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We first present the two options of PG.

Algorithm: PG
Input: x; €
forr=1,...,tdo
L Xr41 = Py (x; =V f(x7)/L)
Option I: return x4
Option II: return xj, s.t. G(xy) = min, ||G(x;)||2

1 Definitions

We introduce two definitions that are mentioned in section 2: semi-algebraic set and semi-algebraic
function [2]].

Definition 2. A subset S C R? is called a real semi-algebraic set if there exist a finite number of
real polynomial functions g;j, hs; : R? — R such that

S=Ur_, N, {ueR%gi;(u) =0and hij(u) < 0}.
Definition 3. A function F(x) is called a semi-algebraic function if its graph {(u,s) € RI+! .

F(u) = s} is a semi-algebraic set.

2 Propositions

We introduce some results that are useful for our further analysis.

Proposition 5. [7] Assume f(x) is L-smooth and g(x) is a-strongly convex. Let ADG (Algorithm 1)
run fort =0, ..., T iterations. Then for any x we have

F(xr41) — F(x)

2T
< Do - x)3 [ —
— X — X —_— .
=201 a2l

Proposition 6. [l/| Lemma 2.3] Let F'(x) = f(x) + g(x). Assume f(x) is L-smooth. For any X,y
andn < 1/L, we have

n
Flyy) < F)+Gp(y) " (v =) = S IG5
Proposition 7. [l Theorem 3.1] Consider PG with option I, whose update formula is
X1 = Ppg(xe =V f(x1)). (1D
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Let runfort =1,...,T iterations withn < 1/L, we have

D(X17 Q*)2
F - F < =77
(x741) = mT
Proposition 8. /8] Consider one specific variant of APG, whose update formula is
{Yt =x¢ + Bi(xt — X¢-1),
Xt41 = Pyg(ye =V f(y1)),

where n < 1/L and B; = ;—; Let runjfort =1,...,T iterations withn < 1/L and xo = x1,
we have

(12)

2D(X1, Q*)2
n(T+1)2
Proposition 9. /5 Theorem 1] Assume f(x) is L-smooth and a-strongly convex. Let run for

t=1,....,Twithn=1/L, B; = g;g and xy = x1, we have for any x

Fxrs1) — P(x) < (1 - \/f)T [Fx0) — Fx) + 2 xo — ]3]

Proposition 10. /3 Theorem 5 in v3] Let f : H — (—o00,+00] be a proper, convex and lower
semi-continuous with min f = f.. Letrg > 0, ¢ € {p € C°0,r9) N C*(0,70),p(0) =
0, is concave,o > 0}, ¢ > 0,p > 0, and T € argmin f. If s©'(s) > cp(s) for all
s € (0,79), and (f(x) — fx) > D(z,argmin f) forall x € [0 < f < ro] N B(Z,p), then
@' (f(x) = fIlof(@)ll2 = cforallz € [0 < f <rol N B(Z, p).

The following proposition is a rephrase of Theorem 3.5 in [4]].

F(xry1) — Fi <

Proposition 11. If f is L-smooth and convex, g is proper, convex and lower semi-continuous,
F(x) = f(x) + g(x), n > 0, and define

o1
Pyp(x) = axgmin & [ju — x| + nF ().
Then the following inequality holds:

< (1+ Ln)[|Gy(x)[2-

|2 P 2

3 Lemmas and Corollaries

Lemma 2. If f(x) satisfies the HEB on x € S¢ with § € (0,1], i.e., there exists ¢ > 0 such that for
any x € S¢, we have

D(x,Q.) < c(f(x) = f.)".
If6 € (0,1), then for any x € S,
: 6
D(x,Q) < c™7[[0f(x)[l2 "
If0 = 1, then for any x € S,
D(x,9.) < [0 (x)])2.
Proof. The conclusion is trivial if x € €,. Otherwise, the proof follows Proposition@ In particular,

if we define (s) = cs?, then D(x,Q.) < o(f(x) — f.) forany x € {x:0 < f(x) — f« < £} and
o satisfies s¢’(s) > 6¢(s). By Proposition |10} we have

¢ (f(x) = fIlOf(x)ll2 = 0,

ie.,

clof)llz > (f(x) = f)'°. (13)



When 6 = 1, we have ||0f(x)||2 > 1/c for x & .. As aresult, when § € (0, 1),

Dlx, ) < e(f(x) — £)° < 7O )IT-
and when 0 = 1,

D(x, ) < c(f(x) = fx) < *€|0f (x)]l2-

O

Corollary 2. Let F(x) = f(x) + g(x). Assume f(x) is L-smooth. For any x,y and 0 <n < 1/L,
we have 0

