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Abstract
Although the convergence rates of existing vari-
ants of ADAGRAD have a better dependence on
the number of iterations under the strong convex-
ity condition, their iteration complexities have a
explicitly linear dependence on the dimensionality
of the problem. To alleviate this bad dependence,
we propose a simple yet novel variant of ADA-
GRAD for stochastic (weakly) strongly convex
optimization. Different from existing variants, the
proposed variant (referred to as SADAGRAD) uses
an adaptive restarting scheme in which (i) ADA-
GRAD serves as a sub-routine and is restarted pe-
riodically; (ii) the number of iterations for restart-
ing ADAGRAD depends on the history of learning
that incorporates knowledge of the geometry of
the data. In addition to the adaptive proximal
functions and adaptive number of iterations for
restarting, we also develop a variant that is adap-
tive to the (implicit) strong convexity from the
data, which together makes the proposed algo-
rithm strongly adaptive. In the worst case SADA-
GRAD has an O(1/ε) iteration complexity for
finding an ε-optimal solution similar to other vari-
ants. However, it could enjoy faster convergence
and much better dependence on the problem’s di-
mensionality when stochastic gradients are sparse.
Extensive experiments on large-scale data sets
demonstrate the efficiency of the proposed al-
gorithms in comparison with several variants of
ADAGRAD and stochastic gradient method.

1. Introduction
ADAGRAD is a well-known method for general online and
stochastic optimization that adopts a step size adaptive to
each feature based on the learning history observed in earlier
iterations. It has received tremendous interests for solving
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big data learning problems (e.g., see (Dean et al., 2012)).
A rigorous regret analysis of ADAGRAD for online convex
optimization was provided in the original paper (Duchi et al.,
2011), which can be easily translated into a convergence
result in expectation for stochastic convex optimization.

In spite of the claimed/observed advantage of ADAGRAD
over stochastic gradient descent (SGD) method for gen-
eral stochastic convex optimization (SCO), its benefit for
stochastic strongly convex optimization (SSCO) over SGD
diminishes due to its linear dependence on the problem’s
dimensionality and marginal benefit from sparse stochastic
gradients. In particular, SGD and its variants can enjoy a
convergence rate ofO(G2/(λT )) for SSCO (Hazan & Kale,
2011; Rakhlin et al., 2012; Shamir & Zhang, 2013; Lacoste-
Julien et al., 2012), where T is the number of iterations,
G is a variance bound of stochastic gradient and O(·) only
hides a constant factor independent of the problem’s dimen-
sionality. In contrast, the convergence result of ADAGRAD
for strongly convex function (Duchi et al., 2010) implies an
iteration complexity ofO(G2

∞
∑d
i=1 log(‖g1:T,i‖22)/(λT )),

where g1:T,i is a vector of historical stochastic gradients of
the i-th dimension, and G∞ is the upper bound of stochastic
gradient’s infinity norm. It is notable that ‖g1:T,i‖2 enters
into the logarithmic function, which gives marginal adaptive
benefit from sparse stochastic gradients and also a linear
dependence on the dimensionality d even in the presence of
sparse stochastic gradients. Such dependence also exists in
other variants such as SC-ADAGRAD (Mukkamala & Hein,
2017) and MetaGrad (van Erven & Koolen, 2016) for SSCO,
which are two recent variants of ADAGRAD with rigorous
regret analysis.

It remains an open problem how to develop a variant of ADA-
GRAD that can enjoy greater benefit from sparse stochastic
gradients and better dependence on the problem’s dimen-
sionality while still enjoying O(1/T ) convergence rate for
SSCO. This paper provides an affirmative solution to ad-
dress the problem. In particular, we consider the following
SCO problem:

min
w∈Ω

F (w) (1)

where Ω ⊆ Rd is a closed convex set and F (w) is a proper
lower semi-continuous convex function that satisfies (2).
The stochasticity is in the access model (Hazan & Kale,
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2011): the only access to F (w) is via a stochastic subgra-
dient oracle, which given any point w ∈ Ω, produces a
random vector g(w) whose expectation is a subgradient
of F (w) at the point w, i.e., E[g(w)] ∈ ∂F (w), where
∂F (w) denotes the subdifferential set of F at w. The
above SCO includes an important family of problems where
F (w) = Eξ[f(w; ξ)], and f(w, ξ) is a proper lower semi-
continuous convex function w.r.t w and depends on a ran-
dom variable ξ.

