Supplementary Material: Extracting Certainty from Uncertainty: Transductive Pairwise Classification from Pairwise Similarities

Tianbao Yang ${ }^{\dagger}$, Rong Jin ${ }^{\ddagger \dagger}$
${ }^{\dagger}$ The University of Iowa, Iowa City, IA 52242
${ }^{\ddagger}$ Michigan State University, East Lansing, MI 48824
${ }^{\natural}$ Alibaba Group, Hangzhou 311121, China
tianbao-yang@uiowa.edu, rongjin@msu.edu

1 Proof of Theorem 1

We first prove Theorem 1 regarding the perfect recovery of the sub-matrix \widehat{Z}, which is essentially a Corollary of the following Theorem for matrix completion.
Corollary 1. (Theorem 1.1 [2]) Let M be an $n_{1} \times n_{2}$ matrix of rank r with singular value decomposition $U \Sigma V^{\top}$. Without loss of generality, impose the conventions $n_{1} \leq n_{2}, U$ is $n_{1} \times r$, and V is $n_{2} \times r$. Assume that (i) The row and column spaces have coherences bounded above by some positive μ_{0}, and (ii) the matrix $U V$ has a maximum entry bounded by $\mu_{1} \sqrt{r /(n 1 n 2)}$ in absolute value for some positive μ_{1}. Suppose N entries of M are observed with locations sampled uniformly at random denoted by Σ. Then if

$$
N \geq 32 \max \left\{\mu_{1}^{2}, \mu_{0}\right\} r\left(n_{1}+n_{2}\right) \beta \log ^{2}\left(2 n_{2}\right)
$$

for some $\beta>1$, the minimizer to the problem

$$
\min _{X \in \mathbb{R}^{n_{1} \times n_{2}}}\|X\|_{t r} \quad \text { s. } t . \quad X_{i, j}=M_{i, j}, \forall(i, j) \in \Sigma
$$

is unique and equal to M with probability at least $1-6 \log \left(n_{2}\right)\left(n_{1}+n_{2}\right)^{2-2 \beta}-n_{2}^{2-2 \beta^{1 / 2}}$
Proof. of Theorem 1 Let m_{k} denote the number of examples in $\widehat{\mathcal{D}}_{m}$ that belongs to the k-th class. Since $\widehat{Z}=\sum_{k=1}^{r} m_{k} \frac{\widehat{\mathbf{g}}_{k}}{\sqrt{m_{k}}} \frac{\widehat{\mathbf{g}}_{k}^{\top}}{\sqrt{m_{k}}}$ is an eigen-decomposition of \widehat{Z}, it is easy to verify that the coherence measure μ_{0} and μ_{1} is given by

$$
\mu_{0}=\frac{1}{r \min _{1 \leq k \leq r} m_{k} / m}, \quad \mu_{1}^{2}=\frac{1}{r \min _{1 \leq k \leq r}\left(m_{k} / m\right)^{2}}
$$

Using the Chernoff bound, we have

$$
\operatorname{Pr}\left(m_{k}<(1-\epsilon) m p_{k}\right)<\exp \left(-\frac{\epsilon^{2} m p_{k}}{2}\right)
$$

By setting $\epsilon=1 / 2$, with a probability at least $1-\sum_{i=1}^{r} \exp \left(-m p_{i} / 8\right)$, we have

$$
m_{k} / m \geq p_{k} / 2, k=1, \ldots, r
$$

and therefore

$$
\max \left(\mu_{0}, \mu_{1}^{2}\right) \leq \frac{2}{r \min _{1 \leq i \leq r} p_{i}^{2}}
$$

Then using Corollary 1 with $\beta=4$, we have, with a probability at least $1-6(2 m)^{-6} \log m-m^{-2}$, that the solution to (2) in the paper is unique and equal to \widehat{Z} if

$$
\begin{equation*}
|\Sigma| \geq 128 \mu_{1}^{2} r m \log ^{2}(2 m) \tag{1}
\end{equation*}
$$

We complete the proof by using the union bound and $6(2 m)^{-6} \log m \leq m^{-2}$.