Gz < Fy) = F(yy) < Fly) — min F(x). (14)

Proof. The proof is immediate by employing the convexity of F' and Proposition 6] O

Lemma 3. By running the ADG (Algorithm 1) for minimizing F5(x) = f(x) + gs(x) with an initial
solution x¢, where gs(x) = g(x) + g”x — %03, then for any x € R% and t > 0,

5 —2t
144/ o=

L
Fy(xii1) = Fa(x) < Slixo —xI3 |14/ o

and F(x¢41) < F(x0). If t > 1/2—% log (%) we have ||x:11 — Xoll2 < V2||x0 — X ||2.

Proof. Applying Proposition[3|to Fs(x) yields

—2t

2

0 ] L
Fxi1) = F(x) + 5 lxip1 = xoll3 < 5 lx = xoll3 + %0 — x5 15

Then F(x;41) — F(x0) < 0, and choose x = x,. in the inequality (15), where x,. € €., then we

have
I 5 —2t
CxlI2 < S 24 D — %12 |1 9 .
Beer1 = %ollz < llxo = xul2 + S llx0 = xullz |1 4+14/ 57
Under the condition t > /£ log (%) we have |[x;41 — Xo[[2 < V2||xg — X2 O

Lemma 4 (Perturbation of a Strongly Convex Problem). Ler h(x) be a o-strongly convex function,
x;, and x3, be the optimal solutions to the following problems.

* = mina'x + h(x).

x€ER

X

* : T
Xy = irel]andb x + h(x).
Then

*
a

||X < 2Ha_b”2
= e .

= %3l
Proof. Let H,(x) = h(x) +a'x and Hy(x) = h(x) + b' x. By the strong convexity of h(x), we
have
g * * |12 * * * T * * T %
Slxa = x5z < Ha(xp) = Ha(xz) = Hy(x;) + (a = b) x; — Hy(x,) — (a=b) x,
< (a=b) (x; —xz) < [x; = xp]2lla = b]2,
where we use the fact Hy(x;) < Hy(x}). From the above inequality, we can get ||x} — x}||2 <
2lja—b]z -

o



4 Proofs

A Proof of Theorem 1

Proof. Divide the whole FOR loop of PG into K stages, denote t;, by the number of iterations in the
k-th stage, and denote x;, by the updated x at the end of the k-th stage, where k£ = 1, ... K. Define
€Q

€L ‘— Sk+

Choose t;, = [cheig__ll], and we will prove F'(xy) — F, < ¢ by induction. Suppose F'(x;_1) —
F, <e€p_1,wehave x;_1 € S,. According to Proposition [/} at the k-th stage, we have

Llleos — x4 3
F(Xk)—F* < 50 k—1112

where x;,_; € (1., the closest point to X;_; in the optimal set. By the HEB condition, we have

?

ALY
F(xz) — F, < #

Since t;, > cQLez‘g:ll, we have F'(xi) — Fi < €k. The total number of iterations is

K K
St <O(EPLY alih.
k=1 k=1

From the above analysis, we see that after each stage, the optimality gap decreases by half, so taking
K = [log, 0| guarantees F'(x;) — Fi <.

If 6 > 1/2, the iteration complexity is O(c2Le§9*1). To see this, if we plug in the definition of ¢y
into the total number of iterations, and we can get O(c?Le2’ " Zle ST ) = O(cLeX—h).
If @ = 1/2, the iteration complexity is O(c*Llog <). If § < 1/2, the iteration complexity is

K K

€ _ _
Dot SO(PLY (55)"7Y) = O(PL/e ).
k=1 k=1

B Proof of Theorem 2
Proof. Similar to the proof of Theorem 1, we will prove by induction that F'(x;) — F, < ¢}, = k-
Assume that F'(x;_1) — Fix < €_1. Hence, x;,_1 € S,,. Then according to Propositionand the
HEB condition, we have

QCZLGiG
F(xp)—F, < it
(k) = (tg+ 1)2
Since tj > 26@62:1/2, we have
F(Xk) - F* S k-1 = €k-

After K stages, we have F'(xg) — F\ < e. The total number of iterations is

K
k=1

When 6 > 1/2, we have T < O(C\/fegflﬂ). When 6 < 1/2, we have

Tk <O (max{cx@log(eo/e), C\/Z/61/2_9}) .



