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1 Proof of Corollary 1

Corollary 1. Suppose Assumption 1.c and 1.d hold. Let x̂t be the output of ADMM. For any x ∈ Ω,
we have

F (x̂t)− F (x) ≤ ‖x− x0‖2G
2t

+
β‖A‖22‖x− x0‖22

2t
+

ρ2

2βt
.

Proof. Let y = Ax, we have

(ût − u)>F(u) = (x̂t − x)>(−A>λ) + (ŷt − y)>λ+ (λ̂t − λ)>(Ax− y)

= −λ>(Ax̂t − ŷt) + λ̂>t (Ax− y)

= −λ>(Ax̂t − ŷt).

Then following Proposition 1, we have

f(x̂t) + ψ(ŷt)− [f(x) + ψ(Ax)]− λ>(Ax̂t − ŷt) ≤
‖x− x1‖2G

2t
+
β‖A(x− x1)‖22

2t
+
‖λ− λ1‖22

2βt
.

Since the above inequality holds for any λ ∈ Rm, we can maximize both sides over ‖λ‖2 ≤ ρ, and
by noting λ1 = 0 we have

f(x̂t) + ψ(ŷt)− [f(x) + ψ(Ax)] + ρ‖Ax̂t − ŷt‖2 ≤
‖x− x1‖2G

2t
+
β‖A(x− x1)‖22

2t
+

ρ2

2βt
.

By Assumption 1.c, we have

ψ(Ax̂t)− ψ(ŷt) ≤ ρ‖Ax̂t − ŷt‖2.
Thus,

f(x̂t) + ψ(Ax̂t)− [f(x) + ψ(Ax)] ≤ ‖x− x1‖2G
2t

+
β‖A(x− x1)‖22

2t
+

ρ2

2βt
.

which completes the proof by noting that F (x) = f(x) + ψ(Ax).

2 Proof of Theorem 2

Theorem 2. Suppose Assumption 1 holds and F (x) obeys a local error bound condition on the ε-

sublevel. Let β1 = 2ρε1−θ

‖A‖2ε0 , K = dlog2(ε0/ε)e and t =
⌈

8ρ‖A‖2 max(1,c2)
ε1−θ

⌉
, we have F (xK)− F∗ ≤

2ε. The iteration complexity of LA-ADMM for achieving an 2ε-optimal solution is Õ(1/ε1−θ).
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To prove the theorem, we first present a lemma due to [2].

Lemma 1. [2] For any x ∈ Ω and ε > 0, we have

‖x− x†ε‖2 ≤
dist(x†ε ,Ω∗)

ε
(F (x)− F (x†ε))

where x†ε ∈ Sε is the closest point in the ε-sublevel set to x.

Proof of Theorem 2. Here we only prove for the case of G = γI − βA>A with γ = β‖A‖22.
Following the same analysis, we can easily prove the same result for using G = 0. Let x†k−1,ε denote

the closest point to xk−1 in Sε. Define εk = ε0
2k

. Then βk = ρε1−θ

‖A‖2εk and γk = βk‖A‖22 = ρε1−θ‖A‖2
εk

.
We prove this by induction. Assume F (wk−1)− F∗ ≤ εk−1 + ε, which trivally holds for k = 1 due
to Assumption 1.a. We apply Corollary 1 to the k-th stage of LA-ADMM. For any x ∈ Ω, we have

F (xk)− F (x) ≤ γk‖x− xk−1‖22
2t

+
βk‖A‖22‖x− xk−1‖22

2t
+

ρ2

2βkt
.

Let x = x†k−1,ε so that we have

F (xk)− F (x†k−1,ε) ≤
γk‖x†k−1,ε − xk−1‖22

2t
+
βk‖A‖22‖x

†
k−1,ε − xk−1‖22

2t
+

ρ2

2βkt
. (1)

We consider two scenarios of xk−1. First, suppose xk−1 ∈ Sε so that xk−1 = x†k−1,ε. Then

F (xk)− F (x†k−1,ε) ≤
ρ2

2βkt
≤ ρ2‖A‖2εkε1−θ

2ρε1−θ8ρ‖A‖2
=
εk
16
,

which implies

F (xk)− F∗ ≤ F (x†k−1,ε)− F∗ + εk ≤ ε+ εk.

Secondly, suppose xk−1 6∈ Sε so that F (x†k−1,ε) = F∗ + ε. By Lemma 1 and the local error bound
condition of F , we have

‖xk−1 − x†k−1,ε‖2 ≤
dist(x†k−1,ε,Ω∗)

ε
(F (xk−1)− F (x†k−1,ε)) ≤

cεθ

ε
εk−1 =

cεk−1

ε1−θ
.

where we use the assumption that F (xk−1) − F∗ ≤ ε + εk−1 and the fact F (x†k−1,ε) = F∗ + ε.
Plugging the above bound into (1) we have

F (xk)− F (x†k−1,ε) ≤
βk‖A‖22c2ε2k−1

2tε2(1−θ) +
βk‖A‖22c2ε2k−1

2tε2(1−θ) +
ρ2

2βkt

=
ρε1−θ‖A‖22c2ε2k−1

‖A‖2εktε2(1−θ) +
ρ2εk‖A‖2
2ρε1−θt

.

