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We first present the two options of PG.

Algorithm: PG
Input: x1 ∈ Ω
for τ = 1, . . . , t do

xτ+1 = Pg/L(xτ −∇f(xτ )/L)

Option I: return xt+1

Option II: return xk s.t. G(xk) = minτ ‖G(xτ )‖2

1 Definitions

We introduce two definitions that are mentioned in section 2: semi-algebraic set and semi-algebraic
function [2].
Definition 2. A subset S ⊂ Rd is called a real semi-algebraic set if there exist a finite number of
real polynomial functions gij , hij : Rd → R such that

S = ∪pj=1 ∩
q
i=1 {u ∈ Rd; gij(u) = 0 and hij(u) ≤ 0}.

Definition 3. A function F (x) is called a semi-algebraic function if its graph {(u, s) ∈ Rd+1 :
F (u) = s} is a semi-algebraic set.

2 Propositions

We introduce some results that are useful for our further analysis.
Proposition 5. [7] Assume f(x) is L-smooth and g(x) is α-strongly convex. Let ADG (Algorithm 1)
run for t = 0, . . . , T iterations. Then for any x we have

F (xT+1)− F (x) ≤ L

2
‖x0 − x‖22

(
1

1 +
√
α/2L

)2T

.

Proposition 6. [1, Lemma 2.3] Let F (x) = f(x) + g(x). Assume f(x) is L-smooth. For any x,y
and η ≤ 1/L, we have

F (y+
η ) ≤ F (x) +Gη(y)>(y − x)− η

2
‖Gη(y)‖22.

Proposition 7. [1, Theorem 3.1] Consider PG with option I, whose update formula is

xt+1 = Pηg(xt − η∇f(xt)). (11)
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Let (11) run for t = 1, . . . , T iterations with η ≤ 1/L, we have

F (xT+1)− F∗ ≤
D(x1,Ω∗)

2

2ηT
.

Proposition 8. [8] Consider one specific variant of APG, whose update formula is{
yt = xt + βt(xt − xt−1),

xt+1 = Pηg(yt − η∇f(yt)),
(12)

where η ≤ 1/L and βt = t−1
t+2 . Let (12) run for t = 1, . . . , T iterations with η ≤ 1/L and x0 = x1,

we have

F (xT+1)− F∗ ≤
2D(x1,Ω∗)

2

η(T + 1)2
.

Proposition 9. [5, Theorem 1] Assume f(x) is L-smooth and α-strongly convex. Let (12) run for
t = 1, . . . , T with η = 1/L, βt =

√
L−
√
α√

L+
√
α

and x0 = x1, we have for any x

F (xT+1)− F (x) ≤
(

1−
√
α

L

)T [
F (x0)− F (x) +

α

2
‖x0 − x‖22

]
.

Proposition 10. [3, Theorem 5 in v3] Let f : H → (−∞,+∞] be a proper, convex and lower
semi-continuous with min f = f∗. Let r0 > 0, ϕ ∈ {ϕ ∈ C0[0, r0) ∩ C1(0, r0), ϕ(0) =
0, ϕ is concave, ϕ > 0}, c > 0, ρ > 0, and x̄ ∈ arg min f . If sϕ′(s) ≥ cϕ(s) for all
s ∈ (0, r0), and ϕ(f(x) − f∗) ≥ D(x, arg min f) for all x ∈ [0 < f < r0] ∩ B(x̄, ρ), then
ϕ′(f(x)− f∗)‖∂f(x)‖2 ≥ c for all x ∈ [0 < f < r0] ∩B(x̄, ρ).

The following proposition is a rephrase of Theorem 3.5 in [4].
Proposition 11. If f is L-smooth and convex, g is proper, convex and lower semi-continuous,
F (x) = f(x) + g(x), η > 0, and define

PηF (x) = arg min
u

1

2
‖u− x‖22 + ηF (u).

Then the following inequality holds:∥∥∥∥1

η
(x− PηF (x))

∥∥∥∥
2

≤ (1 + Lη)‖Gη(x)‖2.