If the function F (w) is strongly convex, i.e., there exists
λ > 0 such that for any u,v ∈ Ω we have F (u)− F (v) ≥
∂F (v)>(w − v) + λ

2 ‖u − v‖22, then (1) becomes an in-
stance of SSCO. In this paper, we consider the weaker strong
convexity condition such that F (w) satisfies the following
inequality with λ > 0 for any w ∈ Ω:

λ

2
‖w −w∗‖22 ≤ F (w)− F (w∗), (2)

where w∗ ∈ Ω is the closest optimal solution to w. The
above condition is also known as second-order growth con-
dition in literature, which is implied by the strong convexity
condition (Necoara et al., 2016). Nevertheless, many in-
teresting problems in machine learning may not satisfy the
strong convexity condition but can satisfy the above con-
dition (please refer to Xu et al. (2017) for discussions and
examples). Our major contributions are summarized below:

• We propose a novel variant of ADAGRAD, named SADA-
GRAD, for solving SSCO and more generally SCO that
satisfies (2), which employs ADAGRAD as a sub-routine
and adaptively restart it periodically.

• We provide a convergence analysis of SADAGRAD for
achieving an ε-optimal solution, and demonstrate that it
could enjoy greater benefit from sparse stochastic gradi-
ents and better dependence on the problem’s dimension-
ality than ADAGRAD and its variants for SSCO.

• We also develop a proximal variant of SADAGRAD for
stochastic composite optimization to reduce the effect
of non-stochastic regularizer on the iteration complexity,
and a practical variant that can be run without knowing
the strong convexity parameter λ and hence can adapt to
strong convexity from the data.

2. Related Work
SGD method has received a lot of attentions in the areas of
machine learning and optimization, and many variants of
SGD have been proposed and analyzed (Nemirovski et al.,
2009; Rakhlin et al., 2012; Shamir & Zhang, 2013; Lacoste-
Julien et al., 2012). It is well-known that SGD (with ap-
propriate step sizes and averaging scheme) suffers from an
O(1/ε2) iteration complexity for solving a general SCO
problem and enjoys an improved O(1/ε) iteration complex-
ity for SSCO. When a non-stochastic regularizer is present

in SCO, different proximal variants of SGD have been de-
veloped (Duchi et al., 2010; Xiao, 2010). In contrast with
ADAGRAD, these algorithms use the same step size across
all features, which could slow down the learning for rare
features (with smaller gradients).

Epoch-GD (Hazan & Kale, 2011) is one variant of SGD that
runs SGD in a stage-wise manner with an increasing number
of iterations and a decreasing step size stage by stage. It was
shown to achieve the optimal convergence rate for SSCO
or more generally SCO that satisfies (2). Recently, Xu et al.
(2017) developed a new variant of SGD (named ASSG) to
leverage a local growth condition of the problem, which
also runs SGD with multiple stages by halving the step size
after each stage. Different from Epoch-GD, the number
of iterations of each stage in ASSG is chosen based on
the problem’s local growth condition. For weakly strongly
convex problems, a variant of ASSG (named RASSG) can
be run without knowing the parameter λ in (2), and enjoys
a similar iteration complexity to SGD for SSCO. A similar
variant to ASSG also appears in (Chee & Toulis, 2018) but
with no convergence analysis. The key differences between
the proposed SADAGRAD and these variants of SGD are
(i) ADAGRAD is used as a sub-routine of SADAGRAD; (ii)
the number of iterations for each stage of SADAGRAD is
adaptive to the history of learning instead of being a fixed
sequence as in (Hazan & Kale, 2011; Xu et al., 2017). As
a result, SADAGRAD enjoys more informative update and
convergence.

Due to its adaptive step sizes for different features, ADA-
GRAD has recently witnessed great potential for solving
deep learning problems (Dean et al., 2012) where there ex-
ists a large variation in terms of the magnitude of gradients
across different layers. Several descendants of ADAGRAD
have been developed and found to be effective for deep
learning, e.g., ADAM (Kingma & Ba, 2015; Reddi et al.,
2018). For general SCO, ADAM enjoys a similar conver-
gence guarantee as ADAGRAD, while there is no formal
theoretical convergence analysis for SSCO. We will com-
pare with ADAM empirically for solving SCO problems.