Since t ≥ 8ρ‖A‖2 max(c2,1)
ε1−θ

, we have

F (xk)− F (x†k−1,ε) ≤
εk
2

+
εk
16
≤ εk,

which implies

F (xk)− F∗ ≤ εk + ε.

We can finish the proof by the induction up to k = K = dlog2(ε0/ε)e, which yields F (xK)− F∗ ≤
2ε.
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3 Proof of Corollary 3

Corollary 3. Suppose Assumption 1.c, 1.d and Assumption 2 hold. Let Gτ = γI − ηβA>A � I in
Algorithm 3. For any x ∈ Ω,

F (x̂t)− F (x) ≤ηR
2

2
+
γ‖x1 − x‖22

2ηt
+

(
β‖A‖22‖x1 − x‖22

2t
+

ρ2

2βt

)
+
ρ‖A‖2‖x1 − xt+1‖2

t

+
1

t

t∑
τ=1

(E[gτ ]− gτ )>(xτ − x).

To prove this Corollary, we first present a theorem whose proof will be presented later.
Theorem 5. Suppose Assumption 1.c and 1.d hold. By running Algorithm 3 with t iterations, for any
x ∈ Ω we hae

F (x̂t)− F (x) ≤ η

t

t∑
τ=1

‖gτ‖2G−1
τ

2
+

1

ηt

t∑
τ=1

(‖xτ − x‖2Gτ
2

−
‖xτ+1 − x‖2Gτ

2

)

+

(
β‖A(x1 − x)‖22

2t
+

ρ2

2βT

)
+
ρ‖A(x1 − xT+1)‖2

t
+

1

t

t∑
τ=1

(E[gτ ]− gτ )>(xτ − x)

Proof of Corollary 3. By Theorem 5, we have

F (x̂t)− F (x) ≤ η

t

t∑
τ=1

‖gτ‖2G−1
τ

2
+

1

ηt

t∑
τ=1

(‖xτ − x‖2Gτ
2

−
‖xτ+1 − x‖2Gτ

2

)

+

(
β‖A‖22‖x1 − x‖22

2t
+

ρ2

2βt

)
+
ρ‖A‖2‖x1 − xt+1)‖2

t
+

1

t

t∑
τ=1

(E[gτ ]− gτ )>(xτ − x). (2)

Since Gτ = G>τ and Gτ � I , we have G−1
τ � I so that the first term in the R.H.S. of (2) is bounded

by

η

t

t∑
τ=1

‖gτ‖2G−1
τ

2
≤ η

t

t∑
τ=1

‖gτ‖22
2
≤ η

t

t∑
τ=1

R2

2
=
ηR2

2
. (3)

On the other hand,

1

ηt

t∑
τ=1

(‖xτ − x‖2Gτ
2

−
‖xτ+1 − x‖2Gτ

2

)
=

1

ηt

(‖x1 − x‖2Gτ
2

−
‖xt+1 − x‖2Gτ

2

)
≤
‖x1 − x‖2Gτ

2ηt
≤ γ‖x1 − x‖22

2ηt
. (4)

Plugging inequalities (3) and (4) into (2), we complete the proof.

4 Proof of Theorem 4

Theorem 4. Suppose Assumptions 1 and 2 hold and F (x) obeys the local error bound condition
on Sε. Given δ ∈ (0, 1), let δ̃ = δ/K, K = dlog2( ε0ε )e, η1 = ε0

6R2 , β1 = 6R2

‖A‖22ε0
, D1 ≥ cε0

ε1−θ
,

t be the smallest integer such that t ≥ max{ 6912R2 log(1/δ̃)D2
1

ε20
, 12ρ‖A‖2D1

ε0
,
ρ2‖A‖22
R2 } and Gτ =

2I − η1β1A
>A � I . Then LA-SADMM guarantees that, with a probability 1− δ, we have F (xK)−

F∗ ≤ 2ε. The iteration complexity of LA-SADMM for achieving an 2ε-optimal solution with a high
probability 1− δ is Õ(log(1/δ)/ε2(1−θ)) provided D1 = O( cε0

ε(1−θ)
).

To prove Theorem 4, we first bound the last term of the upper bound in Corollary 3 using the following
lemma whose proof can be found in [1] (in the proof of their Lemma 10).
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Lemma 2. Suppose Assumption 2 holds. Given xk−1, let x†k−1,ε be the closest solution to xk−1

in the ε-sublevel set Sε. Let Dk be the upper bound of ‖xk−1 − x†k−1,ε‖2. Apply t-iterations of
xkτ+1 = ΠΩ∩B(xk−1,Dk)[x

k
τ − ηgkτ ], where E[gkτ ] ∈ ∂f(xkτ ). For any δ ∈ (0, 1), with a probability

of at least 1− δ, we have

1

t

t∑
τ=1

(E[gkτ ]− gkτ )>(x†k−1,ε − xkτ ) ≤
4RDk

√
3 log(1/δ)√
t

.

