Sex and Ethnicity as Moderators in the Sexual Harassment Phenomenon: A Revision and Test of Fitzgerald et al. (1994)

Mindy E. Bergman and Jaime B. Henning
Texas A&M University

Fitzgerald, Hulin, and Drasgow (1994) proposed that personal vulnerability characteristics (such as sex and ethnicity) would moderate the effect of sexual harassment on its outcomes. This paper argues that personal vulnerability characteristics instead moderate the effect of organizational sexual harassment climate on sexual harassment because of their role as identity markers within social hierarchies. Using a sample of nearly 8,000 male and female military personnel from four ethnicity groups, the proposition that organizational climate differentially affects sexual harassment frequency across sex and ethnicity was evaluated. Results suggested that sex is an important moderator of these relationships, but that ethnicity is not. Further, sex and ethnicity were not found to moderate the effect of sexual harassment on its outcomes. Potential generalizability of these results to other types of harassment (e.g., racial harassment, bullying), as well as needed future research in this area, is discussed.

Keywords: sexual harassment, work organizations, military, ethnicity, organizational climate

Fitzgerald, Hulin, and Drasgow (1994) proposed that sexual harassment (SH) is an organizational stressor. As such, it should have organizational antecedents and job-, psychological-, and health-related consequences. Fitzgerald et al. identified two organizational antecedents: organizational climate toward SH (Hulin, Fitzgerald, & Drasgow, 1996) and job-gender context (Gutek & Cohen, 1987). Outcomes of SH included lowered job satisfaction, increased work withdrawal, and worsened physical and mental health. Finally, Fitzgerald et al. proposed that two general classes of moderators affect the relationship between SH and its outcomes: personal vulnerability characteristics (i.e., characteristics that affect susceptibility to SH) and response styles (i.e., appraisal of and coping with SH). Fitzgerald et al.’s theoretical model has been evaluated in organizations ranging from academia to agribusiness to the US military and has been consistently supported in its antecedent-SH-consequences propositions (Fitzgerald, Drasgow, Hulin, Gelfand, & Magley, 1997; Fitzgerald, Drasgow, & Magley, 1999).

However, limited attention has been paid to the role of moderators in the SH process. Thus, the present study’s contribution to the literature is two-fold: (1) to revise Fitzgerald et al.’s (1994) view on the role of personal vulnerability characteristics; and (2) to evaluate this revised proposition. Efforts toward the first goal focus on theorizing why personal vulnerability characteristics of the SH target could moderate antecedent-SH rather than SH-consequence relationships. For the second goal, this theoretical view is tested by examining sex and ethnicity as moderators of the perceived organizational tolerance of sexual harassment-SH relationship in a large sample of men and women of various ethnicities who are members of the US military.

Personal Vulnerability Characteristics

Fitzgerald et al. (1994) suggested that some characteristics—such as age, marital status, organizational status, and prior victimization—moderate the relationship between SH and outcomes, implying that “personal vulnerability” is the extent to which SH affects an individual. However, personal characteristics could affect vulnerability at different points in the SH process. Some characteristics, such as prior victimization, could influence the effect of SH on outcomes, whereas others could affect the likelihood...
of being targeted for SH at all. For example, sex and ethnicity can be construed as indices of targets’ organizational belongingness; perpetrators could perceive these characteristics as indicators that targets are out-group members and organizational intruders. Thus, our revision of Fitzgerald et al. is this: personal vulnerability characteristics moderate antecedent-SH relationships rather than SH-outcome relationships (see Figure 1).

This study focuses on sex and ethnicity as characteristics that could moderate the effect of perceptions of organizational tolerance of SH on SH. Sex and ethnicity are important, salient markers of identity that have enduring meaning in the lives of individuals and have been linked to prejudiced treatment in many contexts as signifiers of outsider status (McDermott & Samson, 2005; Stewart & McDermott, 2004; Sumner, 1907). Both also appear to be related to rates of SH (Berdahl & Moore, 2006; Fitzgerald Magley, Drasgow, & Waldo, 1999; Gruber & Bjorn, 1982; Jackson & Newman, 2004; see Berdahl, Magley, & Waldo [1996] and Stockdale, Visio, & Batra [1999] for discussion of possible measurement issues). Importantly, differences in rates of SH across sex and ethnicity do not provide direct evidence of moderation of climate-SH relationships. Sex and ethnicity—or events co-occurring with these demographic variables (Bayard, Hellerstein, Neumark, & Troske, 2003; Browne, Hewitt, Tigges, & Green, 2001; Fields, Goodman, & Blum, 2005; Maume, 2004; Pfeffer, 1983)—could be associated with different mean levels of organizational climate. This would result in different SH rates across groups because those groups are embedded in different climates. However, it is also possible that differences in SH levels across sex and ethnicity derive from differences in the relationship between organizational climate and SH, with some groups experiencing stronger effects of climate on SH compared to others. Next, we explore why sex and ethnicity might affect the strength of the perceived tolerance-SH relationship.