3 Lemmas and Corollaries

Lemma 2. If f(x) satisfies the HEB on x ∈ Sξ with θ ∈ (0, 1], i.e., there exists c > 0 such that for
any x ∈ Sξ, we have

D(x,Ω∗) ≤ c(f(x)− f∗)θ.
If θ ∈ (0, 1), then for any x ∈ Sξ,

D(x,Ω∗) ≤ c
1

1−θ ‖∂f(x)‖
θ

1−θ
2 .

If θ = 1, then for any x ∈ Sξ,

D(x,Ω∗) ≤ c2ξ‖∂f(x)‖2.

Proof. The conclusion is trivial if x ∈ Ω∗. Otherwise, the proof follows Proposition 10. In particular,
if we define ϕ(s) = csθ, then D(x,Ω∗) ≤ ϕ(f(x)− f∗) for any x ∈ {x : 0 < f(x)− f∗ ≤ ξ} and
ϕ satisfies sϕ′(s) ≥ θϕ(s). By Proposition 10, we have

ϕ′(f(x)− f∗)‖∂f(x)‖2 ≥ θ,
i.e.,

c‖∂f(x)‖2 ≥ (f(x)− f∗)1−θ. (13)
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When θ = 1, we have ‖∂f(x)‖2 ≥ 1/c for x 6∈ Ω∗. As a result, when θ ∈ (0, 1),

D(x,Ω∗) ≤ c(f(x)− f∗)θ ≤ c
1

1−θ ‖∂f(x)‖
θ

1−θ
2 .

and when θ = 1,

D(x,Ω∗) ≤ c(f(x)− f∗) ≤ c2ξ‖∂f(x)‖2.

Corollary 2. Let F (x) = f(x) + g(x). Assume f(x) is L-smooth. For any x,y and 0 < η ≤ 1/L,
we have

η

2
‖Gη(y)‖22 ≤ F (y)− F (y+

η ) ≤ F (y)−min
x
F (x). (14)

Proof. The proof is immediate by employing the convexity of F and Proposition 6.

Lemma 3. By running the ADG (Algorithm 1) for minimizing Fδ(x) = f(x) + gδ(x) with an initial
solution x0, where gδ(x) = g(x) + δ

2‖x− x0‖22, then for any x ∈ Rd and t ≥ 0,

Fδ(xt+1)− Fδ(x) ≤ L

2
‖x0 − x‖22

[
1 +

√
δ

2L

]−2t
,

and F (xt+1) ≤ F (x0). If t ≥
√

L
2δ log

(
L
δ

)
, we have ‖xt+1 − x0‖2 ≤

√
2‖x0 − x∗‖2.

Proof. Applying Proposition 5 to Fδ(x) yields

F (xt+1)− F (x) +
δ

2
‖xt+1 − x0‖22 ≤

δ

2
‖x− x0‖22 +

L

2
‖x0 − x‖22

[
1 +

√
δ

2L

]−2t
. (15)

Then F (xt+1) − F (x0) ≤ 0, and choose x = x∗ in the inequality (15), where x∗ ∈ Ω∗, then we
have

‖xt+1 − x0‖22 ≤ ‖x0 − x∗‖22 +
L

δ
‖x0 − x∗‖22

[
1 +

√
δ

2L

]−2t
.

Under the condition t ≥
√

L
2δ log

(
L
δ

)
we have ‖xt+1 − x0‖2 ≤

√
2‖x0 − x∗‖2.

Lemma 4 (Perturbation of a Strongly Convex Problem). Let h(x) be a σ-strongly convex function,
x∗a and x∗b be the optimal solutions to the following problems.

x∗a = min
x∈Rd

a>x + h(x).

x∗b = min
x∈Rd

b>x + h(x).

Then

‖x∗a − x∗b‖2 ≤
2‖a− b‖2

σ
.

Proof. Let Ha(x) = h(x) + a>x and Hb(x) = h(x) + b>x. By the strong convexity of h(x), we
have

σ

2
‖x∗a − x∗b‖22 ≤ Ha(x∗b)−Ha(x∗a) = Hb(x

∗
b) + (a− b)>x∗b −Hb(x

∗
a)− (a− b)>x∗a

≤ (a− b)>(x∗b − x∗a) ≤ ‖x∗a − x∗b‖2‖a− b‖2,

where we use the fact Hb(x
∗
b) ≤ Hb(x

∗
a). From the above inequality, we can get ‖x∗a − x∗b‖2 ≤

2‖a−b‖2
σ .
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4 Proofs

A Proof of Theorem 1

Proof. Divide the whole FOR loop of PG into K stages, denote tk by the number of iterations in the
k-th stage, and denote xk by the updated x at the end of the k-th stage, where k = 1, . . .K. Define
εk := ε0

2k
.

