Supplementary Material for "Adaptive Accelerated Gradient Converging Method under Hölderian Error Bound Condition"

Mingrui Liu, Tianbao Yang
Department of Computer Science
The University of Iowa, Iowa City, IA 52242
mingrui-liu, tianbao-yang@uiowa.edu

We first present the two options of PG.

```
Algorithm: PG
Input: \(\mathbf{x}_{1} \in \Omega\)
for \(\tau=1, \ldots, t\) do
    \(\mathbf{x}_{\tau+1}=P_{g / L}\left(\mathbf{x}_{\tau}-\nabla f\left(\mathbf{x}_{\tau}\right) / L\right)\)
Option I: return \(\mathbf{x}_{t+1}\)
Option II: return \(\mathbf{x}_{k}\) s.t. \(G\left(\mathbf{x}_{k}\right)=\min _{\tau}\left\|G\left(\mathbf{x}_{\tau}\right)\right\|_{2}\)
```


1 Definitions

We introduce two definitions that are mentioned in section 2: semi-algebraic set and semi-algebraic function [2].
Definition 2. A subset $S \subset \mathbb{R}^{d}$ is called a real semi-algebraic set if there exist a finite number of real polynomial functions $g_{i j}, h_{i j}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that

$$
S=\cup_{j=1}^{p} \cap_{i=1}^{q}\left\{\mathbf{u} \in \mathbb{R}^{d} ; g_{i j}(\mathbf{u})=0 \text { and } h_{i j}(\mathbf{u}) \leq 0\right\} .
$$

Definition 3. A function $F(\mathbf{x})$ is called a semi-algebraic function if its graph $\left\{(\mathbf{u}, s) \in \mathbb{R}^{d+1}\right.$: $F(\mathbf{u})=s\}$ is a semi-algebraic set.

2 Propositions

We introduce some results that are useful for our further analysis.
Proposition 5. [7] Assume $f(\mathbf{x})$ is L-smooth and $g(\mathbf{x})$ is α-strongly convex. Let ADG (Algorithm 1) run for $t=0, \ldots, T$ iterations. Then for any \mathbf{x} we have

$$
F\left(\mathbf{x}_{T+1}\right)-F(\mathbf{x}) \leq \frac{L}{2}\left\|\mathbf{x}_{0}-\mathbf{x}\right\|_{2}^{2}\left(\frac{1}{1+\sqrt{\alpha / 2 L}}\right)^{2 T}
$$

Proposition 6. [1] Lemma 2.3] Let $F(\mathbf{x})=f(\mathbf{x})+g(\mathbf{x})$. Assume $f(\mathbf{x})$ is L-smooth. For any \mathbf{x}, \mathbf{y} and $\eta \leq 1 / L$, we have

$$
F\left(\mathbf{y}_{\eta}^{+}\right) \leq F(\mathbf{x})+G_{\eta}(\mathbf{y})^{\top}(\mathbf{y}-\mathbf{x})-\frac{\eta}{2}\left\|G_{\eta}(\mathbf{y})\right\|_{2}^{2}
$$

Proposition 7. [1] Theorem 3.1] Consider PG with option I, whose update formula is

$$
\begin{equation*}
\mathbf{x}_{t+1}=P_{\eta g}\left(\mathbf{x}_{t}-\eta \nabla f\left(\mathbf{x}_{t}\right)\right) \tag{11}
\end{equation*}
$$

Let (11) run for $t=1, \ldots, T$ iterations with $\eta \leq 1 / L$, we have

$$
F\left(\mathbf{x}_{T+1}\right)-F_{*} \leq \frac{D\left(\mathbf{x}_{1}, \Omega_{*}\right)^{2}}{2 \eta T}
$$

Proposition 8. 8 Consider one specific variant of $A P G$, whose update formula is

$$
\left\{\begin{array}{l}
\mathbf{y}_{t}=\mathbf{x}_{t}+\beta_{t}\left(\mathbf{x}_{t}-\mathbf{x}_{t-1}\right) \tag{12}\\
\mathbf{x}_{t+1}=P_{\eta g}\left(\mathbf{y}_{t}-\eta \nabla f\left(\mathbf{y}_{t}\right)\right),
\end{array}\right.
$$

where $\eta \leq 1 / L$ and $\beta_{t}=\frac{t-1}{t+2}$. Let $\sqrt{12}$ run for $t=1, \ldots, T$ iterations with $\eta \leq 1 / L$ and $\mathbf{x}_{0}=\mathbf{x}_{1}$, we have

$$
F\left(\mathbf{x}_{T+1}\right)-F_{*} \leq \frac{2 D\left(\mathbf{x}_{1}, \Omega_{*}\right)^{2}}{\eta(T+1)^{2}}
$$

Proposition 9. [5] Theorem 1] Assume $f(\mathbf{x})$ is L-smooth and α-strongly convex. Let (12) run for $t=1, \ldots, T$ with $\eta=1 / L, \beta_{t}=\frac{\sqrt{L}-\sqrt{\alpha}}{\sqrt{L}+\sqrt{\alpha}}$ and $\mathbf{x}_{0}=\mathbf{x}_{1}$, we have for any \mathbf{x}

$$
F\left(\mathbf{x}_{T+1}\right)-F(\mathbf{x}) \leq\left(1-\sqrt{\frac{\alpha}{L}}\right)^{T}\left[F\left(\mathbf{x}_{0}\right)-F(\mathbf{x})+\frac{\alpha}{2}\left\|\mathbf{x}_{0}-\mathbf{x}\right\|_{2}^{2}\right]
$$

Proposition 10. [3] Theorem 5 in v3] Let $f: H \rightarrow(-\infty,+\infty$] be a proper, convex and lower semi-continuous with $\min f=f_{*}$. Let $r_{0}>0, \varphi \in\left\{\varphi \in C^{0}\left[0, r_{0}\right) \cap C^{1}\left(0, r_{0}\right), \varphi(0)=\right.$ $0, \varphi$ is concave, $\varphi>0\}$, $c>0, \rho>0$, and $\bar{x} \in \arg \min f$. If $s \varphi^{\prime}(s) \geq c \varphi(s)$ for all $s \in\left(0, r_{0}\right)$, and $\varphi\left(f(x)-f_{*}\right) \geq D(x, \arg \min f)$ for all $x \in\left[0<f<r_{0}\right] \cap B(\bar{x}, \rho)$, then $\varphi^{\prime}\left(f(x)-f_{*}\right)\|\partial f(x)\|_{2} \geq c$ for all $x \in\left[0<f<r_{0}\right] \cap B(\bar{x}, \rho)$.