2 Proof of Theorem 2

The foundation of the proof of Theorem 2 and of Theorem 3 is the following Corollary that quantifies how large m is in order to ensure the sub-matrix $\widehat{U}_{s} \in \mathbb{R}^{m \times s}$ has a full column rank.
Corollary 2. Let U_{s} be an $n \times s$ matrix with orthonormal columns with a coherence measure μ_{s}. Let \widehat{U}_{s} be a $m \times s$ matrix with rows uniformly sampled from the rows of U_{s}. If $m \geq \frac{2 \mu_{s}}{(1-\epsilon)^{2}} s \log \left(\frac{s}{\delta}\right)$, then with a probability at least $1-\delta$, the matrix \widehat{U}_{s} has full column rank and satisfies

$$
\left\|\left(\widehat{U}_{s}^{\top}\right)^{\dagger}\right\|_{2}^{2} \leq \frac{n}{\epsilon \ell}
$$

where M^{\dagger} denotes the pesudo inverse of a matrix M.
The above Corollary follows immediately from Lemma 1 in [1].
Now we are ready to prove Theorem 2. Let us review the two steps of the proposed algorithm for estimating the ideal matrix $Z=\sum_{k=1}^{r} \mathbf{g}_{k} \mathbf{g}_{k}^{\top}$. The first step is to recover the sub-matrix $\widehat{Z}=$ $\sum_{k=1}^{r} \widehat{\mathbf{g}}_{k} \widehat{\mathbf{g}}_{k}^{\top}$ by matrix completion, for which we assume the recovery is perfect due to Theorem 1 . Because we assume the column space of Z lies in the subspace spanned by columns of U_{s}, therefore we can write \mathbf{g}_{k} and Z as

$$
\begin{align*}
\mathbf{g}_{k} & =U_{s} \mathbf{a}_{k}, k \in[r] \\
Z & =U_{s}\left(\sum_{k=1}^{\top} \mathbf{a}_{k} \mathbf{a}_{k}^{\top}\right) U_{s}^{\top} \tag{2}
\end{align*}
$$

Thus, the second step is to estimate $\sum_{k=1}^{r} \mathbf{a}_{k} \mathbf{a}_{k}^{\top}$. The underlying logic is to estimate \mathbf{a}_{k} by

$$
\begin{equation*}
\widehat{\mathbf{a}}_{k}=\underset{\mathbf{a} \in \mathbb{R}^{s}}{\arg \min }\left\|\widehat{\mathbf{g}}_{k}-\widehat{U}_{s} \mathbf{a}\right\|_{2}^{2}=\left(\widehat{U}_{s}^{\top} \widehat{U}_{s}\right)^{\dagger} \widehat{U}_{s}^{\top} \widehat{\mathbf{g}}_{k}, \quad k \in[r] \tag{3}
\end{equation*}
$$

Then, the ideal matrix Z can be estimated by

$$
\begin{align*}
Z^{\prime} & =U_{s}\left(\sum_{k=1}^{r} \widehat{\mathbf{a}}_{k} \widehat{\mathbf{a}}_{k}^{\top}\right) U_{s}^{\top} \tag{4}\\
& =U_{s}\left(\widehat{U}_{s}^{\top} \widehat{U}_{s}\right)^{\dagger} \widehat{U}_{s}^{\top}\left(\sum_{k=1}^{r} \widehat{\mathbf{g}}_{k} \widehat{\mathbf{g}}_{k}^{\top}\right) \widehat{U}_{s}\left(\widehat{U}_{s}^{\top} \widehat{U}_{s}\right)^{\dagger} U_{s}^{\top}=U_{s}\left(\widehat{U}_{s}^{\top} \widehat{U}_{s}\right)^{\dagger} \widehat{U}_{s}^{\top} \widehat{Z} \widehat{U}_{s}\left(\widehat{U}_{s}^{\top} \widehat{U}_{s}\right)^{\dagger} U_{s}^{\top}
\end{align*}
$$

As a result, to prove $Z^{\prime}=Z$ amounts to showing $\widehat{\mathbf{a}}_{k}=\mathbf{a}_{k}, k \in[r]$. To this end, we focus on the optimization problems in (3). Since \widehat{Z} is a perfect recovery of a sub-matrix in Z under the conditions in Theorem 1, it is safe to assume that $\widehat{\mathbf{g}}_{k} \in \mathbb{R}^{m}$ is equal to the entries in $\mathbf{g}_{k} \in \mathbb{R}^{n}$ that corresponds to the sampled examples. It indicates that $\mathbf{a}_{k}, k \in[r]$ are solutions to the problems in (3) due to $\mathbf{g}_{k}=U_{s} \mathbf{a}_{k}$. Therefore, in order to show $\widehat{\mathbf{a}}_{k}=\mathbf{a}_{k}, k \in[r]$, it is equivalent to show that $\mathbf{a}_{k}, k \in[r]$ are the unique minimizers of problems (3). It is sufficient to show the optimization problems in (3) are strictly convex, which follows immediately from Corollary 2 since it implies that $\widehat{U}_{s}^{\top} \widehat{U}_{s}$ is a full rank PSD matrix with a high probability. Then using the union bound, we can complete the proof.