Choose tk = dc2Lε2θ−1k−1 e, and we will prove F (xk)− F∗ ≤ εk by induction. Suppose F (xk−1)−
F∗ ≤ εk−1, we have xk−1 ∈ Sε0 . According to Proposition 7, at the k-th stage, we have

F (xk)− F∗ ≤
L‖xk−1 − x∗k−1‖22

2tk
,

where x∗k−1 ∈ Ω∗, the closest point to xk−1 in the optimal set. By the HEB condition, we have

F (xk)− F∗ ≤
c2Lε2θk−1

2tk
.

Since tk ≥ c2Lε2θ−1k−1 , we have F (xk)− F∗ ≤ εk. The total number of iterations is

K∑
k=1

tk ≤ O(c2L

K∑
k=1

ε2θ−1k−1 ).

From the above analysis, we see that after each stage, the optimality gap decreases by half, so taking
K = dlog2

ε0
ε e guarantees F (xk)− F∗ ≤ ε.

If θ > 1/2, the iteration complexity is O(c2Lε2θ−10 ). To see this, if we plug in the definition of εk
into the total number of iterations, and we can get O(c2Lε2θ−10

∑K
k=1

1
2(2θ−1)(k−1) ) = O(c2Lε2θ−10 ).

If θ = 1/2, the iteration complexity is O(c2L log ε0
ε ). If θ < 1/2, the iteration complexity is

K∑
k=1

tk ≤ O(c2L

K∑
k=1

(
ε0

2k−1
)2θ−1) = O(c2L/ε1−2θ).

B Proof of Theorem 2

Proof. Similar to the proof of Theorem 1, we will prove by induction that F (xk)− F∗ ≤ εk , ε0
2k

.
Assume that F (xk−1)− F∗ ≤ εk−1. Hence, xk−1 ∈ Sε0 . Then according to Proposition 8 and the
HEB condition, we have

F (xk)− F∗ ≤
2c2Lε2θk−1
(tk + 1)2

.

Since tk ≥ 2c
√
Lε

θ−1/2
k−1 , we have

F (xk)− F∗ ≤
εk−1

2
= εk.

After K stages, we have F (xK)− F∗ ≤ ε. The total number of iterations is

TK =

K∑
k=1

tk ≤ O(c
√
Lε

θ−1/2
k−1 ).

When θ > 1/2, we have TK ≤ O(c
√
Lε

θ−1/2
0 ). When θ ≤ 1/2, we have

TK ≤ O
(

max{c
√
L log(ε0/ε), c

√
L/ε1/2−θ}

)
.
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C Proof of Theorem 3

Proof. By the update of PG with option II and Corollary 2, we have

F (xτ )− F (xτ+1) ≥ 1

2L
‖G(xτ )‖22.

Let t = 2j. Summing over τ = j, . . . , t gives

F (xj)− F (xt+1) ≥ 1

2L

t∑
τ=j

‖G(xτ )‖22.

Since ‖G(xτ )‖2 ≥ min1≤τ≤t ‖G(xτ )‖2 and F (xt+1) ≥ F∗, then we have

j

2L
min

1≤τ≤t
‖G(xτ )‖22 ≤ F (xj)− F∗.

Hence,

min
1≤τ≤t

‖G(xτ )‖22 ≤
2L

j
(F (xj)− F∗). (16)

We consider three scenarios of θ.

(I). If θ > 1/2, according to Theorem 1, we know that F (xj)−F∗ converges to 0 in j = O(c2Lε2θ−10 )

steps, so min1≤τ≤t ‖G(xτ )‖22 converges to 0 in t = O(c2Lε2θ−10 ) steps.