Proof of Theorem 4. To prove the theorem, we apply Corollary 3 to each stage of LA-SADMM with
x = x†k−1,ε, where x†k−1,ε denotes the closest solution to xk−1 in the ε-sublevel set. We will prove
this by induction. Define εk = ε0

2k
. Let us assume that F (xk−1)− F∗ ≤ εk−1 + ε. First, we need to

show that x†k−1,ε ∈ Ω ∩ B(xk−1, Dk). It suffices to show ‖x†k−1,ε − xk−1‖2 ≤ Dk, which is true
because

‖x†k−1,ε − xk−1‖2 ≤
dist(x†k−1,ε,Ω∗)

ε
(F (xk−1)− F (x†k−1,ε))

≤
dist(x†k−1,ε,Ω∗)

ε
[εk−1 + ε− ε] =

dist(x†k−1,ε,Ω∗)εk−1

ε

≤
c(F (x†k−1,ε)− F∗)θεk−1

ε
≤ cεθεk−1

ε
=
cεk−1

ε1−θ
≤ Dk.

Then, by Corollary 3 and Lemma 2, with a probability 1− δ̃, we have

F (xk)− F (x†k−1,ε) ≤
ηkR

2

2
+
‖xk−1 − x†k−1,ε‖22

2ηkt
+

(
βk‖A‖22‖xk−1 − x†k−1,ε‖22

2t
+

ρ2

2βkt

)

+
ρ‖A‖2‖xk−1 − xkt+1‖2

t
+

4RDk

√
3 log(1/δ̃)
√
t

≤ ηkR
2

2
+

c2ε2k−1

2ηktε2(1−θ) +
βk‖A‖22c2ε2k−1

2tε2(1−θ) +
ρ2

2βkt

+
ρ‖A‖2Dk

t
+

4RDk

√
3 log(1/δ̃)
√
t

. (5)

where the second inequality is from (5) and the fact that xkt+1 ∈ B(xk−1, Dk). Setting ηk = εk
3R2 ,

βk = 3R2

‖A‖22εk
and t ≥ max

{
ρ2‖A‖22
R2 , 12ρ‖A‖2D1

ε0
,

6912R2 log(1/δ̃)D2
1

ε20

}
in the right hand side of the

inequality above, we have

F (xk)− F (x†k−1,ε) ≤
εk
6
× 6 = εk.

Hence, conditioned on F (xk−1)− F∗ ≤ εk−1 + ε, we have
F (wk)− F∗ ≤ εk + ε

with a probability of 1− δ̃. By induction, with a probability of (1− δ̃)K ≥ 1− δ, we have
F (wK)− F∗ ≤ εK + ε ≤ 2ε.

5 Proof of Theorem 5

Proof. To prove the theorem, we first introduce some notations and technical lemmas. Define

u =

(
x
y
λ

)
, F(u) =

 −A>λ
λ

Ax− y

 ,

∆t = (∂f(xt)− gt)
>(xt − x), ûT =

1

T

T∑
t=1

ut+1.
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Lemma 3. Let G � 0 and w+ be given by

w+ = arg min
x∈Ω

h(x) +
1

2η
‖x−w‖2G (6)

Then for any x ∈ Ω

∇h(w+)>(w+ − x) ≤ 1

2η

(
‖w − x‖2G − ‖w+ − x‖2G − ‖w+ −w‖2G

)
Proof. By the optimality condition, we have

(x−w+)>
(
∇h(w+) +

1

η
G(w+ −w)

)
≥ 0, ∀x ∈ Ω.

It is easy to verify that
1

η
(x−w+)>G(w+ −w) =

1

2η

(
‖w − x‖2G − ‖w+ − x‖2G − ‖w+ −w‖2G

)
.

We now begin to prove Theorem 5. By the convexity of f(x), for any x ∈ Ω, we have

f(xt)− f(x) ≤ ∂f(xt)
>(xt − x) = g>t (xt − x) + ∆t = g>t (xt+1 − x) + g>t (xt − xt+1) + ∆t.

(7)

Applying Lemma 3 to

xt+1 = arg min
x∈Ω

g>t x− x>A>λt +
β

2
‖Ax− yt‖22 +

1

2η
‖x− xt‖2Gt

leads to(
gt −A>λt + βA>(Axt+1 − yt)

)>
(xt+1 − x) ≤ 1

2η

(
‖xt − x‖2Gt − ‖xt+1 − x‖2Gt − ‖xt+1 − xt‖2Gt

)
.

which further implies

g>t (xt+1 − x) ≤ 1

2η

(
‖xt − x‖2Gt − ‖xt+1 − x‖2Gt − ‖xt+1 − xt‖2Gt

)
− (xt+1 − x)>A>(β(Axt+1 − yt)− λt).