The main competitors of SADAGRAD are variants of ADA-
GRAD for strongly convex functions (Duchi et al., 2010;
Mukkamala & Hein, 2017; van Erven & Koolen, 2016).
The advantage of SADAGRAD has been made clear in In-
troduction and will be explained more in next Section. In
addition, MetaGrad (van Erven & Koolen, 2016) employs
multiple copies of online Newton method to update the
solution, which make it inefficient for high-dimensional
data. Nevertheless, MetaGrad can also enjoy O(d log T/T )
convergence for problems satisfying a Bernstein condition.
It is not clear whether the analysis in (Duchi et al., 2010;
Mukkamala & Hein, 2017) can be extended for problems
with weak strong convexity condition (2).
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Algorithm 1 ADAGRAD(w0, η, λ, ε, ε0)
1: Input: η > 0, and w0 ∈ Rd
2: Initialize: w1 = w0, g1:0 = [], H0 ∈ Rd×d
3: while T does not satisfy the condition in Proposition 1

do
4: Compute a stochastic subgradient gt
5: Update g1:t = [g1:t−1,gt], st,i = ‖g1:t,i‖2
6: Set Ht = H0 + diag(st) and ψt(w) = 1

2 (w −
w1)>Ht(w −w1)

7: Let wt+1 = arg min
w∈Ω

ηw>
(

1
t

∑t
τ=1 gτ

)
+ 1

tψt(w)

8: end while
9: Output: ŵT =

∑T
t=1 wt/T

3. Preliminaries and ADAGRAD

In this sequel, we let gt = g(wt) denote a stochastic sub-
gradient of F (w) at wt, i.e., E[gt] ∈ ∂F (wt). Given a
vector st ∈ Rd, diag(st) denotes a diagonal matrix with
entries equal to the corresponding elements in st. Denote
by I an identity matrix of an appropriate size. Denote by
g1:t = [g1, . . . ,gt] a cumulative stochastic subgradient ma-
trix of size d× t, and by g1:t,i the i-th row of g1:t.

Let B(x0, D) denote an Euclidean ball centered around
x0 with a radius D. Let ‖w‖H =

√
wTHw be a gen-

eral norm where H � 0 is a positive definite matrix, and
‖w‖H−1 =

√
w>H−1w be the dual norm. Let ψ(x;x0) =

1
2 (x− x0)>H(x− x0). It is straightforward to show that
ψ(x;x0) is a 1-strongly convex function of x w.r.t. the norm
‖x‖H . Similar to (Duchi et al., 2010; Mukkamala & Hein,
2017), we assume that the stochastic subgradient g(w) has
a bounded infinity norm on Ω, i.e., ‖g(w)‖∞ ≤ γ,∀w ∈ Ω.
Given an initial solution w0, we assume that there exists
ε0 > 0 such that F (w0)−F (w∗) ≤ ε0. For machine learn-
ing problems, F (w) ≥ 0 and hence an upper bound ε0 of
F (w0) satisfies F (w0)− F (w∗) ≤ ε0.

Below, we first present a basic variant of ADAGRAD for
solving (1). We note that the original paper developed and
analyzed two basic variants of ADAGRAD with one based
on the mirror descent update and the other one based on the
primal-dual update. For sake of saving space, we here only
present the primal-dual variant. However, our development
can be extended to the mirror descent update. In addition,
the original paper of ADAGRAD explicitly deals with a
simple non-smooth component in the objective function by
a proximal mapping. We leave this extension to Section 5.
The detailed steps of the primal-dual variant of ADAGRAD
with two modifications are presented in Algorithm 1.

The modifications in Algorithm 1 lies at that (i) a non-zero
initial solution w0 is allowed and used for constructing the
proximal function ψt; (ii) the algorithm is terminated by
comparing the number of iterations T to a quantity given

Algorithm 2 SADAGRAD(w0, θ, λ, ε, ε0)
1: Input: θ > 0, w0 ∈ Rd and K = log2(ε0/ε)
2: for k = 1, . . . ,K do
3: Let ηk = θ

√
εk/λ, where εk = εk−1/2

4: Let wk = ADAGRAD(wk−1, ηk, λ, εk, εk−1)
5: end for
6: Output: wK

in the following Proposition. These two modifications are
mainly for our development of SADAGRAD. The proposi-
tion below establishes iteration complexity of ADAGRAD
for achieving an ε-optimal solution.

Proposition 1. Let ε > 0 be fixed, H0 = γI , γ ≥
maxt ‖gt‖∞, and E[F (w1) − F (w∗)] ≤ ε0. If T ≥
2
ε max

{
ε0(γ+maxi ‖g1:T,i‖2 )

ηλ , η
∑d
i=1 ‖g1:T,i‖2

}
, then Al-

gorithm 1 gives a solution ŵT such that E[F (ŵT )−F∗] ≤
ε.
Remark: The above result serves the foundation for our
analysis, which is different from Eqn. (16) in (Duchi et al.,
2011, Theorem 5). Note that T is now a random variable
instead of a fixed value. In the proof presented in the sup-
plement, we have to exploit the tool of stopping time of a
matingale sequence.