(II). If θ = 1/2, let j = max(k, 2L) and t = 2j, where k = ac2L log ( ε0ε2 ), and a is a constant hided
in the big O notation. According to Theorem 1, we have

F (xk)− F∗ ≤ ε2, (17)

then the inequality (16), (17) and the choice of j, k yield

min
1≤τ≤t

‖G(xτ )‖22 ≤
2L

j
(F (xj)− F∗) ≤ ε2,

so we know that t = O(c2L log ( ε0ε )).

(III). If θ < 1/2, let j be an index such that F (xj) − F∗ ≤ ε′. We can set j = 2ac2L/ε′
1−2θ and

thus t = 4ac2L/ε′
1−2θ, and then we have

min
1≤τ≤t

‖G(xτ )‖22 ≤
2L

j
(F (xj)− F∗) ≤

ε′ε′
1−2θ

ac2
=
ε′
2−2θ

ac2
.

Let ε′ = c
1

1−θ ε
1

(1−θ) , we have min1≤τ≤t ‖G(xτ )‖22 ≤ ε2/a. We can conclude t = O(c
1

1−θL/ε
1−2θ
1−θ ).

By combining the three scenarios, we can complete the proof.

D Proof of Lemma 1

Proof. The conclusion is trivial when x ∈ Ω∗, so we only need to consider the case when x /∈ Ω∗.
Define PηF (x) = arg min

u

1
2‖u− x‖22 + ηF (u).

We first prove for θ ∈ (0, 1/2]. It is not difficult to see that 1
η (x− PηF (x)) ∈ ∂F (PηF (x)).

D(x,Ω∗) ≤ ‖x− PηF (x)‖2 +D(PηF (x),Ω∗)

≤ ‖x− PηF (x)‖2 + c
1

1−θ ‖∂F (PηF (x))‖
θ

1−θ
2

≤ ‖x− PηF (x)‖2 +
c

1
1−θ

η
θ

1−θ
‖x− PηF (x)‖

θ
1−θ
2

≤ η(1 + Lη)‖Gη(x)‖2 + c
1

1−θ (1 + ηL)
θ

1−θ ‖Gη(x)‖
θ

1−θ
2 ,
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where the second inequality uses the result in Lemma 2 and the last inequality follows Proposition 11,
which asserts that ‖x − PηF (x)‖2 ≤ η(1 + Lη)‖Gη(x)‖2. Plugging the value η = 1/L, we have
the result.

Next, we prove for θ ∈ (1/2, 1]. For any x ∈ Sξ, we have PηF (x) ∈ Sξ and

D(PηF (x),Ω∗) ≤ c(F (PηF (x))− F∗)θ

= c(F (PηF (x))− F∗)1−θ(F (PηF (x))− F∗)2θ−1

≤ c2‖∂F (PηF (x))‖2(F (x)− F∗)2θ−1

≤ c2‖∂F (PηF (x))‖2ξ2θ−1

≤ c2(1 + Lη)‖Gη(x)‖2ξ2θ−1

≤ 2c2ξ2θ−1‖Gη(x)‖2,
where the second inequality holds because the inequality (13) holds for any θ ∈ (0, 1]
(by Lemma 2), F (PηF (x)) ≤ F (x) ≤ ξ, the fourth inequality holds since ‖Gη(x)‖2 ≥

1
1+Lη ‖(x− PηF (x))/η‖2 ≥

1
1+Lη‖∂F (PηF (x))‖2 (by Proposition 11), and the last inequality

holds by taking η = 1/L.

So for θ ∈ (1/2, 1] and η = 1/L, we have

D(x,Ω∗) ≤ ‖x− PηF (x)‖2 +D(PηF (x),Ω∗)

≤ (
2

L
+ 2c2ξ2θ−1)‖G(x)‖2.