C Proof of Theorem 3

Proof. By the update of PG with option II and Corollary [2] we have

Flx,) = Flxrin) = o Gx) 3

— 2L
Lett = 25. Summing over 7 = j,...,t gives

Flxg) = Flxin) > 57 G0

T=j

Since ||G(x.)|l2 > minj<,<¢ ||G(XT)||2 and F(xty1) > Fi, then we have

57 min [[G(x:)ll3 < F(x;) - Fu.

2L 1<7<t

Hence,
min GO < 22 (F(x;) - F). (16)
1<r<t j

We consider three scenarios of 6.

(I). If § > 1/2, according to Theorem 1, we know that F'(x;) — F, converges to 0in j = O(c?>Le2’ 1)
steps, 50 min; <, <; | G(x,)||3 converges to 0 in t = O(c?Lea’ 1) steps.

(ID.If 0 = 1/2, let j = max(k,2L) and t = 2j, where k = ac*Llog (), and a is a constant hided
in the big O notation. According to Theorem 1, we have

F(x) — F, < €, (17)
then the inequality (T6)), and the choice of j, k yield
2L
<= ) — < é?
min, |66 < 2F(Fog) - P < €,

so we know that t = O(c?Llog (<2)).

(I). If § < 1/2, let j be an index such that F(x;) — F, < €. We can set j = 2ac*L/¢'' " and
thus ¢t = 4ac2L/e’1_29, and then we have

2L 6/6/1 260 6/2729
i 613 < 2Py - R < S -

ac?

Lete' = cT9 T, we have miny <, <; |G(x,)||3 < €2/a. We can conclude t = O(cﬁL/e%).

By combining the three scenarios, we can complete the proof. O

D Proof of Lemma 1

Proof. The conclusion is tr1v1a1 when x € ., so we only need to consider the case when x ¢ €.
Define P, p(x) = arg mln Llu—x[3 + nF(u).

We first prove for § € (0,1/2]. It is not difficult to see that l(x — Pyr(x)) € OF (P,r(x)).
D(x,8%) < |x = Pyr(x)[l2 + D(Pyr(x),24)
6
< | = Pup(x)]l2 + 77 |0F (Pyr(x)) 3~

1
=7 o
— Pl

< x = Pyr(x)|

1 0 %
n<1+Ln>||Gn<x>||z+cm<1+nL>1f9 Gy (x)ll3"



where the second inequality uses the result in Lemma [2]and the last inequality follows Proposition [T}
which asserts that ||x — P, p(x)[l2 < (1 + Ln)||G,(x)||2. Plugging the value n = 1/L, we have
the result.

Next, we prove for § € (1/2, 1]. For any x € S¢, we have P,r(x) € S¢ and
D(Pyr(x), Q) < e(F(Pyp(x)) — Fu)°
= c(F(Pyr(x)) = Fo)' 0 (F(Pyrp (%) — F)*'~!
< AOF (Pyp(x))l|2(F(x) — F. )26 '
< PJOF (Pyp (%)) 2627
(1 + Ln)l|Gy(x) |26~
< 27207 Y|Gy (%) |2,

where the second inequality holds because the inequality holds for any 6 € (0,1]
(by Lemma |2), F(P,r(x)) < F(x) < &, the fourth inequality holds since |G, (x)]2

ﬁ |(x = Pyr(x))/nlly > ﬁ”aF(PnF(X))HQ (by Proposition , and the last inequality
holds by taking n = 1/L.

Sofor# € (1/2,1] and n = 1/L, we have
D(x, Q) < [lx = Pyr(x)ll2 + D(Pyr (%), 2.)

< (3 +22€0 )G

E Proof of Theorem 5

Proof. Let x5 be the optimal solution to min, g« F5(x) and x. denote an optimal solution to

miny e F(x). Thanks to the strong convexity of Fj(x), we have Fs(x.,) — Fs(x%) > 2 2% — x5 13-
Then

F(x.) = F(x3) +6/2l|x. — %0l13 — 6/2[|x5 — xol13 > 6/2x. — x;][3-
Since F(x.) — F(x}) < 0, it implies [|x} — xo[|2 < ||x« — Xol|2. By Corollary ] we have

n

TG i) < Fo(xen) — Fo(x3) < 5 lxo — 313 [L+ V37@E)]
where 77 < 1/(L + §) and G} is a proximal gradient of F5(x) defined as G (x) = (x —x,7(9))
and

x5 (0) = argmin { (V709 + 30x ~ x0)) (v =)+ 19(3) + 5lly ~ xI3}.