3 Proof of Theorem 3

To prove Theorem 3, we first define the following matrix Z_{*} :

$$
Z_{*}=U_{s}\left(\sum_{k=1}^{r} \mathbf{a}_{k}^{*} \mathbf{a}_{k}^{* \top}\right) U_{s}^{\top}
$$

where

$$
\mathbf{a}_{k}^{*}=\arg \min _{\mathbf{a} \in \mathbb{R}^{s}}\left\|\mathbf{g}_{k}-U_{s} \mathbf{a}\right\|_{2}^{2}=\left(U_{s}^{\top} U_{s}\right)^{-1} U_{s}^{\top} \mathbf{g}_{k}=U_{s}^{\top} \mathbf{g}_{k}
$$

We introduce a matrix $E \in\{0,1\}^{n \times m}$ with columns selected from the identity matrix corresponding to the indices of $\widehat{\mathcal{D}}_{m}$ in \mathcal{D}_{n}. Then, we can write $\widehat{U}_{s}=E^{\top} U_{s}, \widehat{\mathbf{g}}_{k}=E^{\top} \mathbf{g}_{k}$, and have the solution to (3) written as

$$
\begin{aligned}
\widehat{\mathbf{a}}_{k} & =\left(\widehat{U}_{s}^{\top} \widehat{U}_{s}\right)^{-1} \widehat{U}_{s}^{\top} \widehat{\mathbf{g}}_{k}=\left(\left[E^{\top} U_{s}\right]^{\top} E^{\top} U_{s}\right)^{-1}\left[E^{\top} U_{s}\right]^{\top} E^{\top} \mathbf{g}_{k} \\
& =\left(U_{s}^{\top} E E^{\top} U_{s}\right)^{-1} U_{s}^{\top} E E^{\top} \mathbf{g}_{k}
\end{aligned}
$$

where we use inverse in place of pseudo inverse because we assume $\widehat{U}_{s}^{\top} \widehat{U}_{s}$ is a full rank matrix. To proceed, we write \mathbf{g}_{k} as

$$
\mathbf{g}_{k}=\mathbf{g}_{k}^{\perp}+\mathbf{g}_{k}^{\|}
$$

where $\mathbf{g}_{k}^{\|}=U_{s} U_{s}^{\top} \mathbf{g}_{k}$ is the projection of \mathbf{g}_{k} into the subspace spanned by $\mathbf{u}_{1}, \ldots, \mathbf{u}_{s}$ and $\mathbf{g}_{k}^{\perp}=$ $\mathbf{g}_{k}-\mathbf{g}_{k}^{\|}$. Then, we have

$$
\begin{aligned}
\widehat{\mathbf{a}}_{k} & =\left(U_{s}^{\top} E E^{\top} U_{s}\right)^{-1} U_{s}^{\top} E E^{\top} U_{s} U_{s}^{\top} \mathbf{g}_{i}^{\|}+\left(U_{s}^{\top} E E^{\top} U_{s}\right)^{-1} U_{s}^{\top} E E^{\top} \mathbf{g}_{k}^{\perp} \\
& =\mathbf{a}_{k}^{*}+\left(U_{s}^{\top} E E^{\top} U_{s}\right)^{-1} U_{s}^{\top} E E^{\top} \mathbf{g}_{k}^{\perp} \\
& =\mathbf{a}_{k}^{*}+\left(U_{s}^{\top} E\right)^{\dagger} E^{\top} \mathbf{g}_{k}^{\perp}=\mathbf{a}_{k}^{*}+\left(\widehat{U}_{s}^{\top}\right)^{\dagger} E^{\top} \mathbf{g}_{k}^{\perp}
\end{aligned}
$$

Define $\widehat{A}=\left(\widehat{\mathbf{a}}_{1}, \ldots, \widehat{\mathbf{a}}_{r}\right) \in \mathbb{R}^{s \times r}$ and $A_{*}=\left(\mathbf{a}_{1}^{*}, \ldots, \mathbf{a}_{r}^{*}\right) \in \mathbb{R}^{s \times r}$. Then we have

$$
\begin{aligned}
& \left\|\widehat{A}-A_{*}\right\|_{F}=\sqrt{\sum_{k=1}^{r}\left\|\widehat{\mathbf{a}}_{k}-\mathbf{a}_{k}^{*}\right\|^{2}} \leq \sqrt{\left\|\left(\widehat{U}_{s}^{\top}\right)^{\dagger}\right\|_{2} \sum_{k=1}^{r}\left\|\mathbf{g}_{k}^{\perp}\right\|^{2}} \\
& =\sqrt{\left\|\left(\widehat{U}_{s}^{\top}\right)^{\dagger}\right\|_{2} \sum_{k=1}^{r}\left\|\mathbf{g}_{k}-\mathbf{g}_{k}^{\|}\right\|_{2}^{2}}=\sqrt{\left\|\left(\widehat{U}_{s}^{\top}\right)^{\dagger}\right\|_{2} \operatorname{tr}\left(\sum_{k=1}^{r}\left(\mathbf{g}_{k}-\mathbf{g}_{k}^{\|}\right)\left(\mathbf{g}_{k}-\mathbf{g}_{k}^{\|}\right)^{\top}\right)}
\end{aligned}
$$