E Proof of Theorem 5

Proof. Let x∗δ be the optimal solution to minx∈Rd Fδ(x) and x∗ denote an optimal solution to
minx∈Rd F (x). Thanks to the strong convexity of Fδ(x), we have Fδ(x∗)−Fδ(x∗δ) ≥ δ

2‖x∗−x∗δ‖22.
Then

F (x∗)− F (x∗δ) + δ/2‖x∗ − x0‖22 − δ/2‖x∗δ − x0‖22 ≥ δ/2‖x∗ − x∗δ‖22.
Since F (x∗)− F (x∗δ) ≤ 0, it implies ‖x∗δ − x0‖2 ≤ ‖x∗ − x0‖2. By Corollary 2, we have

η

2
‖Gδη(xt+1)‖22 ≤ Fδ(xt+1)− Fδ(x∗δ) ≤

L

2
‖x0 − x∗δ‖22

[
1 +

√
δ/(2L)

]−2t
,

where η ≤ 1/(L+ δ) and Gδη is a proximal gradient of Fδ(x) defined as Gδη(x) = 1
η

(
x− x+

η (δ)
)

and

x+
η (δ) = arg min

y

{
η(∇f(x) + δ(x− x0))>(y − x) + ηg(y) +

1

2
‖y − x‖22

}
.

Recall that x+
η = Pηg(x−η∇f(x)). It is not difficult to derive that ‖x+

η −x+
η (δ)‖2 ≤ 2ηδ‖x−x0‖2

(by Lemma 4). Since Gη(x) = 1
η (x− x+

η ), we have

‖Gη(x)‖2 ≤ ‖Gδη(x)‖2 + ‖x+
η − x+

η (δ)‖2/η ≤ ‖Gδη(x)‖2 + 2δ‖x− x0‖2.

Let η = 1/(L+ δ), we have

‖Gη(xt+1)‖2 ≤ 2δ‖xt+1 − x0‖2 +
√
L/η‖x0 − x∗δ‖2

[
1 +

√
δ/(2L)

]−t
≤ 2
√

2δ‖x∗ − x0‖2 +
√
L(L+ δ)‖x0 − x∗‖2

[
1 +

√
δ/(2L)

]−t
.

where we use the inequality ‖x∗δ − x0‖2 ≤ ‖x∗ − x0‖2. Since ‖Gη(x)‖2 is a monotonically
decreasing function of η [7] , then ‖G(x)‖2 ≤ ‖Gη(x)‖2 for η = 1/(L+ δ) ≤ 1/L. Then

‖G(xt+1)‖2 ≤
√
L(L+ δ)‖x0 − x∗‖2

[
1 +

√
δ/(2L)

]−t
+ 2
√

2δ‖x0 − x∗‖2.
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F Proof of Theorem 6

Proof. • We first prove the case when θ ∈ (0, 1/2]. We can easily induce that F (xk)− F∗ ≤
ε0 from Lemma 3. Let tk = d

√
2L
δk

log

√
L(L+δk)

δk
e. Applying Theorem 5 to the k-the stage

of adaAGC and using Lemma 1, we have

‖G(xktk+1)‖2 ≤ (
√
L(L+ δk)

[
1 +

√
δk
2L

]−tk
+ 2
√

2δk)

×(
2

L
‖G(xk−1)‖2 + c

1
(1−θ) 2

θ
(1−θ) ‖G(xk−1)‖

θ
(1−θ)
2 ),

(18)

Note that at each stage, we check two conditions (i) ‖G(xkτ+1)‖2 ≤ εk−1/2 and (ii) τ = tk.
If the first condition satisfies first, we proceed to the next stage (k increases by 1). If the
second condition satisfies first, then we can claim that ce ≤ c and then we increase ce by a
factor γ > 1 and then restart the same stage. To verify the claim, assume ce > c and the
second condition satisfies first, i.e., τ = tk but ‖G(xkτ+1)‖2 > εk−1/2. We will deduce a
contradiction. To this end, we use (18) and note the value of tk, we have

‖G(xktk+1)‖2 ≤
(
δk + 2

√
2δk

)
× (

2

L
‖G(xk−1)‖2 + c

1
(1−θ) 2

θ
(1−θ) ‖G(xk−1)‖

θ
(1−θ)
2 )

≤ 4δk(
2

L
‖G(xk−1)‖2 + c

1
(1−θ) 2

θ
(1−θ) ‖G(xk−1)‖

θ
(1−θ)
2 )

≤ εk−1
4

+
c

1
(1−θ) 2

θ
(1−θ) εk−1

4c
1

(1−θ)
e 2

θ
(1−θ)

≤ εk−1/2 = εk,

where the last inequality follows that ce > c. This contradicts to the assumption that
‖G(xkτ+1)‖2 > εk−1/2, which verifies our claim.