4. Strongly Adaptive Stochastic Gradient
Method (SADAGRAD)

In this section, we present SADAGRAD and its convergence
analysis. The SADAGRAD shown in Algorithm 2 is built
upon ADAGRAD in Algorithm 1. It runs with multiple
stages and in each stage it employs ADAGRAD using the
solution returned from the previous stage as the starting
point and also as the reference point in the proximal function
ψkt (w) during the k-th stage. In the following presentation,
the notations with superscript k refer to the corresponding
ones in the k-th call of Algorithm 1. For example, gkτ refers
to the stochastic subgradient at the τ -th iteration during the
k-th call of ADAGRAD.

It is worth mentioning that SADAGRAD is similar to Epoch-
GD (Hazan & Kale, 2011) in terms of multi-stage scheme.
However, there still exist several key differences that are
highlighted below: (i) Epoch-GD is developed with a fixed
total number of iterations while SADAGRAD is developed
for a fixed precision ε. (ii) the initial step size of both
algorithms are different. The one in Epoch-GD is 1/λ and
that in SADAGRAD is θ

√
ε0/(2λ). For problems with a

very small strong convexity parameter, the initial step size
of Epoch-GD is very large which usually leads to unstable
performance at the beginning. (iii) The number of iterations
per-stage of both algorithms are different. In Epoch-GD, the
number of iterations per-stage is geometrically increased
by a fixed factor, while that in SADAGRAD is adaptive to
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the history of learning depending on the data as exhibited
in the following theorem that states the convergence of
SADAGRAD.

Theorem 1. Consider SCO (1) with property (2)
and a given ε > 0. Assume H0 = γI in
Algorithm 1 and γ ≥ maxk,τ ‖gkτ‖∞, F (w0) −
F∗ ≤ ε0 and tk is the minimum number such that

tk ≥ 2√
λεk

max

{
2(γ+maxi ‖gk1:tk,i‖2)

θ , θ
∑d
i=1 ‖gk1:tk,i

‖2
}

,

where θ > 0 is a step size parameter of the algorithm. With
K = dlog2(ε0/ε)e, we have E[F (wK)− F∗] ≤ ε.

Different from the convergence results of SGD and its vari-
ants, the above convergence result of SADAGRAD is adap-
tive to history of learning similar to that of ADAGRAD,
therefore it deserves more explanation and understanding.

We first show that in the worst-case for dense stochas-
tic gradients, SADAGRAD can enjoy an optimal itera-
tion complexity of O(1/(λε)). To see this, we can
bound ‖gk1:tk,i

‖2 ≤
√
tkγ, by choosing θ ∝ 1/

√
d,

we have max

{
2(γ+maxi ‖gk1:tk,i‖2)

θ , θ
∑d
i=1 ‖gk1:tk,i

‖2
}
≤

O(γ
√
dtk), then tk = O(dγ

2

λεk
) satisfies the condition

in Theorem 1, yielding a total iteration complexity of
O(dγ2/(λε)). In comparison, the iteration complexity of
Epoch-GD for SCO with property (2) is O(G

2

λε ), where G is
the Euclidean norm bound of stochastic gradient, which is
γ
√
d under the assumption that ‖g(w)‖∞ ≤ γ. Therefore,

in the worst-case for dense stochastic gradients SADAGRAD
can enjoy the same iteration complexity of Epoch-GD.

Next, we compare SADAGRAD with ADAGRAD and SC-
ADAGRAD for solving SSCO due to they have comparable
computational costs per-iteration. Let us recall the conver-
gence results of ADAGRAD and SC-ADAGRAD. For ADA-
GRAD, (Duchi et al., 2010)’s regret bound for strongly con-
vex functions imply a convergence rate of

2γ2δ‖w0 −w∗‖22
λT

+
γ2

λT

d∑
i=1

log

(
‖g1:T,i‖22

δ
+ 1

)
. (3)

For SC-ADAGRAD, (Mukkamala & Hein, 2017)’s regret
bound implies a convergence rate of

δdD2
∞

2αT
+

α

2T

d∑
i=1

log

(
‖g1:T,i‖22

δ
+ 1

)
, (4)

where D∞ is the upper bound of ‖wt−w∗‖∞ and α ≥ γ2

2λ .
It is notable that the above two convergence rates are in a
similar order.

First, let us consider a scenario in which the growth of
historical stochastic gradient vector g1:t,i’s norm is slower
than
√
t. Specially, let us assume ‖gk1:tk,i

‖2 = O(γtαk ) with

α ≤ 1/2. Thus, with a proper value of θ 1 we have tk =

O
(

dγ2

(λεk)1/2(1−α)

)
satisfying the condition in Theorem 1. It

is not difficult to show that
∑K
k=1 tk = O

(
dγ2

(λε)1/2(1−α)

)
.