The following proposition is a rephrase of Theorem 3.5 in [4].
Proposition 11. If f is L-smooth and convex, g is proper, convex and lower semi-continuous, $F(\mathbf{x})=f(\mathbf{x})+g(\mathbf{x}), \eta>0$, and define

$$
P_{\eta F}(\mathbf{x})=\arg \min _{\mathbf{u}} \frac{1}{2}\|\mathbf{u}-\mathbf{x}\|_{2}^{2}+\eta F(\mathbf{u})
$$

Then the following inequality holds:

$$
\left\|\frac{1}{\eta}\left(\mathbf{x}-P_{\eta F}(\mathbf{x})\right)\right\|_{2} \leq(1+L \eta)\left\|G_{\eta}(\mathbf{x})\right\|_{2}
$$

3 Lemmas and Corollaries

Lemma 2. If $f(\mathbf{x})$ satisfies the $H E B$ on $\mathbf{x} \in \mathcal{S}_{\xi}$ with $\theta \in(0,1]$, i.e., there exists $c>0$ such that for any $\mathrm{x} \in \mathcal{S}_{\xi}$, we have

$$
D\left(\mathbf{x}, \Omega_{*}\right) \leq c\left(f(\mathbf{x})-f_{*}\right)^{\theta}
$$

If $\theta \in(0,1)$, then for any $\mathbf{x} \in \mathcal{S}_{\xi}$,

$$
D\left(\mathbf{x}, \Omega_{*}\right) \leq c^{\frac{1}{1-\theta}}\|\partial f(\mathbf{x})\|_{2}^{\frac{\theta}{1-\theta}}
$$

If $\theta=1$, then for any $\mathrm{x} \in \mathcal{S}_{\xi}$,

$$
D\left(\mathbf{x}, \Omega_{*}\right) \leq c^{2} \xi\|\partial f(\mathbf{x})\|_{2}
$$

Proof. The conclusion is trivial if $\mathbf{x} \in \Omega_{*}$. Otherwise, the proof follows Proposition 10 In particular, if we define $\varphi(s)=c s^{\theta}$, then $D\left(\mathbf{x}, \Omega_{*}\right) \leq \varphi\left(f(\mathbf{x})-f_{*}\right)$ for any $\mathbf{x} \in\left\{\mathbf{x}: 0<f(\mathbf{x})-f_{*} \leq \xi\right\}$ and φ satisfies $s \varphi^{\prime}(s) \geq \theta \varphi(s)$. By Proposition 10. we have

$$
\varphi^{\prime}\left(f(\mathbf{x})-f_{*}\right)\|\partial f(\mathbf{x})\|_{2} \geq \theta
$$

i.e.,

$$
\begin{equation*}
c\|\partial f(\mathbf{x})\|_{2} \geq\left(f(\mathbf{x})-f_{*}\right)^{1-\theta} \tag{13}
\end{equation*}
$$

When $\theta=1$, we have $\|\partial f(\mathbf{x})\|_{2} \geq 1 / c$ for $\mathbf{x} \notin \Omega_{*}$. As a result, when $\theta \in(0,1)$,

$$
D\left(\mathbf{x}, \Omega_{*}\right) \leq c\left(f(\mathbf{x})-f_{*}\right)^{\theta} \leq c^{\frac{1}{1-\theta}}\|\partial f(\mathbf{x})\|_{2}^{\frac{\theta}{1-\theta}}
$$

and when $\theta=1$,

$$
D\left(\mathbf{x}, \Omega_{*}\right) \leq c\left(f(\mathbf{x})-f_{*}\right) \leq c^{2} \xi\|\partial f(\mathbf{x})\|_{2}
$$

Corollary 2. Let $F(\mathbf{x})=f(\mathbf{x})+g(\mathbf{x})$. Assume $f(\mathbf{x})$ is L-smooth. For any \mathbf{x}, \mathbf{y} and $0<\eta \leq 1 / L$, we have

$$
\begin{equation*}
\frac{\eta}{2}\left\|G_{\eta}(\mathbf{y})\right\|_{2}^{2} \leq F(\mathbf{y})-F\left(\mathbf{y}_{\eta}^{+}\right) \leq F(\mathbf{y})-\min _{\mathbf{x}} F(\mathbf{x}) \tag{14}
\end{equation*}
$$

Proof. The proof is immediate by employing the convexity of F and Proposition 6 .
Lemma 3. By running the $A D G$ (Algorithm 1) for minimizing $F_{\delta}(\mathbf{x})=f(\mathbf{x})+g_{\delta}(\mathbf{x})$ with an initial solution \mathbf{x}_{0}, where $g_{\delta}(\mathbf{x})=g(\mathbf{x})+\frac{\delta}{2}\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{2}^{2}$, then for any $\mathbf{x} \in \mathbb{R}^{d}$ and $t \geq 0$,

$$
F_{\delta}\left(\mathbf{x}_{t+1}\right)-F_{\delta}(\mathbf{x}) \leq \frac{L}{2}\left\|\mathbf{x}_{0}-\mathbf{x}\right\|_{2}^{2}\left[1+\sqrt{\frac{\delta}{2 L}}\right]^{-2 t}
$$

and $F\left(\mathbf{x}_{t+1}\right) \leq F\left(\mathbf{x}_{0}\right)$. If $t \geq \sqrt{\frac{L}{2 \delta}} \log \left(\frac{L}{\delta}\right)$, we have $\left\|\mathbf{x}_{t+1}-\mathbf{x}_{0}\right\|_{2} \leq \sqrt{2}\left\|\mathbf{x}_{0}-\mathbf{x}_{*}\right\|_{2}$.
Proof. Applying Proposition 5 to $F_{\delta}(\mathbf{x})$ yields

$$
\begin{equation*}
F\left(\mathbf{x}_{t+1}\right)-F(\mathbf{x})+\frac{\delta}{2}\left\|\mathbf{x}_{t+1}-\mathbf{x}_{0}\right\|_{2}^{2} \leq \frac{\delta}{2}\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{2}^{2}+\frac{L}{2}\left\|\mathbf{x}_{0}-\mathbf{x}\right\|_{2}^{2}\left[1+\sqrt{\frac{\delta}{2 L}}\right]^{-2 t} \tag{15}
\end{equation*}
$$

Then $F\left(\mathbf{x}_{t+1}\right)-F\left(\mathbf{x}_{0}\right) \leq 0$, and choose $\mathbf{x}=\mathbf{x}_{*}$ in the inequality $\sqrt{15}$, where $\mathbf{x}_{*} \in \Omega_{*}$, then we have

$$
\left\|\mathbf{x}_{t+1}-\mathbf{x}_{0}\right\|_{2}^{2} \leq\left\|\mathbf{x}_{0}-\mathbf{x}_{*}\right\|_{2}^{2}+\frac{L}{\delta}\left\|\mathbf{x}_{0}-\mathbf{x}_{*}\right\|_{2}^{2}\left[1+\sqrt{\frac{\delta}{2 L}}\right]^{-2 t}
$$

Under the condition $t \geq \sqrt{\frac{L}{2 \delta}} \log \left(\frac{L}{\delta}\right)$ we have $\left\|\mathbf{x}_{t+1}-\mathbf{x}_{0}\right\|_{2} \leq \sqrt{2}\left\|\mathbf{x}_{0}-\mathbf{x}_{*}\right\|_{2}$.
Lemma 4 (Perturbation of a Strongly Convex Problem). Let $h(\mathbf{x})$ be a σ-strongly convex function, \mathbf{x}_{a}^{*} and \mathbf{x}_{b}^{*} be the optimal solutions to the following problems.

$$
\begin{aligned}
& \mathbf{x}_{a}^{*}=\min _{\mathbf{x} \in \mathbb{R}^{d}} \mathbf{a}^{\top} \mathbf{x}+h(\mathbf{x}) . \\
& \mathbf{x}_{b}^{*}=\min _{\mathbf{x} \in \mathbb{R}^{d}} \mathbf{b}^{\top} \mathbf{x}+h(\mathbf{x})
\end{aligned}
$$