Since ce is increased by a factor γ > 1 whenever condition (ii) holds first, so within at
most dlogγ(c/c0)e times condition (ii) holds first. Similarly with at most dlog2 ε0/εe times
that condition (i) holds first before the algorithm terminates. We let Tk denote the total
number of iterations in order to make condition (i) satisfies in stage k. First, we can see

that ce ≤ γc. Let δ′k = min( L32 ,
εpk−1

16(γc2θ)1/(1−θ)
) ≤ δk and t′k = d

√
2L
δ′k

log

√
L(L+δ′k)

δ′k
e. Let

sk denote the number of cycles in each stage in order to have ‖G(xkτ+1)‖2 ≤ εk. Then
sk ≤ logγ(c/c0) + 1. The total number of iterations of across all stages is bounded by∑K
k=1 sktk, which is bounded by

K∑
k=1

sktk ≤ (1 + logγ(c/c0))

K∑
k=1

t′k.

Plugging the value of t′k, we can deduce the iteration complexity in Theorem 6 for θ ∈
(0, 1/2].

• Now we consider the proof when θ ∈ (1/2, 1]. Similar to the proof for θ ∈ (0, 1/2], we

can easily induce that F (xk)− F∗ ≤ ε0 from Lemma 3. Let tk = d
√

2L
δk

log

√
L(L+δk)

δk
e.

Applying Theorem 5 to the k-the stage of adaAGC and using Lemma 1, we have

‖G(xktk+1)‖2 ≤ (
√
L(L+ δk)

[
1 +

√
δk
2L

]−tk
+ 2
√

2δk)× (
2

L
+ 2c2ξ2θ−1)‖G(xk−1)‖2.

(19)
Note that at each stage, we check two conditions (i) ‖G(xkτ+1)‖2 ≤ εk−1/2 and (ii) τ = tk.
If the first condition satisfies first, we proceed to the next stage (k increases by 1). If the
second condition satisfies first, then we can claim that ce ≤ c and then we increase ce by a
factor γ > 1 and then restart the same stage. To verify the claim, assume ce > c and the
second condition satisfies first, i.e., τ = tk but ‖G(xkτ+1)‖2 > εk−1/2. We will deduce a
contradiction. To this end, we use (19) and note the value of tk, we have

‖G(xktk+1)‖2 ≤ 4δk(
2

L
+ 2c2ξ2θ−1)‖G(xk−1)‖2 ≤

εk−1
4

+
8c2ξ2θ−1

32c2eε
2θ−1
0

εk−1 ≤
εk−1

2
= εk,
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where the last inequality follows that ce > c and ξ ≤ ε0. This contradicts to the assumption
that ‖G(xkτ+1)‖2 > εk−1/2, which verifies our claim.

Since ce is increased by a factor γ > 1 whenever condition (ii) holds first, so within at
most dlogγ(c/c0)e times condition (ii) holds first. Similarly with at most dlog2 ε0/εe times
that condition (i) holds first before the algorithm terminates. We let Tk denote the total
number of iterations in order to make condition (i) satisfies in stage k. First, we can see

that ce ≤ γc. Let δ′k = min( L32 ,
1

32(γc)2ε2θ−1
0

) ≤ δk and t′k = d
√

2L
δ′k

log

√
L(L+δ′k)

δ′k
e. Let

sk denote the number of cycles in each stage in order to have ‖G(xkτ+1)‖2 ≤ εk. Then
sk ≤ logγ(c/c0) + 1. The total number of iterations of across all stages is bounded by∑K
k=1 sktk, which is bounded by

K∑
k=1

sktk ≤ (1 + logγ(c/c0))

K∑
k=1

t′k.

Plugging the value of t′k, we can deduce the iteration complexity in Theorem 6 for θ ∈
(1/2, 1].