Then, combining the inequality above with (7), we have

f(xt)− f(x)− (xt+1 − x)>A>λt+1

≤ 1

2η

(
‖xt − x‖2Gt − ‖xt+1 − x‖2Gt − ‖xt+1 − xt‖2Gt

)
− (xt+1 − x)>A>(β(Axt+1 − yt)− λt)

− (xt+1 − x)>A>λt+1 + g>t (xt − xt+1) + ∆t

=
1

2η

(
‖xt − x‖2Gt − ‖xt+1 − x‖2Gt − ‖xt+1 − xt‖2Gt

)
− (xt+1 − x)>A>(β(Axt+1 − yt)− λt)

− (xt+1 − x)>A>(λt − β(Axt+1 − yt+1)) + g>t (xt − xt+1) + ∆t

=
1

2η

(
‖xt − x‖2Gt − ‖xt+1 − x‖2Gt − ‖xt+1 − xt‖2Gt

)
− (xt+1 − x)>A>β(yt+1 − yt) +

‖xt − xt+1‖2Gt
2η

+
η

2
‖gt‖2G−1

t
+ ∆t

=
1

2η

(
(‖xt − x‖2Gt − ‖xt+1 − x‖2Gt

)
+
η

2
‖gt‖2G−1

t
+ ∆t + (xt+1 − x)>A>β(yt − yt+1).

To handle the last term in the previous inequality, we observe that

(xt+1 − x)>A>β(yt − yt+1) = β(Axt+1 −Ax)>(yt − yt+1)

=
β

2

[
‖Ax− yt‖22 − ‖Ax− yt+1‖22 + ‖Axt+1 − yt+1‖22 − ‖Axt+1 − yt‖22

]
≤ β

2

[
‖Ax− yt‖22 − ‖Ax− yt+1‖22

]
+

1

2β
‖λt+1 − λt‖22.
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Thus we have
f(xt)− f(x)− (xt+1 − x)>A>λt+1

≤ 1

2η

(
(‖xt − x‖2Gt − ‖xt+1 − x‖2Gt

)
+
η

2
‖gt‖2G−1

t
+ ∆t

+
β

2

[
‖Ax− yt‖22 − ‖Ax− yt+1‖22

]
+

1

2β
‖λt+1 − λt‖22.

(8)

Next by the optimality condition of yt+1, there exists ∂ψ(yt+1) such that

(y − yt+1)>(∂ψ(yt+1) + λt − β(Axt+1 − yt+1)) ≥ 0.

Hence,

ψ(yt+1)− ψ(y) ≤ −(y − yt+1)>∂ψ(yt+1) ≤ (y − yt+1)>(λt − β(Axt+1 − yt+1))

= (y − yt+1)>λt+1.
(9)

By the updating rule of λt+1, we have

(λt+1 − λ)>(Axt+1 − yt+1) =
1

β
(λt+1 − λ)>(λt − λt+1)

=
1

2β

(
‖λ− λt‖2 − ‖λ− λt+1‖2 − ‖λt − λt+1‖22

)
.

(10)

Adding the three inequalities in (8), (9) and (10) gives

f(xt)− f(x) + ψ(yt+1)− ψ(y) + (xt+1 − x)>(−A>λt+1) + (yt+1 − y)>λt+1

+ (λt+1 − λ)>(Axt+1 − yt+1) ≤ 1

2η

(
(‖xt − x‖2Gt − ‖xt+1 − x‖2Gt

)
+
η

2
‖gt‖2G−1

t
+ ∆t

+
1

2β

(
‖λ− λt‖2 − ‖λ− λt+1‖2

)
+
β

2

[
‖Ax− yt‖22 − ‖Ax− yt+1‖22

]
,

which can be written as

f(xt)− f(x) + ψ(yt+1)− ψ(y) + (ut+1 − u)>F(ut+1)

≤ 1

2η

(
(‖xt − x‖2Gt − ‖xt+1 − x‖2Gt

)
+
η

2
‖gt‖2G−1

t
+ ∆t +

1

2β

(
‖λ− λt‖2 − ‖λ− λt+1‖2

)
+
β

2

[
‖Ax− yt‖22 − ‖Ax− yt+1‖22

]
.

Taking the summation over t = 1, . . . , T , we have
T∑
t=1

(f(xt)− f(x)) +

T∑
t=1

(ψ(yt+1)− ψ(y)) +

T∑
t=1

(ut+1 − u)>F(ut+1)

≤ 1

2η

T∑
t=1

(
‖xt − x‖2Gt − ‖xt+1 − x‖2Gt

)
+

T∑
t=1

η‖gt‖2G−1
t

2
+

1

2β
‖λ− λ1‖22 +

T∑
t=1

∆t

+
β

2
‖Ax− y1‖22.

By the convexity of f(x) and ψ(y) and the monotonicity of F(·), we have

f(x̂T )− f(x) + ψ(ŷT )− ψ(y) + (ûT − u)>F(ûT )

≤ 1

T

(
T∑
t=1

(f(xt)− f(x)) +

T∑
t=1

(ψ(yt+1)− ψ(y)) +

T∑
t=1

(ut+1 − u)>F(ut+1)

)

≤ 1

2ηT

T∑
t=1

(
‖xt − x‖2Gt − ‖xt+1 − x‖2Gt

)
+

η

2T

T∑
t=1

‖gt‖2G−1
t

+
1

2βT
‖λ− λ1‖22

+
β

2T
‖Ax− y1‖22 +

1

T

T∑
t=1

∆t. (11)
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Due to the fact that

(ûT − u)>F(ûT ) = (x̄T − x)>(−A>λ̂T ) + (ŷT − y)>λ̂T + (λ̂T − λ)(Ax̄T − ŷT )

= λ̂>T (Ax− y)− λ>(Ax̄T − ŷT ) = −λ>(Ax̄T − ŷT ),

we have

max
‖λ‖2≤ρ

(ûT − u)>F(ûT ) = ρ‖Ax̄T − ŷT ‖2,

which, by Assumption 1.c, implies

ψ(Ax̄T )− ψ(ŷT ) ≤ ρ‖Ax̄T − ŷT ‖2 ≤ max
‖λ‖2≤ρ

(ûT − u)>F(ûT ).