Then

$$
\left\|\mathbf{x}_{a}^{*}-\mathbf{x}_{b}^{*}\right\|_{2} \leq \frac{2\|\mathbf{a}-\mathbf{b}\|_{2}}{\sigma}
$$

Proof. Let $H_{a}(\mathbf{x})=h(\mathbf{x})+\mathbf{a}^{\top} \mathbf{x}$ and $H_{b}(\mathbf{x})=h(\mathbf{x})+b^{\top} \mathbf{x}$. By the strong convexity of $h(\mathbf{x})$, we have

$$
\begin{aligned}
\frac{\sigma}{2}\left\|\mathbf{x}_{a}^{*}-\mathbf{x}_{b}^{*}\right\|_{2}^{2} & \leq H_{a}\left(\mathbf{x}_{b}^{*}\right)-H_{a}\left(\mathbf{x}_{a}^{*}\right)=H_{b}\left(\mathbf{x}_{b}^{*}\right)+(\mathbf{a}-\mathbf{b})^{\top} \mathbf{x}_{b}^{*}-H_{b}\left(\mathbf{x}_{a}^{*}\right)-(\mathbf{a}-\mathbf{b})^{\top} \mathbf{x}_{a}^{*} \\
& \leq(\mathbf{a}-\mathbf{b})^{\top}\left(\mathbf{x}_{b}^{*}-\mathbf{x}_{a}^{*}\right) \leq\left\|\mathbf{x}_{a}^{*}-\mathbf{x}_{b}^{*}\right\|_{2}\|\mathbf{a}-\mathbf{b}\|_{2}
\end{aligned}
$$

where we use the fact $H_{b}\left(\mathbf{x}_{b}^{*}\right) \leq H_{b}\left(\mathbf{x}_{a}^{*}\right)$. From the above inequality, we can get $\left\|\mathbf{x}_{a}^{*}-\mathbf{x}_{b}^{*}\right\|_{2} \leq$ $\frac{2\|\mathbf{a}-\mathbf{b}\|_{2}}{\sigma}$.

4 Proofs

A Proof of Theorem 1

Proof. Divide the whole FOR loop of PG into K stages, denote t_{k} by the number of iterations in the k-th stage, and denote \mathbf{x}_{k} by the updated \mathbf{x} at the end of the k-th stage, where $k=1, \ldots K$. Define $\epsilon_{k}:=\frac{\epsilon_{0}}{2^{k}}$.

Choose $t_{k}=\left\lceil c^{2} L \epsilon_{k-1}^{2 \theta-1}\right\rceil$, and we will prove $F\left(\mathbf{x}_{k}\right)-F_{*} \leq \epsilon_{k}$ by induction. Suppose $F\left(\mathbf{x}_{k-1}\right)-$ $F_{*} \leq \epsilon_{k-1}$, we have $\mathbf{x}_{k-1} \in \mathcal{S}_{\epsilon_{0}}$. According to Proposition 7 , at the k-th stage, we have

$$
F\left(\mathbf{x}_{k}\right)-F_{*} \leq \frac{L\left\|\mathbf{x}_{k-1}-\mathbf{x}_{k-1}^{*}\right\|_{2}^{2}}{2 t_{k}}
$$

where $\mathbf{x}_{k-1}^{*} \in \Omega_{*}$, the closest point to \mathbf{x}_{k-1} in the optimal set. By the HEB condition, we have

$$
F\left(\mathbf{x}_{k}\right)-F_{*} \leq \frac{c^{2} L \epsilon_{k-1}^{2 \theta}}{2 t_{k}}
$$

Since $t_{k} \geq c^{2} L \epsilon_{k-1}^{2 \theta-1}$, we have $F\left(\mathbf{x}_{k}\right)-F_{*} \leq \epsilon_{k}$. The total number of iterations is

$$
\sum_{k=1}^{K} t_{k} \leq O\left(c^{2} L \sum_{k=1}^{K} \epsilon_{k-1}^{2 \theta-1}\right)
$$

From the above analysis, we see that after each stage, the optimality gap decreases by half, so taking $K=\left\lceil\log _{2} \frac{\epsilon_{0}}{\epsilon}\right\rceil$ guarantees $F\left(\mathbf{x}_{k}\right)-F_{*} \leq \epsilon$.
If $\theta>1 / 2$, the iteration complexity is $O\left(c^{2} L \epsilon_{0}^{2 \theta-1}\right)$. To see this, if we plug in the definition of ϵ_{k} into the total number of iterations, and we can get $O\left(c^{2} L \epsilon_{0}^{2 \theta-1} \sum_{k=1}^{K} \frac{1}{2^{(2 \theta-1)(k-1)}}\right)=O\left(c^{2} L \epsilon_{0}^{2 \theta-1}\right)$. If $\theta=1 / 2$, the iteration complexity is $O\left(c^{2} L \log \frac{\epsilon_{0}}{\epsilon}\right)$. If $\theta<1 / 2$, the iteration complexity is

$$
\sum_{k=1}^{K} t_{k} \leq O\left(c^{2} L \sum_{k=1}^{K}\left(\frac{\epsilon_{0}}{2^{k-1}}\right)^{2 \theta-1}\right)=O\left(c^{2} L / \epsilon^{1-2 \theta}\right)
$$

B Proof of Theorem 2

Proof. Similar to the proof of Theorem 1, we will prove by induction that $F\left(\mathbf{x}_{k}\right)-F_{*} \leq \epsilon_{k} \triangleq \frac{\epsilon_{0}}{2^{k}}$. Assume that $F\left(\mathbf{x}_{k-1}\right)-F_{*} \leq \epsilon_{k-1}$. Hence, $\mathbf{x}_{k-1} \in \mathcal{S}_{\epsilon_{0}}$. Then according to Proposition 8 and the HEB condition, we have

$$
F\left(\mathbf{x}_{k}\right)-F_{*} \leq \frac{2 c^{2} L \epsilon_{k-1}^{2 \theta}}{\left(t_{k}+1\right)^{2}}
$$

Since $t_{k} \geq 2 c \sqrt{L} \epsilon_{k-1}^{\theta-1 / 2}$, we have

$$
F\left(\mathbf{x}_{k}\right)-F_{*} \leq \frac{\epsilon_{k-1}}{2}=\epsilon_{k}
$$

After K stages, we have $F\left(\mathbf{x}_{K}\right)-F_{*} \leq \epsilon$. The total number of iterations is

$$
T_{K}=\sum_{k=1}^{K} t_{k} \leq O\left(c \sqrt{L} \epsilon_{k-1}^{\theta-1 / 2}\right)
$$

When $\theta>1 / 2$, we have $T_{K} \leq O\left(c \sqrt{L} \epsilon_{0}^{\theta-1 / 2}\right)$. When $\theta \leq 1 / 2$, we have

$$
T_{K} \leq O\left(\max \left\{c \sqrt{L} \log \left(\epsilon_{0} / \epsilon\right), c \sqrt{L} / \epsilon^{1 / 2-\theta}\right\}\right)
$$

C Proof of Theorem 3

Proof. By the update of PG with option II and Corollary2, we have

$$
F\left(\mathbf{x}_{\tau}\right)-F\left(\mathbf{x}_{\tau+1}\right) \geq \frac{1}{2 L}\left\|G\left(\mathbf{x}_{\tau}\right)\right\|_{2}^{2}
$$