G Proof of Theorem 8

First, it is easy to see that in either case, the HEB condition of F (·) with θ = 1/2 and µ =
√

2/µ
holds. Next, we prove the following lemma.
Lemma 5. Suppose either f(x) or g(x) satisfies the following property: for any x ∈ dom(F ), there
exists µ > 0 such that

h(x∗) ≥ h(x) + ∂h(x)>(x∗ − x) +
µ

2
‖x− x∗‖22, (20)

where x∗ is the closest optimal solution to x. Then we have the following:

F (x+)− F (x∗) ≤ O(1/µ)‖G(x)‖22
where

x+ = arg min
u∈Rd

[
f(x) + 〈∇f(x),u− x〉+

L

2
‖u− x‖22 + g(u)

]
,

G(x) = L(x− x+),

Proof. Define φ(u) = f(x) + 〈∇f(x),u− x〉+ L
2 ‖u− x‖22 + g(u) and then ∂φ(u) = ∇f(x) +

L(u− x) + ∂g(u). By the first-order optimality condition of x+, for all u ∈ dom(F ) there exists
v+ ∈ ∂g(x+):

〈∇f(x) + v+ −G(x),u− x+〉 ≥ 0,

Without loss of generality, we first assume f(·) and g(·) both satisfy (20) with µf ≥ 0 and µg ≥ 0.
When µf = 0 or µg = 0, the inequality is automatically satisfied. Then we have

f(x∗)−
µf
2
‖x∗ − x‖22 ≥ f(x) + 〈∇f(x),x∗ − x〉

= f(x) + 〈∇f(x),x+ − x〉+ 〈∇f(x),x∗ − x+〉
≥ f(x) + 〈∇f(x),x+ − x〉+ 〈G(x),x∗ − x+〉+ 〈v+,x+ − x∗〉

≥ f(x) + 〈∇f(x),x+ − x〉+ 〈G(x),x∗ − x+〉+ g(x+)− g(x∗) +
µg
2
‖x+ − x∗‖2

= φ(x+)− L

2
‖x− x+‖22 + 〈G(x),x∗ − x+〉+

µg
2
‖x+ − x∗‖2 − g(x∗)

= φ(x+)− 1

2L
‖G(x)‖22 + 〈G(x),x∗ − x+〉+

µg
2
‖x+ − x∗‖2 − g(x∗),

where the second inequality uses the optimality condition of x+ and the third inequality uses the
condition (20) of g(·). Next, we consider two cases.
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Case I: µg > 0 and µf ≥ 0 (i.e., g(·) satisfies (20)). We have

f(x∗) ≥ φ(x+)− 1

2L
‖G(x)‖22 −

1

2µg
‖G(x)‖22 −

µg
2
‖x∗ − x+‖22 +

µg
2
‖x+ − x∗‖2 − g(x∗)

As a result,

F (x∗) ≥ φ(x+)− 1

2L
‖G(x)‖22 −

1

2µg
‖G(x)‖22 ≥ F (x+)− 1

2L
‖G(x)‖22 −

1

2µg
‖G(x)‖22

Thus

F (x+)− F (x∗) ≤
L+ µg
2Lµg

‖G(x)‖22

Case II: µf > 0 and µg ≥ 0 (i.e., f(·) satisfies (20)). Then we have

f(x∗) ≥ φ(x+)− 1

2L
‖G(x)‖22 + 〈G(x),x∗ − x+〉+

µf
2
‖x∗ − x‖22 − g(x∗)

≥ φ(x+)− 1

2L
‖G(x)‖22 + 〈G(x),x∗ − x〉+ 〈G(x),x− x+〉+

µf
2
‖x∗ − x‖22 − g(x∗)

≥ φ(x+) +
1

2L
‖G(x)‖22 + 〈G(x),x∗ − x〉+

µf
2
‖x∗ − x‖22 − g(x∗)

≥ φ(x+) +
1

2L
‖G(x)‖22 −

1

2µf
‖G(x)‖22 −

µf
2
‖x∗ − x‖22 +

µf
2
‖x∗ − x‖22 − g(x∗)

≥ F (x+)− 1

2µf
‖G(x)‖22 − g(x∗)

Thus,

F (x+)− F (x∗) ≤
1

2µf
‖G(x)‖22

In either case, we have F (x+)− F (x∗) ≤ O(1/µ)‖G(x)‖22.

Finally, we see that in order to guarantee F (x+)−F (x∗) ≤ ε, we need to have ‖G(x)‖2 ≤ O(
√
µε).
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