According to this inequality and the fact that λ1 = 0, if we fix x and y = Ax but change λ to
maximize both sides of (11) over ‖λ‖2 ≤ ρ, we obtain

f(x̂T )− f(x) + ψ(Ax̄T )− ψ(y)

≤ 1

2ηT

T∑
t=1

(
‖xt − x‖2Gt − ‖xt+1 − x‖2Gt

)
+

η

2T

T∑
t=1

‖gt‖2G−1
t

+
ρ2

2βT

+
β

2T
‖Ax− y1‖22 +

1

T

T∑
t=1

∆t.

Adding ψ(Ax̂T )− ψ(Ax̄T ) to both sides of this inequality leads to

f(x̂T )− f(x) + ψ(Ax̂T )− ψ(y)

≤ 1

2ηT

T∑
t=1

(
‖xt − x‖2Gt − ‖xt+1 − x‖2Gt

)
+

η

2T

T∑
t=1

‖gt‖2G−1
t

+
ρ2

2βT

+
β

2T
‖Ax− y1‖22 +

1

T

T∑
t=1

∆t + ψ(Ax̂T )− ψ(Ax̄T )

≤ 1

2ηT

T∑
t=1

(
‖xt − x‖2Gt − ‖xt+1 − x‖2Gt

)
+

η

2T

T∑
t=1

‖gt‖2G−1
t

+
ρ2

2βT

+
β

2T
‖Ax− y1‖22 +

1

T

T∑
t=1

∆t + ρ‖A(x̄T − x̂T )‖2

≤ 1

2ηT

T∑
t=1

(
‖xt − x‖2Gt − ‖xt+1 − x‖2Gt

)
+

η

2T

T∑
t=1

‖gt‖2G−1
t

+
ρ2

2βT

+
β

2T
‖Ax− y1‖22 +

1

T

T∑
t=1

∆t +
ρ‖A(x1 − xT+1)‖2

T
,

where the second inequality is a result of Assumption 1.c and the third inequality is by the definition
of x̄T and x̂T .

6 Practical Variants of Locally Adaptive ADMM

In this section, we present variants of locally adaptive ADMM algorithms that can be implemented
with unknown constant c and unknown exponent parameter θ. Following the idea of [2], we propose
using another level of restarting on our ADMM. In particular, we apply our ADMM method in epochs
where we start the first epoch with a relatively large number of iterations t1 and then after each epoch
we increase it gradually. We present the detailed steps in Algorithms 5 and 6, and the convergence
results in Theorems 6 and 8 for unknown c but known θ ∈ (0, 1) and in Theorems 9 and 10 for
unknown c and θ.
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6.1 Locally Adaptive ADMM for unknown c

When the constant c is unknown but θ ∈ (0, 1) is known, we present formal guarantee of Algorithm 5
in the following theorem.
Theorem 6 (RLA-ADMM with unknown c). Suppose Assumption 1 holds. Let ε ≤ ε0/4 and
K = dlog2( ε0ε )e in Algorithm 5. Suppose β(1)

1 is sufficiently small so that there exists ε̂1 ∈ [ε, ε0/2],
with which F (·) satisfies a local error bound condition on Sε̂1 with θ ∈ (0, 1) and the constant c,

and β(1)
1 =

√
2ρε̂1−θ1

c‖A‖2ε0 . Let t1 =

⌈
2ρ2

β
(1)
1 ε0

⌉
and S = dlog2(ε̂1/ε)e + 1.Then, with a total number of

S calls of RLA-ADMM in Algorithm 5, we find a solution x(S) such that F (x(S))− F∗ ≤ 2ε. The
total number of iterations of RLA-ADMM for obtaining 2ε-optimal solution is upper bounded by
TS = Õ(1/ε1−θ).

To prove the above theorem, we need the following theorem.
Theorem 7. Suppose Assumption 1 holds and F (x) obeys a local error bound condition on the

ε-sublevel. Let K = dlog2(ε0/ε)e, β1 =
√

2ρε1−θ

c‖A‖2ε0 and t =
⌈

2ρ2

β1ε0

⌉
in Algorithm 2, we have

F (xK)− F∗ ≤ 2ε.