Let $t=2 j$. Summing over $\tau=j, \ldots, t$ gives

$$
F\left(\mathbf{x}_{j}\right)-F\left(\mathbf{x}_{t+1}\right) \geq \frac{1}{2 L} \sum_{\tau=j}^{t}\left\|G\left(\mathbf{x}_{\tau}\right)\right\|_{2}^{2}
$$

Since $\left\|G\left(\mathbf{x}_{\tau}\right)\right\|_{2} \geq \min _{1 \leq \tau \leq t}\left\|G\left(\mathbf{x}_{\tau}\right)\right\|_{2}$ and $F\left(\mathbf{x}_{t+1}\right) \geq F_{*}$, then we have

$$
\frac{j}{2 L} \min _{1 \leq \tau \leq t}\left\|G\left(\mathbf{x}_{\tau}\right)\right\|_{2}^{2} \leq F\left(\mathbf{x}_{j}\right)-F_{*}
$$

Hence,

$$
\begin{equation*}
\min _{1 \leq \tau \leq t}\left\|G\left(\mathbf{x}_{\tau}\right)\right\|_{2}^{2} \leq \frac{2 L}{j}\left(F\left(\mathbf{x}_{j}\right)-F_{*}\right) \tag{16}
\end{equation*}
$$

We consider three scenarios of θ.
(I). If $\theta>1 / 2$, according to Theorem 1, we know that $F\left(\mathbf{x}_{j}\right)-F_{*}$ converges to 0 in $j=O\left(c^{2} L \epsilon_{0}^{2 \theta-1}\right)$ steps, so $\min _{1 \leq \tau \leq t}\left\|G\left(\mathbf{x}_{\tau}\right)\right\|_{2}^{2}$ converges to 0 in $t=O\left(c^{2} L \epsilon_{0}^{2 \theta-1}\right)$ steps.
(II). If $\theta=1 / 2$, let $j=\max (k, 2 L)$ and $t=2 j$, where $k=a c^{2} L \log \left(\frac{\epsilon_{0}}{\epsilon^{2}}\right)$, and a is a constant hided in the big O notation. According to Theorem 1, we have

$$
\begin{equation*}
F\left(\mathbf{x}_{k}\right)-F_{*} \leq \epsilon^{2}, \tag{17}
\end{equation*}
$$

then the inequality (16, ,17) and the choice of j, k yield

$$
\min _{1 \leq \tau \leq t}\left\|G\left(\mathbf{x}_{\tau}\right)\right\|_{2}^{2} \leq \frac{2 L}{j}\left(F\left(\mathbf{x}_{j}\right)-F_{*}\right) \leq \epsilon^{2}
$$

so we know that $t=O\left(c^{2} L \log \left(\frac{\epsilon_{0}}{\epsilon}\right)\right)$.
(III). If $\theta<1 / 2$, let j be an index such that $F\left(\mathbf{x}_{j}\right)-F_{*} \leq \epsilon^{\prime}$. We can set $j=2 a c^{2} L / \epsilon^{\prime 1-2 \theta}$ and thus $t=4 a c^{2} L / \epsilon^{1-2 \theta}$, and then we have

$$
\min _{1 \leq \tau \leq t}\left\|G\left(\mathbf{x}_{\tau}\right)\right\|_{2}^{2} \leq \frac{2 L}{j}\left(F\left(\mathbf{x}_{j}\right)-F_{*}\right) \leq \frac{\epsilon^{\prime} \epsilon^{1-2 \theta}}{a c^{2}}=\frac{\epsilon^{\prime 2-2 \theta}}{a c^{2}}
$$

Let $\epsilon^{\prime}=c^{\frac{1}{1-\theta}} \epsilon^{\frac{1}{(1-\theta)}}$, we have $\min _{1 \leq \tau \leq t}\left\|G\left(\mathbf{x}_{\tau}\right)\right\|_{2}^{2} \leq \epsilon^{2} / a$. We can conclude $t=O\left(c^{\frac{1}{1-\theta}} L / \epsilon^{\frac{1-2 \theta}{1-\theta}}\right)$.

By combining the three scenarios, we can complete the proof.

D Proof of Lemma 1

Proof. The conclusion is trivial when $\mathbf{x} \in \Omega_{*}$, so we only need to consider the case when $\mathbf{x} \notin \Omega_{*}$. Define $P_{\eta F}(\mathbf{x})=\arg \min _{\mathbf{u}} \frac{1}{2}\|\mathbf{u}-\mathbf{x}\|_{2}^{2}+\eta F(\mathbf{u})$.
We first prove for $\theta \in(0,1 / 2]$. It is not difficult to see that $\frac{1}{\eta}\left(\mathbf{x}-P_{\eta F}(\mathbf{x})\right) \in \partial F\left(P_{\eta F}(\mathbf{x})\right)$.

$$
\begin{aligned}
& D\left(\mathbf{x}, \Omega_{*}\right) \leq\left\|\mathbf{x}-P_{\eta F}(\mathbf{x})\right\|_{2}+D\left(P_{\eta F}(\mathbf{x}), \Omega_{*}\right) \\
& \leq\left\|\mathbf{x}-P_{\eta F}(\mathbf{x})\right\|_{2}+c^{\frac{1}{1-\theta}} \| \partial F\left(P_{\eta F}(\mathbf{x}) \|_{2}^{\frac{\theta}{1-\theta}}\right. \\
& \leq\left\|\mathbf{x}-P_{\eta F}(\mathbf{x})\right\|_{2}+\frac{c^{\frac{1}{1-\theta}}}{\eta^{\frac{\theta}{1-\theta}}}\left\|\mathbf{x}-P_{\eta F}(\mathbf{x})\right\|_{2}^{\frac{\theta}{1-\theta}} \\
& \leq \eta(1+L \eta)\left\|G_{\eta}(\mathbf{x})\right\|_{2}+c^{\frac{1}{1-\theta}}(1+\eta L)^{\frac{\theta}{1-\theta}}\left\|G_{\eta}(\mathbf{x})\right\|_{2}^{\frac{\theta}{1-\theta}}
\end{aligned}
$$

where the second inequality uses the result in Lemma 2 and the last inequality follows Proposition 11 , which asserts that $\left\|\mathbf{x}-P_{\eta F}(\mathbf{x})\right\|_{2} \leq \eta(1+L \eta)\left\|G_{\eta}(\mathbf{x})\right\|_{2}$. Plugging the value $\eta=1 / L$, we have the result.