Thus, when α < 1/2, the iteration complexity of SADA-
GRAD is o(dγ2/(λε)) growing slower thanO(1/ε) in terms
of ε. In contrast, in this scenario the iteration complexity
of both ADAGRAD and SC-ADAGRAD is Õ

(
dγ2

λε

)
, which

justifies the advantage of SADAGRAD. As an example to
support this scenario, let us consider support vector ma-
chine where F (w) = 1/n

∑
i `c(yiw

>ai)+
λ
2 ‖w‖

2
2, where

`c(z) = max(0, c − z), yi ∈ {1,−1} and ai ∈ Rd and
c > 0 is a margin parameter. To consider a stochastic gra-
dient, we ignore the regularizer for a moment 2 and have
gkτ = −`′c(c−ykiτ (wk

τ )>akiτ )ykiτa
k
iτ

. Considering a linearly
separable data set with a margin c, i.e., yiw>∗ ai ≥ c,∀i,
when wk

τ → w∗, we have gkτ → 0 and consequentially
‖gk1:tk,i

‖2 � O(
√
tk) when tk is large. For non-linearly

separable data, we could expect that many components in
g1:tk,i will be zeros as wk

τ → w∗ for those easily classified
training examples, which could also render ‖gk1:tk,i

‖2 much
smaller than

√
tk.

Second, we use a synthetic example from (Duchi et al.,
2011) to demonstrate that the iteration complexity of SADA-
GRAD could have a better dependence on d than that of
ADAGRAD and SC-ADAGRAD in the presence of sparse
stochastic gradients. In particular, Duchi et al. (2011) con-
sidered a sparse random data, at each iteration t feature i ap-
pears with probability pi = min{1, ci−α} for some α ≥ 2

and a constant c. It was shown that E[
∑d
i=1 ‖gk1:t,i‖2] ≤

O(
√
t log d). Thus, SADAGRAD could enjoy an iteration

complexity of O(γ
2 log2 d
λε ) in expectation with an proper

value of θ. In contrast, both ADAGRAD and SC-ADAGRAD

still have an iteration complexity of Õ
(
γ2d
λε

)
.

Finally, we note that in practice a proper value of θ in
SADAGRAD can be tuned by running a number of it-
erations of ADAGRAD to control the balance between
2(δ+maxi ‖gk1:tk,i‖2)

θ and θ
∑d
i=1 ‖gk1:tk,i

‖2.

5. A Proximal Variant of SADAGRAD

In this section, we present a variant of SADAGRAD to handle
a non-stochastic regularizer term by proximal mapping. To
be formal, we consider the following SCO

min
w∈Ω

F (w) , f(w) + φ(w), (5)

1by which we mean that minimizes the lower bound of tk in
Theorem 1.

2it will be handled by a proximal mapping in next section,
where gkτ is still a stochastic gradient of the loss function.
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Algorithm 3 ADAGRAD-PROX(w0, η, λ, ε, ε0)
1: Input: η > 0, and w0 ∈ Rd
2: Initialize: w1 = w0, g1:0 = [], H0

3: while T does not satisfy the condition in Theorem 2 do
4: Compute a stochastic subgradient gt
5: Update g1:t = [g1:t−1,gt], st,i = ‖g1:t,i‖2
6: Set Ht = H0 + diag(st) and ψt(w) = 1

2 (w −
w1)>Ht(w −w1)

7: Let wt+1 = minw∈Ω ηw
>∑t

τ=1 gτ/t + ηφ(w) +
1
tψt(w)

8: end while
9: Output: w̃T =

∑T+1
t=2 wt/T

Algorithm 4 SADAGRAD-PROX(w0, θ, λ, ε, ε0)
1: Input: θ > 0, w0 ∈ Rd and K = log2(ε0/ε)
2: for k = 1, . . . ,K do
3: Let εk = εk−1/2
4: Let ηk = θ

√
εk/λ

5: wk = ADAGRAD-PROX(wk−1, ηk, λ, εk, εk−1).
6: end for
7: Output: wK

where the stochasticity lies in the access model of f(w) and
φ(w) is a non-stochastic regularizer. In this section, we
abuse the notation g(w) to refer to the stochastic gradient
of f(w), and assume that ‖∂f(w)‖2 ≤ G, ∀w ∈ Ω.