Proof. Here we only prove for the case of G = γI − βA>A with γ = β‖A‖22. Following the same
analysis, we can easily prove the same result for using G = 0. Let x†k−1,ε denote the closest point to

xk−1 in Sε. Define εk = ε0
2k

. Then βk = ρε1−θ√
2c‖A‖2εk

and γk = βk‖A‖22 = ρε1−θ‖A‖2√
2cεk

. We prove this
by induction. Assume F (wk−1)−F∗ ≤ εk−1 + ε, which trivally holds for k = 1 due to Assumption
1.a. We apply Corollary 1 to the k-th stage of LA-ADMM. For any x ∈ Ω, we have

F (xk)− F (x) ≤ γk‖x− xk−1‖22
2t

+
βk‖A‖22‖x− xk−1‖22

2t
+

ρ2

2βkt
.

Let x = x†k−1,ε so that we have

F (xk)− F (x†k−1,ε) ≤
γk‖x†k−1,ε − xk−1‖22

2t
+
βk‖A‖22‖x

†
k−1,ε − xk−1‖22

2t
+

ρ2

2βkt
. (12)

We consider two scenarios of xk−1. First, suppose xk−1 ∈ Sε so that xk−1 = x†k−1,ε. Then

F (xk)− F (x†k−1,ε) ≤
ρ2

2βkt
≤ ρ2

√
2c‖A‖2εk

2ρε1−θ
ε1−θ√

2cρ‖A‖2
=
εk
2
,

which implies
F (xk)− F∗ ≤ F (x†k−1,ε)− F∗ + εk ≤ ε+ εk.

Secondly, suppose xk−1 6∈ Sε so that F (x†k−1,ε) = F∗ + ε. By Lemma 1 and the local error bound
condition of F , we have

‖xk−1 − x†k−1,ε‖2 ≤
dist(x†k−1,ε,Ω∗)

ε
(F (xk−1)− F (x†k−1,ε)) ≤

cεθ

ε
εk−1 =

cεk−1

ε1−θ
.

where we use the assumption that F (xk−1) − F∗ ≤ ε + εk−1 and the fact F (x†k−1,ε) = F∗ + ε.
Plugging the above bound into (12) we have

F (xk)− F (x†k−1,ε) ≤
βk‖A‖22c2ε2k−1

2tε2(1−θ) +
βk‖A‖22c2ε2k−1

2tε2(1−θ) +
ρ2

2βkt

=
ρε1−θ‖A‖22c2ε2k−1√
2c‖A‖2εktε2(1−θ)

+

√
2cρ2εk‖A‖2
2ρε1−θt

.

Since t ≥
√

2cρ‖A‖2
ε1−θ

, we have

F (xk)− F (x†k−1,ε) ≤
εk
2

+
εk
2

= εk,
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Algorithm 5 LA-ADMM with Restarting (RLA-ADMM)

1: Input: the number of iterations t1 per epoch and the penalty parameter β(1)
1 in the first stage.

2: Initialization: x(0)

3: for s = 1, 2, . . . , do
4: Let x(s) =LA-ADMM(x(s−1), β

(s)
1 ,K, ts)

5: Let ts+1 = ts2
1−θ, β(s+1)

1 = β
(s)
1 /21−θ

6: end for
7: Output: x(S)

Algorithm 6 LA-SADMM with Restarting (RLA-SADMM)

1: Input: the number of iterations t1 per epoch and the radius D(1)
1 in the first stage.

2: Initialization: x(0), η1 = ε0
6R2 , β1 = 6R2

‖A‖22ε0
3: for s = 1, 2, . . . , do
4: Let x(s) =LA-SADMM(x(s−1), D

(s)
1 ,K, ts)

5: Let ts+1 = ts2
2(1−θ), D(s+1)

1 = D
(s)
1 21−θ

6: end for
7: Output: x(S)

which implies

F (xk)− F∗ ≤ εk + ε.

We can finish the proof by the induction up to k = K = dlog2(ε0/ε)e, which yields F (xK)− F∗ ≤
2ε.

Proof of Theorem 6. Following the proof of Theorem 7, we can show that

F (x(1))− F∗ ≤ 2ε̂1 ≤ ε0. (13)

with K = dlog2( ε0ε )e ≥ dlog2( ε0ε̂1 )e, β(1)
1 =

√
2ρε̂1−θ1

c‖A‖2ε0 , and t1 =

⌈
2ρ2

β
(1)
1 ε0

⌉
. By running LA-ADMM

starting from x(1) which satisfies (13) with K = dlog2( ε0ε )e ≥ dlog2( ε0
ε̂1/2

)e, β(2)
1 = β

(1)
1 /21−θ =

√
2ρ(ε̂1/2)1−θ

c‖A‖2ε0 and t2 = t121−θ =

⌈
2ρ2

β
(2)
1 ε0

⌉
, Theorem 7 ensures that

F (x(2))− F∗ ≤ ε̂1 ≤ ε0.

Applying this argument recursively, we can show

F (x(s))− F∗ ≤ 2ε̂1/2
s−1 ≤ ε0, for s = 1, 2, . . . .

With S = dlog2(ε̂1/ε)e+ 1, we prove that

F (x(S))− F∗ ≤ 2ε̂1/2
S−1 ≤ 2ε.