Next, we prove for $\theta \in(1 / 2,1]$. For any $\mathbf{x} \in S_{\xi}$, we have $P_{\eta F}(\mathbf{x}) \in S_{\xi}$ and

$$
\begin{aligned}
& D\left(P_{\eta F}(\mathbf{x}), \Omega_{*}\right) \leq c\left(F\left(P_{\eta F}(\mathbf{x})\right)-F_{*}\right)^{\theta} \\
& =c\left(F\left(P_{\eta F}(\mathbf{x})\right)-F_{*}\right)^{1-\theta}\left(F\left(P_{\eta F}(\mathbf{x})\right)-F_{*}\right)^{2 \theta-1} \\
& \leq c^{2}\left\|\partial F\left(P_{\eta F}(\mathbf{x})\right)\right\|_{2}\left(F(\mathbf{x})-F_{*}\right)^{2 \theta-1} \\
& \leq c^{2}\left\|\partial F\left(P_{\eta F}(\mathbf{x})\right)\right\|_{2} \xi^{2 \theta-1} \\
& \leq c^{2}(1+L \eta)\left\|G_{\eta}(\mathbf{x})\right\|_{2} \xi^{2 \theta-1} \\
& \leq 2 c^{2} \xi^{2 \theta-1}\left\|G_{\eta}(\mathbf{x})\right\|_{2}
\end{aligned}
$$

where the second inequality holds because the inequality 13 holds for any $\theta \in(0,1]$ (by Lemma 2), $F\left(P_{\eta F}(\mathbf{x})\right) \leq F(\mathbf{x}) \leq \xi$, the fourth inequality holds since $\left\|G_{\eta}(\mathbf{x})\right\|_{2} \geq$ $\frac{1}{1+L \eta}\left\|\left(\mathbf{x}-P_{\eta F}(\mathbf{x})\right) / \eta\right\|_{2} \geq \frac{1}{1+L \eta}\left\|\partial F\left(P_{\eta F}(\mathbf{x})\right)\right\|_{2}$ (by Proposition 11 , and the last inequality holds by taking $\eta=1 / L$.
So for $\theta \in(1 / 2,1]$ and $\eta=1 / L$, we have

$$
\begin{aligned}
D\left(\mathbf{x}, \Omega_{*}\right) & \leq\left\|\mathbf{x}-P_{\eta F}(\mathbf{x})\right\|_{2}+D\left(P_{\eta F}(\mathbf{x}), \Omega_{*}\right) \\
& \leq\left(\frac{2}{L}+2 c^{2} \xi^{2 \theta-1}\right)\|G(\mathbf{x})\|_{2}
\end{aligned}
$$

E Proof of Theorem 5

Proof. Let \mathbf{x}_{δ}^{*} be the optimal solution to $\min _{\mathbf{x} \in \mathbb{R}^{d}} F_{\delta}(\mathbf{x})$ and \mathbf{x}_{*} denote an optimal solution to $\min _{\mathbf{x} \in \mathbb{R}^{d}} F(\mathbf{x})$. Thanks to the strong convexity of $F_{\delta}(\mathbf{x})$, we have $F_{\delta}\left(\mathbf{x}_{*}\right)-F_{\delta}\left(\mathbf{x}_{\delta}^{*}\right) \geq \frac{\delta}{2}\left\|\mathbf{x}_{*}-\mathbf{x}_{\delta}^{*}\right\|_{2}^{2}$. Then

$$
F\left(\mathbf{x}_{*}\right)-F\left(\mathbf{x}_{\delta}^{*}\right)+\delta / 2\left\|\mathbf{x}_{*}-\mathbf{x}_{0}\right\|_{2}^{2}-\delta / 2\left\|\mathbf{x}_{\delta}^{*}-\mathbf{x}_{0}\right\|_{2}^{2} \geq \delta / 2\left\|\mathbf{x}_{*}-\mathbf{x}_{\delta}^{*}\right\|_{2}^{2}
$$

Since $F\left(\mathbf{x}_{*}\right)-F\left(\mathbf{x}_{\delta}^{*}\right) \leq 0$, it implies $\left\|\mathbf{x}_{\delta}^{*}-\mathbf{x}_{0}\right\|_{2} \leq\left\|\mathbf{x}_{*}-\mathbf{x}_{0}\right\|_{2}$. By Corollary 2 , we have

$$
\frac{\eta}{2}\left\|G_{\eta}^{\delta}\left(\mathbf{x}_{t+1}\right)\right\|_{2}^{2} \leq F_{\delta}\left(\mathbf{x}_{t+1}\right)-F_{\delta}\left(\mathbf{x}_{\delta}^{*}\right) \leq \frac{L}{2}\left\|\mathbf{x}_{0}-\mathbf{x}_{\delta}^{*}\right\|_{2}^{2}[1+\sqrt{\delta /(2 L)}]^{-2 t}
$$

where $\eta \leq 1 /(L+\delta)$ and G_{η}^{δ} is a proximal gradient of $F_{\delta}(\mathbf{x})$ defined as $G_{\eta}^{\delta}(\mathbf{x})=\frac{1}{\eta}\left(\mathbf{x}-\mathbf{x}_{\eta}^{+}(\delta)\right)$ and

$$
\mathbf{x}_{\eta}^{+}(\delta)=\arg \min _{\mathbf{y}}\left\{\eta\left(\nabla f(\mathbf{x})+\delta\left(\mathbf{x}-\mathbf{x}_{0}\right)\right)^{\top}(\mathbf{y}-\mathbf{x})+\eta g(\mathbf{y})+\frac{1}{2}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}\right\}
$$

Recall that $\mathbf{x}_{\eta}^{+}=P_{\eta g}(\mathbf{x}-\eta \nabla f(\mathbf{x}))$. It is not difficult to derive that $\left\|\mathbf{x}_{\eta}^{+}-\mathbf{x}_{\eta}^{+}(\delta)\right\|_{2} \leq 2 \eta \delta\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{2}$ (by Lemma 4. Since $G_{\eta}(\mathbf{x})=\frac{1}{\eta}\left(\mathbf{x}-\mathbf{x}_{\eta}^{+}\right)$, we have

$$
\left\|G_{\eta}(\mathbf{x})\right\|_{2} \leq\left\|G_{\eta}^{\delta}(\mathbf{x})\right\|_{2}+\left\|\mathbf{x}_{\eta}^{+}-\mathbf{x}_{\eta}^{+}(\delta)\right\|_{2} / \eta \leq\left\|G_{\eta}^{\delta}(\mathbf{x})\right\|_{2}+2 \delta\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{2}
$$

Let $\eta=1 /(L+\delta)$, we have

$$
\begin{aligned}
\left\|G_{\eta}\left(\mathbf{x}_{t+1}\right)\right\|_{2} & \leq 2 \delta\left\|\mathbf{x}_{t+1}-\mathbf{x}_{0}\right\|_{2}+\sqrt{L / \eta}\left\|\mathbf{x}_{0}-\mathbf{x}_{\delta}^{*}\right\|_{2}[1+\sqrt{\delta /(2 L)}]^{-t} \\
& \leq 2 \sqrt{2} \delta\left\|\mathbf{x}_{*}-\mathbf{x}_{0}\right\|_{2}+\sqrt{L(L+\delta)}\left\|\mathbf{x}_{0}-\mathbf{x}_{*}\right\|_{2}[1+\sqrt{\delta /(2 L)}]^{-t}
\end{aligned}
$$

where we use the inequality $\left\|\mathbf{x}_{\delta}^{*}-\mathbf{x}_{0}\right\|_{2} \leq\left\|\mathbf{x}_{*}-\mathbf{x}_{0}\right\|_{2}$. Since $\left\|G_{\eta}(\mathbf{x})\right\|_{2}$ is a monotonically decreasing function of η [7] , then $\|G(\mathbf{x})\|_{2} \leq\left\|G_{\eta}(\mathbf{x})\right\|_{2}$ for $\eta=1 /(L+\delta) \leq 1 / L$. Then

$$
\left\|G\left(\mathbf{x}_{t+1}\right)\right\|_{2} \leq \sqrt{L(L+\delta)}\left\|\mathbf{x}_{0}-\mathbf{x}_{*}\right\|_{2}[1+\sqrt{\delta /(2 L)}]^{-t}+2 \sqrt{2} \delta\left\|\mathbf{x}_{0}-\mathbf{x}_{*}\right\|_{2}
$$

F Proof of Theorem 6

Proof.