Duchi et al. (2011) handled the φ(w) by a proximal map-
ping, i.e., replacing step 7 in Algorithm 1 by

min
w∈Ω

ηw>
t∑

τ=1

gτ/t+ ηφ(w) + ψt(w)/t. (6)

Then they derived a similar convergence to their non-
proximal setting (see Theorem 5 (Duchi et al., 2011)), where
‖g1:t,i‖2 only captures the stochastic gradient of f(w).

However, the proximal mapping will bring a new challenge
when it is employed in the proposed SADAGRAD. To high-
light the challenge, we first give a similar convergence to
Proposition 1 for using the proximal mapping (6).

Proposition 2. Let H0 = γI and γ ≥ maxt ‖gt‖∞. For
any T ≥ 1 and w ∈ Ω, we have

1

T

T∑
t=1

(f(wt) + φ(wt+1)− f(w)− φ(w))

≤
η
∑d
i=1 ‖g1:T,i‖2

T
+
γ + maxi ‖g1:T,i‖2

2ηT
‖w −w1‖22

+
1

T

T∑
t=1

(E[gt]− gt)
>(wt −w).

Remark: Note that there is one solution shift between the
stochastic component f(wt) and the non-stochastic com-
ponent φ(wt+1). To handle such an issue, Duchi et al.

(2011) used a trick by adding [φ(w1) − φ(wt+1)]/T on
both sides, ad assume that φ(w) ≥ 0 and φ(w1) = 0 such
that the added term on the R.H.S is less than zero which
does not affect the analysis. Nonetheless, when we utilize
the above result in the analysis of SADAGRAD, for epochs
k = 2, . . . ,K the initial solution wk−1 does not give a
zero value of φ(wk−1), which will cause the challenge in
the analysis. A simple remedy is that we assume the non-
stochastic component φ(w) is uniformly bounded over the
domain Ω, i.e., 0 ≤ φ(w) ≤ B. However, such an assump-
tion may impose a strong restriction to the problem. For
example if Ω = Rd and φ(w) = ‖w‖22/2, it does not satisfy
the uniform boundness assumption.

To avoid introducing the uniform boundness assumption
on φ(w), we propose to add [f(wT+1) − f(w1)]/T on
both sides, then we have the following inequality for run-
ning ADAGRAD with proximal mapping, i.e., Algorithm 3.

F (w̃T )− F (w) (7)

≤ G‖w1 −wT+1‖2
T

+
1

T

T∑
t=1

(E[gt]− gt)
>(wt −w)

+
η
∑d
i=1 ‖g1:T,i‖2

T
+
γ + maxi ‖g1:T,i‖2

2ηT
‖w −w1‖22,

where w̃T =
∑T+1
t=2 wt/T , and the first term in the R.H.S

is due to G-Lipschitz continuity of f(w).

We present the modified algorithm in Algorithm 4, where
the name PROX refers to proximal mapping. The theorem
below establishes the convergence guarantee of Algorithm 4.
Theorem 2. For a given ε > 0, let K = dlog2(ε0/ε)e.
Assume H0 = γI and γ ≥ maxk,τ ‖gkτ‖∞, F (w0) −
F∗ ≤ ε0 and tk is the minimum number such

that tk ≥ 3√
λεk

max

{
Ak,

√
λG‖wk1−w

k
tk+1‖2√

εk

}
, where

Ak = max

{
2(γ+maxi ‖gk1:tk,i‖2)

θ , θ
∑d
i=1 ‖gk1:tk,i

‖2
}

. Al-

gorithm 4 guarantees that E[F (wK)− F∗] ≤ ε.

Remark: We note that there is an additional term in
the lower bound of tk, which comes from the first term
in (7) compared to that in Theorem 1. The convergence
of SADAGRAD-PROX is still adaptive to the history of up-
dates, though the analysis of improvement compared with
ADAGRAD becomes difficult due to the additional term
dependent on ‖wk

1 − wk
tk+1‖2. Nevertheless, using the

worst-case analysis, we can bound ‖wk
1−wk

tk+1‖2 ≤ O( 1
λ )

for SSCO according to (Hazan & Kale, 2011) (in their
Lemma 4), which implies a worse-case iteration complexity
of O( 1

λε ) similar to that of Epoch-GD. However, in prac-
tice ‖wk

1 −wk
tk+1‖2 will decrease as the epoch number k

increases, which can give much better performance than
Epoch-GD and also faster convergence than SADAGRAD as
observed in our experiments.
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Algorithm 5 rSADAGRAD(w0, θ, λ1, ε, ε0, τ )

1: Input: θ > 0, w(0) ∈ Rd, λ1 ≥ λ , τ ∈ (0, 1]
2: for s = 1, . . . , S do
3: w(s) = SADAGRAD (w(s−1), θ, λs, ε, εs−1)
4: λs+1 = λs/2, εs = τεs−1