The total number of iterations for the S calls of LA-ADMM is bounded by

TS = K

S∑
s=1

Ts = K

S∑
s=1

t12(s−1)(1−θ) = Kt12(S−1)(1−θ)
S∑
s=1

(
1/2(1−θ)

)S−s
≤ Kt12(S−1)(1−θ) 1

1− 1/2(1−θ) ≤ O

(
Kt1

(
ε̂1
ε

)(1−θ)
)
≤ Õ(1/ε(1−θ)).

When the constant c is unknown but θ ∈ (0, 1) is known, the formal guarantee of Algorithm 6 is
presented in the following theorem.
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Theorem 8 (RFA-SADMM with unknown c). Suppose Assumptions 1 and 2 hold. Let ε ≤ ε0/4 and
K = dlog2( ε0ε )e in Algorithm 6. Suppose D(1)

1 is sufficiently large so that there exists ε̂1 ∈ [ε, ε0/2],
with which F (·) satisfies a local error bound condition on Sε̂1 with θ ∈ (0, 1) and the constant c, and

D
(1)
1 = cε0

ε̂1−θ1

. Let t1 = max

{
6912R2 log(1/δ̃)(D

(1)
1 )2

ε20
,

12ρ‖A‖2D(1)
1

ε0
,
ρ2‖A‖22
R2

}
, S = dlog2(ε̂1/ε)e + 1

and δ̂ = δ
KS . Then, with a total number of S calls of LA-SADMM in Algorithm 6, we find a solution

x(S) such that F (x(S)) − F∗ ≤ 2ε. The total number of iterations of RLA-SADMM for obtaining
2ε-optimal solution is upper bounded by TS = Õ(log(1/δ)/ε2(1−θ)).

Proof. With K = dlog2( ε0ε )e ≥ dlog2( ε0ε̂1 )e and

t1 = max

{
6912R2 log(1/δ̃)(D

(1)
1 )2

ε20
,

12ρ‖A‖2D(1)
1

ε0
,
ρ2‖A‖22
R2

}
and D(1)

1 = cε0
ε̂1−θ1

, by Theorem 4, we can show that

F (x(1))− F∗ ≤ 2ε̂1 ≤ ε0 (14)

with a probability of at least 1− δ
S . By running RLA-SADMM starting from x(1) which satisfies

(14) with K = dlog2( ε0ε )e ≥ dlog2( 2ε̂1
ε̂1/2

)e and

t2 = t122(1−θ) ≥ max

{
6912R2 log(1/δ̃)(D

(2)
1 )2

ε20
,

12ρ‖A‖2D(2)
1

ε0
,
ρ2‖A‖22
R2

}
with D(2)

1 = cε0
(ε̂1/2)1−θ

≥ c2ε̂1
(ε̂1/2)1−θ

, Theorem 4 ensures that

F (x(2))− F∗ ≤ ε̂1 ≤ ε0
with a probality of at least (1− δ/S)2. Applying this argument repeatedly, we have

F (x(s))− F∗ ≤ 2ε̂1/2
s−1 ≤ ε0, for s = 1, 2, . . . , S

with a probality of at least (1 − δ/S)s. With S = dlog2(ε̂1/ε)e + 1, we can prove that, with a
probality of at least (1− δ/S)S ≥ 1− δ,

F (x(S))− F∗ ≤ 2ε̂1/2
S−1 ≤ 2ε.

The total number of iterations for the S calls of RLA-SADMM is bounded by

TS = K

S∑
s=1

Ts = K

S∑
s=1

t122(s−1)(1−θ) = Kt122(S−1)(1−θ)
S∑
s=1

(
1/22(1−θ)

)S−s
≤ Kt122(S−1)(1−θ) 1

1− 1/22(1−θ) ≤ O

(
Kt1

(
ε̂1
ε

)2(1−θ)
)
≤ Õ(log(1/δ)/ε2(1−θ)).

6.2 Locally Adaptive ADMM for unknown θ

In this subsection, we show that the iteration complexity of the proposed algorithms can be no worse
than standard ADMM algorithms even the value of θ is unknown. If the exponent parameter θ is
unkown, we observe that F (·) satisfies a local error bound condition on Sε with θ = 0 and c = Bε′
with ε′ > ε for any ε > 0. Then, the following theorem is derived based on this observation.
Theorem 9 (RLA-ADMM with unknown θ). Let θ = 0, ε ≤ ε0/4 and K = dlog2( ε0ε )e in
Algorithm 5. Assume β(1)

1 is sufficiently small such that there exists ε̂1 ∈ [ε, ε0/2] rendering β(1)
1 =

√
2ρε̂1

Bε̂1‖A‖2ε0
. Let t1 =

⌈
2ρ2

β
(1)
1 ε0

⌉
and S = dlog2(ε̂1/ε)e + 1. Then, with a total number of S calls

of LA-ADMM in Algorithm 5, we find a solution x(S) such that F (x(S)) − F∗ ≤ 2ε. The total
number of iterations of RLA-ADMM for obtaining 2ε-optimal solution is upper bounded by TS =

Õ
(
ρ‖A‖2Bε̂1

ε

)
.
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Remark: Compared to the standard ADMM (see remark below Corollary 1), we can see that
RLA-ADMM converges no slower than standard ADMM as long as β(1)

1 is sufficiently small.

