$

For the second term, we bound it as

$$\begin{split} \mathbf{E}_{\mathbf{x}} \left[\left(\sum_{i=1}^{s} (\widehat{\gamma}_{i}^{*} - \alpha_{i}) \left(\frac{\widehat{\phi}_{i}(\mathbf{x})}{\sqrt{\lambda_{i}}} - \phi_{i}(\mathbf{x}) \right) \right)^{2} \right] &\leq \|\widehat{\gamma}^{*} - \alpha^{s}\|_{2}^{2} \mathbf{E}_{\mathbf{x}} \left[\sum_{i=1}^{s} \left(\frac{\widehat{\phi}_{i}(\mathbf{x})}{\sqrt{\lambda_{i}}} - \phi_{i}(\mathbf{x}) \right)^{2} \right] \\ &\leq \frac{\|\widehat{\gamma}^{*} - \alpha^{s}\|_{2}^{2}}{\lambda_{s}} \mathbf{E}_{\mathbf{x}} \left[\sum_{i=1}^{s} \left(\widehat{\phi}_{i}(\mathbf{x}) - \sqrt{\lambda_{i}} \phi_{i}(\mathbf{x}) \right)^{2} \right] \leq \frac{18\tau_{N}^{2} \|\widehat{\gamma}^{*} - \alpha^{s}\|_{2}^{2}}{\lambda_{s} r_{s}^{2}} \leq \frac{18\tau_{N}^{2} \|\widehat{\gamma}^{*} - \alpha^{s}\|_{2}^{2}}{r_{s}^{3}} (\text{w.p. } 1 - 2N^{-3}) \end{split}$$

Similar to the infinite case, we introduce $\mathbf{z}_i = (\hat{\phi}_1(\mathbf{x}_i)/\sqrt{\lambda_1}, \dots, \hat{\phi}_s(\mathbf{x}_i)/\sqrt{\lambda_s})^{\top}$ and $Z = (\mathbf{z}_1, \dots, \mathbf{z}_n)$. Then by the similar analysis to Proposition 1 and Proposition 2, with a probability $1 - 2N^{-3}$, we have $\|\alpha^s - \hat{\gamma}^*\|_2 \leq n\hat{\eta}^2/\lambda_{min}(ZZ^{\top}) \leq 2\hat{\eta}^2$. We then complete the proof by using the assumption **B3** that $r_s^3 \geq 27\tau_N^2$.

References

Koltchinskii, Vladimir. Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery Problems. Springer, 2011.

Smale, Steve and Zhou, Ding-Xuan. Geometry on probability spaces. *Constructive Approximation*, 30:311–323, 2009.

Stewart, G. W. and guang Sun, Ji. Matrix Perturbation Theory. Academic Press, 1990.