Recall that x” = P, 5(x—nV f(x)). Itis not difficult to derive that ||x;} —x;"(8)|2 < 2né]jx —x0||2

(by Lemmad). Since G, (x) = 5 (x — x;7), we have

1G(0)ll2 < IG5 )ll2 + lIx = x5 (8)l2/n < G ()2 + 261 — xo]|2-
Letn = 1/(L + §), we have

G}l < 28] = xolls + V/EFlxo — x5 [1+ V/57@D)]
< 2v26]x, = Xoll2 + V(L +8)lx0 — .12 [1 + V6/L)|

where we use the inequality ||x} — x¢ll2 < ||x+« — Xo||2. Since ||G,(x)||2 is a monotonically
decreasing function of 7 [7]] , then ||G(x)||2 < ||Gy(x)]|2 for n = 1/(L + ) < 1/L. Then

1G o)z < VI +0)|x0 — xu |2 [1+ NETI 2L] + 2v26]|x0 — %o 2.



F Proof of Theorem 6

Proof.

o We first prove the case when 6 € (0, 1/2]. We can easily induce that F'(xj) — Fi <

@10 \Y L(L+5k)
o, 108

€o from Lemma Letty = [ 5 1. Applying Theorem 5 to the k-the stage

of adaAGC and using Lemma 1, we have

lG( th+1 M2 < (v L(L + 6x) |}+ \/

2 1 6 T—
X(ZNG&E-1) ]2 + =P 209 | G(xk-1 s =" 9>),

—tk

| + 2v/26;,)

(18)

Note that at each stage, we check two conditions (i) |G (x5, ,)||2 < ex—1/2 and (ii) T = t.
If the first condition satisfies first, we proceed to the next stage (k increases by 1). If the
second condition satisfies first, then we can claim that ¢, < c and then we increase c. by a
factor v > 1 and then restart the same stage. To verify the claim, assume c. > ¢ and the
second condition satisfies first, i.e., 7 = ¢, but |G(x%_ )||2 > ex_1/2. We will deduce a
contradiction. To this end, we use @]) and note the value of t;, we have

2 B W ey
1GGek, 1)lle < (3 + 226 ) x (FIGGeko)lz + TP 2T G577
< 432G Gl + T AT G )7

€ c<1*9>2(1*9>e _
< k—1 k—1
4

T —— <ep-1/2=¢y,
4c870 2T
where the last inequality follows that ¢, > c. This contradicts to the assumption that
|G(x¥ . 1)|l2 > er—1/2, which verifies our claim.

Since c, is increased by a factor v > 1 whenever condition (ii) holds first, so within at
most [log, (¢/co)] times condition (ii) holds first. Similarly with at most [log, £o/¢] times
that condition (i) holds first before the algorithm terminates. We let T}, denote the total
number of iterations in order to make condition (i) satisfies in stage k. First, we can see
. er_ NI
that ¢, < ~yc. Let 8}, = min(Z, W) < dpandt), = [, /% log Tk1 Let
sy denote the number of cycles in each stage in order to have ||G(x%, )[2 < €. Then
sk < log.(c/co) + 1. The total number of iterations of across all stages is bounded by

Zszl Sktr, which is bounded by
K K
Z site < (1+1log,(c/co)) Z t),.-
k=1 k=1

Plugging the value of ¢}, we can deduce the iteration complexity in Theorem 6 for 6 €
(0,1/2].

Now we consider the proof when 6 € (1/2,1]. Similar to the proof for € (0,1/2], we

% lOg \/L(L-‘r(sk)—‘.
k

can easily induce that F'(x;) — Fy < ¢y from Lemma|3| Let ¢, = [ 5

Applying Theorem 5 to the k-the stage of ada@GC and using Lemma 1, we have

IGGet 4 2)ll2 < (VL(L + 61) [1+\/ o ] +2v/20;) % ( +2¢2 7| G (x| 2-

(19)
Note that at each stage, we check two conditions (i) |G (x%, 1)l2 < ex—1/2 and (ii) T = t;.
If the first condition satisfies first, we proceed to the next stage (k increases by 1). If the
second condition satisfies first, then we can claim that ¢, < ¢ and then we increase c. by a
factor v > 1 and then restart the same stage. To verify the claim, assume c. > ¢ and the
second condition satisfies first, i.e., 7 = ¢, but ||G(x%_,)||2 > £x—1/2. We will deduce a
contradiction. To this end, we use (T9) and note the value of ¢, we have

24201
20—1 -1 8c“¢ €k—1
GOk )l < 4545 + 2626 Gosr) < % t ST S




where the last inequality follows that c. > c and £ < €j. This contradicts to the assumption
that ||G(x%_,)||2 > ex—1/2, which verifies our claim.