Proof. This proof is similar to the proof of Theorem 6 except that θ = 0 and c = Bε̂1 . Given that

K = dlog2( ε0ε )e ≥ dlog2( ε0ε̂1 )e, t1 =
⌈√

2Bε̂1ρ‖A‖2
ε̂1

⌉
and β(1)

1 =
√

2ρε̂1
Bε̂1‖A‖2ε0

, by Theorem 7, we have

F (x(1))− F∗ ≤ 2ε̂1 ≤ ε0. (15)

By running LA-ADMM starting from x(1) which satisfies (15) withK = dlog2( ε0ε )e ≥ dlog2( ε0
ε̂1/2

)e,

t2 = t12 =
⌈√

2Bε̂1ρ‖A‖2
(ε̂1/2)

⌉
, and β(2)

1 = β
(1)
1 /2 =

√
2ρ(ε̂1/2)

Bε̂1‖A‖2ε0
, Theorem 7 ensures that

F (x(2))− F∗ ≤ ε̂1 ≤ ε0.

Applying this argument repeatedly, with S = dlog2(ε̂1/ε)e+ 1 we can prove that

F (x(S))− F∗ ≤ 2̂ε1/2
S−1 ≤ 2ε.

The total number of iterations for the S calls of LA-ADMM is bounded by

TS = K

S∑
s=1

Ts = K

S∑
s=1

t12(s−1) = Kt12(S−1)
S∑
s=1

(1/2)
S−s

≤ Kt12(S−1) 1

1− 1/2
≤ O

(
Kt1

ε̂1
ε

)
= O

(
Bε̂1‖A‖2

ε
dlog2(

ε0
ε

)e
)
.

Theorem 10 (RLA-SADMM with unknown θ). Let θ = 0, ε ≤ ε0/4 and K = dlog2( ε0ε )e in
Algorithm 6. Assume D(1)

1 is sufficiently large such that there exists ε̂1 ∈ [ε, ε0/2] rendering

D
(1)
1 =

Bε̂1ε0
ε̂1

. Let t1 = max

{
6912R2 log(1/δ̃)(D

(1)
1 )2

ε20
,

12ρ‖A‖2D(1)
1

ε0
,
ρ2‖A‖22
R2

}
, S = dlog2(ε̂1/ε)e+ 1

and δ̂ = δ
KS . Then, with a total number of S calls of LA-SADMM in Algorithm 6, we find a solution

x(S) such that F (x(S)) − F∗ ≤ 2ε. The total number of iterations of RLA-SADMM for obtaining
2ε-optimal solution is upper bounded by TS = Õ(log(1/δ)/ε2).

Proof. This proof is quite similar to that of Theorem 8 except for setting θ = 0 and c = Bε̂1 . Given
K = dlog2( ε0ε )e ≥ dlog2( ε0ε̂1 )e and

t1 = max

{
6912R2 log(1/δ̃)(D

(1)
1 )2

ε20
,

12ρ‖A‖2D(1)
1

ε0
,
ρ2‖A‖22
R2

}
,

where D(1)
1 =

Bε̂1ε0
ε̂1

, following the proof of Theorem 4, we can show that with a probability 1− δ
S ,

F (w(1))− F∗ ≤ 2ε̂1 ≤ ε0. (16)

By running RLA-SADMM starting from x(1) which satisfies (16) with K = dlog2( ε0ε )e ≥

dlog2( 2ε̂1
ε̂1/2

)e, t2 = t122 ≥ max

{
6912R2 log(1/δ̃)(D

(2)
1 )2

ε20
,

12ρ‖A‖2D(2)
1

ε0
,
ρ2‖A‖22
R2

}
and D

(2)
1 =

Bε̂1 ε0
(ε̂1/2) ≥

Bε̂12ε̂1
(ε̂1/2) , Theorem 4 ensures that

F (x(2))− F∗ ≤ ε̂1.

with a probability of at least (1− δ/S)2. Applying this argument repeatedly, we can prove that, with
a probability of at least (1− δ/S)s,

F (x(S))− F∗ ≤ 2ε̂1/2
s−1 ≤ 2ε, for s = 1, 2, . . . .
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Figure 2: Comparison of different algorithms for solving different tasks. RR + LR represents robust
regression with a low rank regularizer. LRR represents low-rank representation.

Let S = dlog2(ε̂1/ε)e+ 1, we have

F (x(S))− F∗ ≤ 2ε̂1/2
S−1 ≤ 2ε

holds with a probability of at least (1− δ/S)S ≥ 1− δ. The total number of iterations for the S calls
of RLA-SADMM is bounded by

TS = K

S∑
s=1

Ts = K

S∑
s=1

t122(s−1) = Kt122(S−1)
S∑
s=1

(
1/22

)S−s
≤ Kt122(S−1)

1− 1/22
≤ O

(
Kt1

(
ε̂1
ε

)2
)
≤ Õ(log(1/δ)/ε2).

7 Additional Experiments

To examine the convergence behavior of different algorithms in terms of running time (cpu time), we
provide the running time results in Figure 2. The results indicate that our methods are much faster
than their corresponding baselines, which is similar to the results in Figure 1.
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