- We first prove the case when $\theta \in(0,1 / 2]$. We can easily induce that $F\left(\mathbf{x}_{k}\right)-F_{*} \leq$ ϵ_{0} from Lemma 3 Let $t_{k}=\left\lceil\sqrt{\frac{2 L}{\delta_{k}}} \log \frac{\sqrt{L\left(L+\delta_{k}\right)}}{\delta_{k}}\right\rceil$. Applying Theorem 5 to the k-the stage of adaAGC and using Lemma 1, we have

$$
\begin{align*}
& \left\|G\left(\mathbf{x}_{t_{k}+1}^{k}\right)\right\|_{2} \leq\left(\sqrt{L\left(L+\delta_{k}\right)}\left[1+\sqrt{\frac{\delta_{k}}{2 L}}\right]^{-t_{k}}+2 \sqrt{2} \delta_{k}\right) \tag{18}\\
& \quad \times\left(\frac{2}{L}\left\|G\left(\mathbf{x}_{k-1}\right)\right\|_{2}+c^{\frac{1}{(1-\theta)}} 2^{\frac{\theta}{1-\theta)}}\left\|G\left(\mathbf{x}_{k-1}\right)\right\|_{2}^{\frac{\theta}{(1-\theta)}}\right)
\end{align*}
$$

Note that at each stage, we check two conditions (i) $\left\|G\left(\mathbf{x}_{\tau+1}^{k}\right)\right\|_{2} \leq \varepsilon_{k-1} / 2$ and (ii) $\tau=t_{k}$. If the first condition satisfies first, we proceed to the next stage (k increases by 1). If the second condition satisfies first, then we can claim that $c_{e} \leq c$ and then we increase c_{e} by a factor $\gamma>1$ and then restart the same stage. To verify the claim, assume $c_{e}>c$ and the second condition satisfies first, i.e., $\tau=t_{k}$ but $\left\|G\left(\mathbf{x}_{\tau+1}^{k}\right)\right\|_{2}>\varepsilon_{k-1} / 2$. We will deduce a contradiction. To this end, we use (18) and note the value of t_{k}, we have

$$
\begin{aligned}
& \left\|G\left(\mathbf{x}_{t_{k}+1}^{k}\right)\right\|_{2} \leq\left(\delta_{k}+2 \sqrt{2} \delta_{k}\right) \times\left(\frac{2}{L}\left\|G\left(\mathbf{x}_{k-1}\right)\right\|_{2}+c^{\frac{1}{(1-\theta)}} 2^{\frac{\theta}{(1-\theta)}}\left\|G\left(\mathbf{x}_{k-1}\right)\right\|_{2}^{\frac{\theta}{(1-\theta)}}\right) \\
& \leq 4 \delta_{k}\left(\frac{2}{L}\left\|G\left(\mathbf{x}_{k-1}\right)\right\|_{2}+c^{\frac{1}{(1-\theta)}} 2^{\frac{\theta}{(1-\theta)}}\left\|G\left(\mathbf{x}_{k-1}\right)\right\|_{2}^{\frac{\theta}{(1-\theta)}}\right) \\
& \leq \frac{\epsilon_{k-1}}{4}+\frac{c^{\frac{1}{(1-\theta)}} 2^{\frac{\theta}{(1-\theta)}} \epsilon_{k-1}}{4 c_{e}^{\frac{1}{(1-\theta)}} 2^{\frac{\theta}{(1-\theta)}}} \leq \varepsilon_{k-1} / 2=\varepsilon_{k}
\end{aligned}
$$

where the last inequality follows that $c_{e}>c$. This contradicts to the assumption that $\left\|G\left(\mathbf{x}_{\tau+1}^{k}\right)\right\|_{2}>\varepsilon_{k-1} / 2$, which verifies our claim.
Since c_{e} is increased by a factor $\gamma>1$ whenever condition (ii) holds first, so within at most $\left\lceil\log _{\gamma}\left(c / c_{0}\right)\right\rceil$ times condition (ii) holds first. Similarly with at most $\left\lceil\log _{2} \varepsilon_{0} / \epsilon\right\rceil$ times that condition (i) holds first before the algorithm terminates. We let T_{k} denote the total number of iterations in order to make condition (i) satisfies in stage k. First, we can see that $c_{e} \leq \gamma c$. Let $\delta_{k}^{\prime}=\min \left(\frac{L}{32}, \frac{\varepsilon_{k-1}^{p}}{16\left(\gamma c 2^{\theta}\right)^{1 /(1-\theta)}}\right) \leq \delta_{k}$ and $t_{k}^{\prime}=\left\lceil\sqrt{\frac{2 L}{\delta_{k}^{\prime}}} \log \frac{\sqrt{L\left(L+\delta_{k}^{\prime}\right)}}{\delta_{k}^{\prime}}\right\rceil$. Let s_{k} denote the number of cycles in each stage in order to have $\left\|G\left(\mathbf{x}_{\tau+1}^{k}\right)\right\|_{2} \leq \varepsilon_{k}$. Then $s_{k} \leq \log _{\gamma}\left(c / c_{0}\right)+1$. The total number of iterations of across all stages is bounded by $\sum_{k=1}^{K} s_{k} t_{k}$, which is bounded by

$$
\sum_{k=1}^{K} s_{k} t_{k} \leq\left(1+\log _{\gamma}\left(c / c_{0}\right)\right) \sum_{k=1}^{K} t_{k}^{\prime}
$$

Plugging the value of t_{k}^{\prime}, we can deduce the iteration complexity in Theorem 6 for $\theta \in$ ($0,1 / 2$].

- Now we consider the proof when $\theta \in(1 / 2,1]$. Similar to the proof for $\theta \in(0,1 / 2]$, we can easily induce that $F\left(\mathbf{x}_{k}\right)-F_{*} \leq \epsilon_{0}$ from Lemma 3. Let $t_{k}=\left\lceil\sqrt{\frac{2 L}{\delta_{k}}} \log \frac{\sqrt{L\left(L+\delta_{k}\right)}}{\delta_{k}}\right\rceil$. Applying Theorem 5 to the k-the stage of adaAGC and using Lemma 1, we have

$$
\begin{equation*}
\left\|G\left(\mathbf{x}_{t_{k}+1}^{k}\right)\right\|_{2} \leq\left(\sqrt{L\left(L+\delta_{k}\right)}\left[1+\sqrt{\frac{\delta_{k}}{2 L}}\right]^{-t_{k}}+2 \sqrt{2} \delta_{k}\right) \times\left(\frac{2}{L}+2 c^{2} \xi^{2 \theta-1}\right)\left\|G\left(\mathbf{x}_{k-1}\right)\right\|_{2} \tag{19}
\end{equation*}
$$

