Supplementary Material

Proof to Theorem 1
Proof. Let us define
Eily] = E [8(Y,9)K; (X", X?)]

Under the i.i.d. assumption, it is straightforward to
show that
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Following the McDiarmid’s inequality, for any ¢ > 0,

we have
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Using the following inequality and the union bound,
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we can complete the theorem. O

Proof to Theorem 3

Proof. Let us define

Blly]l = B [0V, )k (X1, X?)]

Using the assumption (1.a) and (1.b), we have
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where we use the fact E}[y] + E[7] = E[K;(X ', X?)).

Let us define
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Under the i.i.d. assumption, it is straightforward to
show that

E[a]y]] = E[cily]] = E}[y]

Following the McDiarmid’s inequality, for any ¢ > 0,
we have
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Then we have
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Dividing both sides of ‘07 —aj [y]‘ > eby cy+cy—1,

we have
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Replacing e with (¢, +c5 —

1)e, we complete the proof.
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Proof to Theorem 5

Proof. Let
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where A = (A1, \), b* = (BT,B(’S), g(A) is the sum
of log-exponential function of A, which is convex in

M. Assume \* is the optimal solution to minimizing
L(\), X° is the optimal solution to minimizing L(\)
with b* = (b3, b) replaced by b° = (bg,bg). then
we have
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where we use the fact that L(-) is a c¢q-strongly
convex function, and the optimality criterion that
tr (VL()\*)T(/\O — )\*)) > 0. Then
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Coming the above two bounds for L(A\°) together, we
have
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Proof of Theorem 6

Proof. Let A = (A1, Ag) be the solution to (4) using
noisy side information with b = (lA)l,BO), and \* =
(AT, A3) be the solution to (2) using the perfect side
information, i.e. solution to (4) with b replaced by
b* = (a1,a0), where aj, ag are defined as

ar = (g5ly=1],...,a0'ly=1))"
ag = (a5y = —1],...,af’ly = —1])

First, we have
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where we use the mean value theorem and X is a point
on the line segment [A, A*]. Using Theorem 3, we have
the following inequalities hold with probability at least
1-9,
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We complete the proof by combining the above results.
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Proof of Theorem 7
Proof. We define
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where ¢ = ¢, +¢_ — 1. Define
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Let p(y|x!, x?) be the classification model learned from
the noisy side information using corrupted ¢; and
¢_, and p(y|x', x?) be the classification model learned
from the noisy side information using perfect ¢4 and
c—. Using the analysis in the proof of Theorem 6, we
have
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we have

yﬁ(yb{laxz) —]/)\(y|X1,X2)‘ <
Using the fact

plylx", x*) = ply|x', x*)| <
plylx', x*) = plylx', x*)| + |plylx', x%) — p(ylx', x?)|

and the result in Theorem 6, we have the theorem. [