5: end for
6: Output: w(S)

6. A Practical Variant of SADAGRAD

In this section, we provide a practical variant of SADAGRAD,
which usually converges much faster. The issue that we aim
to address is related to the value of λ. In practice, the strong
convexity parameter λ is usually underestimated, yielding
slower convergence. For example, for `22 norm regularized
problems, the strong convexity parameter λ is usually set to
the regularization parameter before the `22 norm. However,
such an approach ignores the curvature in the loss functions
defined over the data, which is difficult to estimate. In ad-
dition, for some problems that satisfy (2) the value of λ is
difficult to estimate. For example, `1 regularized square loss
minimization satisfy (2), where the value of λ is difficult to
compute (Necoara et al., 2016, Theorem 10). To address
this issue, we develop a restarting variant of SADAGRAD
starting with a relatively large value of λ inspired by the
technique in (Xu et al., 2017), which is presented in Algo-
rithm 5 and its formal convergence guarantee is presented
in the following theorem. Similar extension can be made to
SADAGRAD-PROX and is omitted.

Theorem 3. Under the same assumptions as Theorem 1
and F (w0) − F∗ ≤ ε0, where w0 is an initial solu-
tion. Let ε ≤ ε0

2 , τ = 1, K = log2
ε0
ε and t

(s)
k ≥

2√
λsεk

max

{
2(γ+maxi ‖gk1:tk,i‖2)

θ , θ
∑d
i=1 ‖gk1:tk,i

‖2
}

.

Then with at most a total number of S =
⌈
log2

(
λ1

λ

)⌉
+ 1

calls of SADAGRAD and a worse-cast iteration complexity
of O(1/(λε)), Algorithm 5 finds a solution w(S) such that
E[F (w(S))− F∗] ≤ ε.

Remark: t(s)k is the number of iterations in k-th stage of the
s-th call of SADAGRAD. Note that λs ≥ λ for all s ≤ S, so
the iteration complexity can be similarly understood as that
in Theorem 1. However, since the algorithm rSADAGRAD
starts with a relative large value of λ1, we expect that the
number of iterations in the first several calls of SADAGRAD
can be much smaller than that of Algorithm 2, especially
when the underlying strong convexity parameter λ is small.
In practice, the parameter τ can be also tuned for better
performance.

7. Experiments
In this section, we present some experiments to show the
effectiveness of the proposed algorithms, SADAGRAD and

Table 1. Statistics of real data sets

data #of instance #of feature feature density
covtype 581,012 54 22.12%
epsilon 400,000 2,000 100%

rcv1 697,641 47,236 0.15%
news20 19,996 1,355,191 0.0336%

SADAGRAD-PROX. For all our experiments, we imple-
ment their practical variants referred to as rSADAGRAD
and rSADAGRAD-PROX, respectively.

We will consider binary classification problems with two
different formulations. The first formulation consists of
smoothed hinge loss and an `1 norm regularization, i.e.,

min
w∈Rd

1

n

n∑
i=1

fi(w) + ζ‖w‖1, (8)

where fi(w) =


1

2
− yiw>xi, if yiw>xi ≤ 0

1

2
(1− yiw>xi)2, if 0 < yiw

>xi ≤ 1

0, otherwise

,

(xi, yi), i = 1, . . . , n, is a set of training data examples, and
ζ is the regularization parameter. The second formulation is
the classical support vector machine (SVM) problem:

min
w∈Rd

1

n

n∑
i=1

max{0, c− yiw>xi}+ λ‖w‖22, (9)

where c is the margin parameter and λ is the regulariza-
tion parameter. It is notable that (8) is a piecewise convex
quadratic problem, which satisfy the weak strong convex-
ity condition (2) on a compact set according to (Li, 2013).
However, the value of the strong convexity modulus λ is
unknown for (8). (9) is a strongly convex problem, which
satisfies (2) with λ being the regularization parameter. The
experiments are performed on four data sets from libsvm
(Chang & Lin, 2011) website with different scale of in-
stances and features, namely covtype, epsilon, rcv1,and
news20. The statistics of these data sets are shown in Ta-
ble 1.