Note that at each stage, we check two conditions (i) $\left\|G\left(\mathbf{x}_{\tau+1}^{k}\right)\right\|_{2} \leq \varepsilon_{k-1} / 2$ and (ii) $\tau=t_{k}$. If the first condition satisfies first, we proceed to the next stage (k increases by 1). If the second condition satisfies first, then we can claim that $c_{e} \leq c$ and then we increase c_{e} by a factor $\gamma>1$ and then restart the same stage. To verify the claim, assume $c_{e}>c$ and the second condition satisfies first, i.e., $\tau=t_{k}$ but $\left\|G\left(\mathbf{x}_{\tau+1}^{k}\right)\right\|_{2}>\varepsilon_{k-1} / 2$. We will deduce a contradiction. To this end, we use (19) and note the value of t_{k}, we have
$\left\|G\left(\mathbf{x}_{t_{k}+1}^{k}\right)\right\|_{2} \leq 4 \delta_{k}\left(\frac{2}{L}+2 c^{2} \xi^{2 \theta-1}\right)\left\|G\left(\mathbf{x}_{k-1}\right)\right\|_{2} \leq \frac{\epsilon_{k-1}}{4}+\frac{8 c^{2} \xi^{2 \theta-1}}{32 c_{e}^{2} \epsilon_{0}^{2 \theta-1}} \epsilon_{k-1} \leq \frac{\epsilon_{k-1}}{2}=\epsilon_{k}$,
where the last inequality follows that $c_{e}>c$ and $\xi \leq \epsilon_{0}$. This contradicts to the assumption that $\left\|G\left(\mathbf{x}_{\tau+1}^{k}\right)\right\|_{2}>\varepsilon_{k-1} / 2$, which verifies our claim.
Since c_{e} is increased by a factor $\gamma>1$ whenever condition (ii) holds first, so within at $\operatorname{most}\left\lceil\log _{\gamma}\left(c / c_{0}\right)\right\rceil$ times condition (ii) holds first. Similarly with at most $\left\lceil\log _{2} \varepsilon_{0} / \epsilon\right\rceil$ times that condition (i) holds first before the algorithm terminates. We let T_{k} denote the total number of iterations in order to make condition (i) satisfies in stage k. First, we can see that $c_{e} \leq \gamma c$. Let $\delta_{k}^{\prime}=\min \left(\frac{L}{32}, \frac{1}{32(\gamma c)^{2} \epsilon_{0}^{2 \theta-1}}\right) \leq \delta_{k}$ and $t_{k}^{\prime}=\left\lceil\sqrt{\frac{2 L}{\delta_{k}^{\prime}}} \log \frac{\sqrt{L\left(L+\delta_{k}^{\prime}\right)}}{\delta_{k}^{\prime}}\right\rceil$. Let s_{k} denote the number of cycles in each stage in order to have $\left\|G\left(\mathbf{x}_{\tau+1}^{k}\right)\right\|_{2} \leq \varepsilon_{k}$. Then $s_{k} \leq \log _{\gamma}\left(c / c_{0}\right)+1$. The total number of iterations of across all stages is bounded by $\sum_{k=1}^{K} s_{k} t_{k}$, which is bounded by

$$
\sum_{k=1}^{K} s_{k} t_{k} \leq\left(1+\log _{\gamma}\left(c / c_{0}\right)\right) \sum_{k=1}^{K} t_{k}^{\prime}
$$

Plugging the value of t_{k}^{\prime}, we can deduce the iteration complexity in Theorem 6 for $\theta \in$ (1/2, 1].

G Proof of Theorem 8

First, it is easy to see that in either case, the HEB condition of $F(\cdot)$ with $\theta=1 / 2$ and $\mu=\sqrt{2 / \mu}$ holds. Next, we prove the following lemma.
Lemma 5. Suppose either $f(\mathbf{x})$ or $g(\mathbf{x})$ satisfies the following property: for any $\mathbf{x} \in \operatorname{dom}(F)$, there exists $\mu>0$ such that

$$
\begin{equation*}
h\left(\mathbf{x}_{*}\right) \geq h(\mathbf{x})+\partial h(\mathbf{x})^{\top}\left(\mathbf{x}_{*}-\mathbf{x}\right)+\frac{\mu}{2}\left\|\mathbf{x}-\mathbf{x}_{*}\right\|_{2}^{2} \tag{20}
\end{equation*}
$$

where \mathbf{x}_{*} is the closest optimal solution to \mathbf{x}. Then we have the following:

$$
F\left(\mathbf{x}_{+}\right)-F\left(\mathbf{x}_{*}\right) \leq O(1 / \mu)\|G(\mathbf{x})\|_{2}^{2}
$$

where

$$
\begin{aligned}
& \mathbf{x}_{+}=\arg \min _{\mathbf{u} \in \mathbb{R}^{d}}\left[f(\mathbf{x})+\langle\nabla f(\mathbf{x}), \mathbf{u}-\mathbf{x}\rangle+\frac{L}{2}\|\mathbf{u}-\mathbf{x}\|_{2}^{2}+g(\mathbf{u})\right] \\
& G(\mathbf{x})=L\left(\mathbf{x}-\mathbf{x}_{+}\right)
\end{aligned}
$$

Proof. Define $\phi(\mathbf{u})=f(\mathbf{x})+\langle\nabla f(\mathbf{x}), \mathbf{u}-\mathbf{x}\rangle+\frac{L}{2}\|\mathbf{u}-\mathbf{x}\|_{2}^{2}+g(\mathbf{u})$ and then $\partial \phi(\mathbf{u})=\nabla f(\mathbf{x})+$ $L(\mathbf{u}-\mathbf{x})+\partial g(\mathbf{u})$. By the first-order optimality condition of \mathbf{x}_{+}, for all $\mathbf{u} \in \operatorname{dom}(F)$ there exists $\mathbf{v}_{+} \in \partial g\left(\mathbf{x}_{+}\right):$

$$
\left\langle\nabla f(\mathbf{x})+\mathbf{v}_{+}-G(\mathbf{x}), \mathbf{u}-\mathbf{x}_{+}\right\rangle \geq 0
$$

Without loss of generality, we first assume $f(\cdot)$ and $g(\cdot)$ both satisfy 20 with $\mu_{f} \geq 0$ and $\mu_{g} \geq 0$. When $\mu_{f}=0$ or $\mu_{g}=0$, the inequality is automatically satisfied. Then we have

$$
\begin{aligned}
& f\left(\mathbf{x}_{*}\right)-\frac{\mu_{f}}{2}\left\|\mathbf{x}_{*}-\mathbf{x}\right\|_{2}^{2} \geq f(\mathbf{x})+\left\langle\nabla f(\mathbf{x}), \mathbf{x}_{*}-\mathbf{x}\right\rangle \\
& \quad=f(\mathbf{x})+\left\langle\nabla f(\mathbf{x}), \mathbf{x}_{+}-\mathbf{x}\right\rangle+\left\langle\nabla f(\mathbf{x}), \mathbf{x}_{*}-\mathbf{x}_{+}\right\rangle \\
& \quad \geq f(\mathbf{x})+\left\langle\nabla f(\mathbf{x}), \mathbf{x}_{+}-\mathbf{x}\right\rangle+\left\langle G(\mathbf{x}), \mathbf{x}_{*}-\mathbf{x}_{+}\right\rangle+\left\langle\mathbf{v}_{+}, \mathbf{x}_{+}-\mathbf{x}_{*}\right\rangle \\
& \quad \geq f(\mathbf{x})+\left\langle\nabla f(\mathbf{x}), \mathbf{x}_{+}-\mathbf{x}\right\rangle+\left\langle G(\mathbf{x}), \mathbf{x}_{*}-\mathbf{x}_{+}\right\rangle+g\left(\mathbf{x}_{+}\right)-g\left(\mathbf{x}_{*}\right)+\frac{\mu_{g}}{2}\left\|\mathbf{x}_{+}-\mathbf{x}_{*}\right\|^{2} \\
& \quad=\phi\left(\mathbf{x}_{+}\right)-\frac{L}{2}\left\|\mathbf{x}-\mathbf{x}_{+}\right\|_{2}^{2}+\left\langle G(\mathbf{x}), \mathbf{x}_{*}-\mathbf{x}_{+}\right\rangle+\frac{\mu_{g}}{2}\left\|\mathbf{x}_{+}-\mathbf{x}_{*}\right\|^{2}-g\left(\mathbf{x}_{*}\right) \\
& \quad=\phi\left(\mathbf{x}_{+}\right)-\frac{1}{2 L}\|G(\mathbf{x})\|_{2}^{2}+\left\langle G(\mathbf{x}), \mathbf{x}_{*}-\mathbf{x}_{+}\right\rangle+\frac{\mu_{g}}{2}\left\|\mathbf{x}_{+}-\mathbf{x}_{*}\right\|^{2}-g\left(\mathbf{x}_{*}\right)
\end{aligned}
$$