Since c. is increased by a factor v > 1 whenever condition (ii) holds first, so within at
most [log, (c¢/co)] times condition (ii) holds first. Similarly with at most [log, €9 /€] times
that condition (i) holds first before the algorithm terminates. We let T}, denote the total
number of iterations in order to make condition (i) satisfies in stage k. First, we can see

that ¢, < ~e. Leté}C 7min(3LQ,W) <{dpandt] = 2L1 7\/L(L+‘%)] Let
C k

si denote the number of cycles in each stage in order to have |G ( X7 +1)||2 < €. Then
sk < 1ogn{(c/ ¢o) + 1. The total number of iterations of across all stages is bounded by

Zszl Sktr, which is bounded by

=

K
S st < (1+1og, (¢/co)) Y the
k=1

k=1

Plugging the value of ¢}, we can deduce the iteration complexity in Theorem 6 for 6 €
(1/2,1].
O

G Proof of Theorem 8

First, it is easy to see that in either case, the HEB condition of F'(-) with # = 1/2 and u = /2/u
holds. Next, we prove the following lemma.

Lemma 5. Suppose either f(x) or g(x) satisfies the following property: for any x € dom(F’), there
exists (. > 0 such that

h(x.) 2 h(x) + Oh(x) " (x. = x) + Sllx = x. 3, (20)

where X, is the closest optimal solution to x. Then we have the following:
F(xy) = F(x.) < 01/p)|Gx)|3
where
. L 2
x4 = arg min | f(x) + (Vf(x),u —x) + Z{lu—xl3 + g(u)
G(x) = Lix —x;),
Proof. Define ¢(u) = f(x) + (Vf(x),u—x) + £|ju —x||3 + g(u) and then ¢ (u) = V f(x) +
L(u — x) 4+ 9g(u). By the first-order optimality condition of x, for all u € dom(F') there exists
Vi € 89(X+):
(VF() + vy — Glx),u—x;) >0,

Without loss of generality, we first assume f(-) and g(-) both satisfy with p1p > 0 and pg > 0.
When iy = 0 or ug = 0, the inequality is automatically satisfied. Then we have

fx IIX* = x[I3 > f(x) + (VF(x), % — %)

«) —
f(X) (VI(x), x4 = %) + (Vf(x), % —xy)

fx) +(Vf(x )X+—X>+< (x )X*—X+>+<V+,X+—X*>
f )+

(%) + (V). %1 = %)+ (G(x), %0 —x4) +9(x4) — g(x.) + B2 xp — x|

Y

v

L 1%
= o(x4) — 5\\x X1 [3 + (G(x), xs = x4) + 5l — x.|[? = g(x)

= o(x4) - ||G( M3+ (G(x), % —x4) + %llh =% = g(x),

where the second 1nequa11ty uses the optimality condition of x; and the third inequality uses the
condition (20) of g(-). Next, we consider two cases.



Case I: 1y > 0 and 11 > 0 (i.e., g(-) satisfies (20)). We have

1 1 1% 1%
f(xe) = o(x4) = EIIG(X)IIS - %IIG(X)IIS - lx - x5+ 5l = x.[? = g(x.)

As a result,
Flx.) > o(x)) — =G| - —HG( 2> Flxs) — = IGEIE — s GHI3
2L 2L 2414
Thus
L+ug”

Fxy) = F(x.) < G(x)II3

Case II: sy > 0 and 115 > 0 (i.e., f(-) satisfies (20)). Then we have
f(xe) = d(x4) — ||G( )3+ {G(x), xs —x4) + %HX* — x5 — g(x.)
> P(x4) — ||G( )3+ (G(x), % — %) + (G(x),x —x1) + *||X* — x5 - g(x.)

> ¢(xy) + EIIG(X)H% +(G(x), % = x) + *HX* —x[|3 — g(x.)

1 1

> ¢(xy) + 57 1G5 - %\\G(X)Ili - 7IIX* - x|+ 7\\& —x|3 - g(x)
1

> F(xy) - %IIG(X)IE —g(x)

Thus,
1
F(x4) = F(x.) < TIIG(X)H%
1273

In either case, we have F(x ) — F(x.) < O(1/p)||G(x)||3. O

Finally, we see that in order to guarantee F'(x, ) — F(x.) < €, we need to have ||G(x)]|2 < O( /1€).
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