For solving (8), we compare SADAGRAD and
SADAGRAD-PROX with ADAGRAD (Duchi et al.,
2011), ADAM (Kingma & Ba, 2015), RASSG (Xu
et al., 2017). Since the strong convexity modulus λ
is unknown, we do not compare with Epoch-GD and
SC-ADAGRAD (Mukkamala & Hein, 2017) for solving (8),
which require knowing the value of λ. For solving (9),
we compare SADAGRAD with ADAGRAD, ADAM,
SC-ADAGRAD, RASSG and Epoch-GD. Please note that
RASSG can be considered an adaptive version of SGD that
is adaptive to the problem’s implicit strong convexity from
the data, which is also observed to perform better than SGD
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Figure 1. Results for smoothed hinge loss + `1 norm with varying ζ.

in (Xu et al., 2017) and in our experiments. Hence SGD is
omitted in our comparison. The parameters of Epoch-GD
are chosen as recommended in the cited papers except
for initial iteration number, which is tuned to achieve a
faster convergence. The parameters for RASSG are tuned
following the guidance in (Xu et al., 2017). The step size
of ADAM is tuned in 10[−2:2], and other parameters are
chosen as recommended in the paper. For SC-ADAGRAD,
the parameters α and ξ1 in their papers are tuned in 10[−4:2]

and [0.1, 1] respectively. Based on the analysis in the
previous sections, the step size parameter θ would influence
the convergence speed of both ADAGRAD and SADAGRAD.
So we tuned this parameter for both ADAGRAD and
SADAGRAD on each data set. We run ADAGRAD a
number of iterations (i.e., 5,000) on each dataset and set

θ =

√
2(γ+maxi ‖gk1:5000,i‖2)∑d

i=1 ‖gk1:5000,i‖2
. Besides, we set λ1 = 100λ

for solving (9) and λ1 = 100ζ for solving (8) and τ = 1 for
rSADAGRAD and rSADAGRAD-PROX.

We first present and discuss the results for solving the `1 reg-
ularized smoothed hinge loss minimization problem (8) with
varying regularization parameter ζ. The results are shown
in Figure 1, where the y-axis is log-scale of the gap between
the objective value of the obtained solution and that of the
optimal solution. We have several observations from the
results (i) rSADAGRAD-PROX performs consistently better
than rSADAGRAD on high-dimensional data, especially on

the extremely high-dimensional data news20. This is due
to the presence of `1 norm regularization and the proximal
mapping of rSADAGRAD-PROX that reduces the effect of
the regularizer; (ii) in most cases rSADAGRAD-PROX has
the best performance except on epsilon with two settings of
ζ = 0.1/n, 1/n, in which ADAM is better.

Next, we present the results for solving the SVM prob-
lem with varying λ and varying c. By varying c, we can
control the growth of the stochastic gradient vector. The
results of varying λ with fixed c = 1 on the four data sets
are reported in Figure 2, and the results of varying c with
fixed λ = 1/n for the two data sets epsilon and rcv1 are
reported in Figure 3. Here, we only report the results of
r-SADAGRAD-PROX. From the results, we can see that
SADAGRAD performs considerably faster than other base-
lines in most cases. In addition, we have several interesting
observations that are consistent with our analysis and theory:
(i) for smaller strong convexity parameter (corresponding to
smaller values of λ), Epoch-GD perform poorly at earlier
iterations due to very large step size; in contrast SADA-
GRAD doesn’t suffer from this issue because of its unique
step size scheme (c.f. the discussion above Theorem 1);
(ii) ADAGRAD and SC-ADAGRAD perform poorly on the
extremely high-dimensional data news20, especially when
λ is small. This is consistent with our prediction that their
bad dependence on the dimensionality. In contrast, SADA-
GRAD is more robust to the high dimensionality and also
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Figure 2. Results with varying λ for solving SVM.

enjoy adaptiveness to history of learning, making it bet-
ter than Epoch-GD; (iii) for smaller margin parameter c,
the improvement of SADAGRAD over ADAGRAD and SC-
ADAGRAD becomes larger, which is consistent with our
analysis (c.f., the discussion below Theorem 1). Overall, we
can see that the proposed algorithms SADAGRAD achieve
very promising results compared with existing adaptive and
non-adaptive stochastic algorithms.

8. Conclusion
In this paper, we have proposed a simple yet novel variant
of ADAGRAD, namely SADAGRAD, for solving stochastic
strongly convex optimization and more generally stochastic
convex optimization that satisfies the second order growth
condition. We analyzed the iteration complexity of the pro-
posed variant and demonstrated that it not only achieves
the optimal iteration complexity but also enjoys faster con-
vergence and better dependence on the problem’s dimen-
sionality when the stochastic gradients are sparse. We have
also developed a proximal variant to reduce the effect of
the non-stochastic regularizer. Experiments on large-scale
real data sets demonstrate the effectiveness of the proposed
SADAGRAD for solving `2 norm regularized hinge loss min-
imization problem and `1 regularized smoothed hinge loss
minimization problem.
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Figure 3. Results with varying c for solving SVM.
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