where the second inequality uses the optimality condition of \mathbf{x}_{+}and the third inequality uses the condition 20) of $g(\cdot)$. Next, we consider two cases.

Case I: $\mu_{g}>0$ and $\mu_{f} \geq 0$ (i.e., $g(\cdot)$ satisfies 20p). We have

$$
f\left(\mathbf{x}_{*}\right) \geq \phi\left(\mathbf{x}_{+}\right)-\frac{1}{2 L}\|G(\mathbf{x})\|_{2}^{2}-\frac{1}{2 \mu_{g}}\|G(\mathbf{x})\|_{2}^{2}-\frac{\mu_{g}}{2}\left\|\mathbf{x}_{*}-\mathbf{x}_{+}\right\|_{2}^{2}+\frac{\mu_{g}}{2}\left\|\mathbf{x}_{+}-\mathbf{x}_{*}\right\|^{2}-g\left(\mathbf{x}_{*}\right)
$$

As a result,

$$
F\left(\mathbf{x}_{*}\right) \geq \phi\left(\mathbf{x}_{+}\right)-\frac{1}{2 L}\|G(\mathbf{x})\|_{2}^{2}-\frac{1}{2 \mu_{g}}\|G(\mathbf{x})\|_{2}^{2} \geq F\left(\mathbf{x}_{+}\right)-\frac{1}{2 L}\|G(\mathbf{x})\|_{2}^{2}-\frac{1}{2 \mu_{g}}\|G(\mathbf{x})\|_{2}^{2}
$$

Thus

$$
F\left(\mathbf{x}_{+}\right)-F\left(\mathbf{x}_{*}\right) \leq \frac{L+\mu_{g}}{2 L \mu_{g}}\|G(\mathbf{x})\|_{2}^{2}
$$

Case II: $\mu_{f}>0$ and $\mu_{g} \geq 0$ (i.e., $f(\cdot)$ satisfies 20). Then we have

$$
\begin{aligned}
f\left(\mathbf{x}_{*}\right) & \geq \phi\left(\mathbf{x}_{+}\right)-\frac{1}{2 L}\|G(\mathbf{x})\|_{2}^{2}+\left\langle G(\mathbf{x}), \mathbf{x}_{*}-\mathbf{x}_{+}\right\rangle+\frac{\mu_{f}}{2}\left\|\mathbf{x}_{*}-\mathbf{x}\right\|_{2}^{2}-g\left(\mathbf{x}_{*}\right) \\
& \geq \phi\left(\mathbf{x}_{+}\right)-\frac{1}{2 L}\|G(\mathbf{x})\|_{2}^{2}+\left\langle G(\mathbf{x}), \mathbf{x}_{*}-\mathbf{x}\right\rangle+\left\langle G(\mathbf{x}), \mathbf{x}-\mathbf{x}_{+}\right\rangle+\frac{\mu_{f}}{2}\left\|\mathbf{x}_{*}-\mathbf{x}\right\|_{2}^{2}-g\left(\mathbf{x}_{*}\right) \\
& \geq \phi\left(\mathbf{x}_{+}\right)+\frac{1}{2 L}\|G(\mathbf{x})\|_{2}^{2}+\left\langle G(\mathbf{x}), \mathbf{x}_{*}-\mathbf{x}\right\rangle+\frac{\mu_{f}}{2}\left\|\mathbf{x}_{*}-\mathbf{x}\right\|_{2}^{2}-g\left(\mathbf{x}_{*}\right) \\
& \geq \phi\left(\mathbf{x}_{+}\right)+\frac{1}{2 L}\|G(\mathbf{x})\|_{2}^{2}-\frac{1}{2 \mu_{f}}\|G(\mathbf{x})\|_{2}^{2}-\frac{\mu_{f}}{2}\left\|\mathbf{x}_{*}-\mathbf{x}\right\|_{2}^{2}+\frac{\mu_{f}}{2}\left\|\mathbf{x}_{*}-\mathbf{x}\right\|_{2}^{2}-g\left(\mathbf{x}_{*}\right) \\
& \geq F\left(\mathbf{x}_{+}\right)-\frac{1}{2 \mu_{f}}\|G(\mathbf{x})\|_{2}^{2}-g\left(\mathbf{x}_{*}\right)
\end{aligned}
$$

Thus,

$$
F\left(\mathbf{x}_{+}\right)-F\left(\mathbf{x}_{*}\right) \leq \frac{1}{2 \mu_{f}}\|G(\mathbf{x})\|_{2}^{2}
$$

In either case, we have $F\left(\mathbf{x}_{+}\right)-F\left(\mathbf{x}_{*}\right) \leq O(1 / \mu)\|G(\mathbf{x})\|_{2}^{2}$.
Finally, we see that in order to guarantee $F\left(\mathbf{x}_{+}\right)-F\left(\mathbf{x}_{*}\right) \leq \epsilon$, we need to have $\|G(\mathbf{x})\|_{2} \leq O(\sqrt{\mu \epsilon})$.

References

[1] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Img. Sci., 2:183-202, 2009.
[2] E. Bierstone and P. D. Milman. Semianalytic and subanalytic sets. Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 67(1):5-42, 1988.
[3] J. Bolte, T. P. Nguyen, J. Peypouquet, and B. Suter. From error bounds to the complexity of first-order descent methods for convex functions. CoRR, abs/1510.08234, 2015.
[4] D. Drusvyatskiy and A. S. Lewis. Error bounds, quadratic growth, and linear convergence of proximal methods. arXiv:1602.06661, 2016.
[5] Q. Lin and L. Xiao. An adaptive accelerated proximal gradient method and its homotopy continuation for sparse optimization. In Proceedings of the International Conference on Machine Learning, (ICML), pages 73-81, 2014.
[6] Y. Nesterov. Introductory lectures on convex optimization : a basic course. Applied optimization. Kluwer Academic Publ., 2004.
[7] Y. Nesterov. Gradient methods for minimizing composite objective function. Core discussion papers, Universite catholique de Louvain, Center for Operations Research and Econometrics (CORE), 2007.
[8] P. Tseng. On accelerated proximal gradient methods for convex-concave optimization. submitted to SIAM Journal on Optimization, 2008.