Note that we can also write $Z_{*}=\sum_{k=1}^{r} \mathbf{g}_{k}^{\|} \mathbf{g}_{k}^{\|^{\top}}$, then we have

$$
Z-Z_{*}=\sum_{k=1}^{r}\left(\mathbf{g}_{k}-\mathbf{g}_{k}^{\|}\right)\left(\mathbf{g}_{k}-\mathbf{g}_{k}^{\|}\right)^{\top}+\left(\mathbf{g}_{k}-\mathbf{g}_{k}^{\|}\right) \mathbf{g}_{k}^{\|^{\top}}+\mathbf{g}_{k}^{\|}\left(\mathbf{g}_{k}-\mathbf{g}_{k}^{\|}\right)^{\top}
$$

Due to that $\mathbf{g}_{k}-\mathbf{g}_{k}^{\|}$is perpendicular to $\mathbf{g}_{k}^{\|}$, we have

$$
\operatorname{tr}\left(\sum_{k=1}^{r}\left(\mathbf{g}_{k}-\mathbf{g}_{k}^{\|}\right)\left(\mathbf{g}_{k}-\mathbf{g}_{k}^{\|}\right)^{\top}\right)=\operatorname{tr}\left(Z-Z_{*}\right)
$$

As a result,

$$
\left\|\widehat{A}-A_{*}\right\|_{F} \leq \sqrt{\left\|\left(\widehat{U}_{s}^{\top}\right)^{\dagger}\right\|_{2} \operatorname{tr}\left(Z-Z^{*}\right)}
$$

Then we can bound $\left\|Z^{\prime}-Z_{*}\right\|_{F}$ by

$$
\begin{aligned}
\left\|Z^{\prime}-Z_{*}\right\|_{F} & =\left\|\sum_{i=1}^{s} U_{s}\left(\widehat{\mathbf{a}}_{i} \widehat{\mathbf{a}}_{i}^{\top}-\mathbf{a}_{i}^{*}\left[\mathbf{a}_{i}^{*}\right]^{\top}\right) U_{s}^{\top}\right\|_{F}=\left\|\widehat{A} \hat{A}^{\top}-A_{*} A_{*}^{\top}\right\|_{F} \\
& \leq 2\left\|\widehat{A}-A_{*}\right\|_{F}\left\|A_{*}\right\|_{F}+\left\|\widehat{A}-A_{*}\right\|_{F}^{2} \\
& \leq 2 \sqrt{\left\|\left(\widehat{U}_{s}^{\top}\right)^{\dagger}\right\|_{2} \operatorname{tr}\left(Z-Z_{*}\right) \operatorname{tr}\left(Z_{*}\right)}+\left\|\left(\widehat{U}_{s}^{\top}\right)^{\dagger}\right\|_{2} \operatorname{tr}\left(Z-Z_{*}\right)
\end{aligned}
$$

where the last step follows from the fact $\left\|A_{*}\right\|_{F}^{2} \leq \operatorname{tr}\left(Z_{*}\right)$. We can further bound $\operatorname{tr}\left(Z-Z_{*}\right)$ as follows:

$$
\begin{aligned}
\operatorname{tr}\left(Z-Z_{*}\right) & =\operatorname{tr}\left(Z-U_{s} U_{s}^{\top} Z U_{s} U_{s}^{\top}\right)=\operatorname{tr}\left(Z\left(I-U_{s} U_{s}^{\top}\right)\right)=\operatorname{tr}\left(\sum_{k=1}^{r}\left(I-P_{U_{s}}\right) \mathbf{g}_{k} \mathbf{g}_{k}^{\top}\right) \\
& =\sum_{k=1}^{r}\left\|\left(I-P_{U_{s}}\right) \mathbf{g}_{k}\right\|_{2}^{2}=\varepsilon
\end{aligned}
$$

We complete the proof by using $\left\|Z^{\prime}-Z\right\|_{F} \leq\left\|Z^{\prime}-Z_{*}\right\|_{F}+\left\|Z_{*}-Z\right\|_{F},\left\|Z-Z_{*}\right\|_{F} \leq \operatorname{tr}\left(Z-Z_{*}\right)$, $\operatorname{tr}\left(Z_{*}\right) \leq \operatorname{tr}(Z)=n$, and the result in Corollary 2.

References

[1] A. Gittens. The spectral norm errors of the naive nystrom extension. CoRR, abs/1110.5305, 2011.
[2] B. Recht. A simpler approach to matrix completion. Journal of Machine Learning Research, 12:3413-3430, 2011.