Why Sex and Ethnicity Might Moderate the Relationships Between Perceived Tolerance and SH

Research into SH focuses on characteristics that could be “risk factors,” but the locus of risk is actu-

![Figure 1](image-url)
ally in potential perpetrators’ cognitions about potential targets. In climates lax toward SH, individuals who have a propensity to harass are likely to do so (Pryor, 1987; Pryor, Giedd, & Williams, 1995; Pryor, LaVite, & Stoller, 1993). Perpetrators’ actions are influenced by a variety of factors, including perpetrator attitudes (e.g., bigotry, sexism) and socionormative cues (e.g., organizational climate, modeled behaviors; Hulin et al., 1996; Pryor et al., 1993) that determine who, of the many possible targets, perpetrators sexually harass. Sex and ethnicity are two characteristics that could be used as targeting factors by potential perpetrators because they are highly salient markers of group membership and social status. According to the social identity perspective, individuals tend to treat in-group members favorably and to derogate outsiders (Ashforth & Mael, 1989; David & Turner, 1999; Tajfel, 1982). Ethnocentrism (LeVine & Campbell, 1972; Sumner, 1907), classism (Moon & Rolison, 1998), and social dominance (Sidanius & Pratto, 1993) theories further suggest that acts of in-group favoritism and out-group derogation functionally maintain social hierarchies by denying lower-level out-groups the full benefits of society (Jacobs, 1989; Lott, 2002; Piotrkowski, 1998; Tomaskovic-Devey, 1993). In short, harassment results in the negative treatment of those targeted and also preserves organizationally based advantages for in-group members.

The determination of outsider status depends not only on the numerical distribution of individuals in the organization (Kanter, 1977) but also on the social power structure in the organization as well as in society in general (Sidanius & Pratto, 1993). Sociological theorists describe the power structure in the US, and especially the US military (Connell, 1990, 1993; Messner, 1993), as one of hegemonic masculinity; societal power is held by men who embody culturally described ideals of masculinity (Cheng, 1999; Connell, 1985, 1995; Demetriou, 2001). Because hegemonic groups are powerful, they have the means to preserve their power; for example, the maintenance of inequalities between the sexes preserves hegemonic masculinity (Demetriou, 2001; Lott, 2002; Sidanius & Pratto, 1993; Stockdale et al., 1999). Although much of the masculine cultural ideal refers to heterosexual Caucasian men, especially in the US military (Connell, 1995; Klein, 1999), other men can be subsumed into the hegemonic structure in order to maintain cross-sex power differentials (Demetriou, 2001). From this viewpoint, some classes of sex and ethnicity (i.e., women; ethnic minorities) will be perceived as organizational interlopers, potentially reducing the benefits that “belong” to the hegemonic group (i.e., Caucasian males) and thus triggering higher rates of harassment for the nonhegemonic groups.

We see this as a process akin to signal detection theory. Previous research has shown that climates lax toward SH are associated with higher overall SH rates (Fitzgerald et al., 1997, 1999), because individuals with a proclivity to harass are freer to do so when climates tolerate SH (Pryor et al., 1993). Prior research has also shown that markers of minority status affect the likelihood of harassment (David & Turner, 1999; Tajfel, 1982). In signal detection theory, perceptions are affected by the strength of the signal (here, status markers) and the willingness to respond to a signal (here, lax climates). Specifically, in more SH permissive climates, individuals who diverge from the masculine cultural ideal will be more likely to experience SH. In other words, SH rates increase as the quality of organizational climates decreases, and individuals who are not part of the hegemonic power group (i.e., not Caucasian men) will experience greater increases in rates of SH than will Caucasian men. More markers of outsider status should lead to increased likelihood of SH, especially in worse climates. Statistically, this would be reflected in different climate-SH relationships across groups. Fitzgerald, Drasgow, & Magley, (1999) found some evidence for this effect, with a stronger relationship of organizational tolerance of SH on the SH of women than of men. Therefore, we propose:

Hypothesis 1: Perceived tolerance is more strongly related to SH for women than for men.

Hypothesis 2: Perceived tolerance is more strongly related to SH for ethnic minorities than for Caucasians.

Hypothesis 3: Sex and ethnicity interactively affect the perceived tolerance-SH relationship, with a stronger relationship for ethnic minority women than for Caucasian men or minority men.

To be clear, we are not arguing that Caucasian males perpetrate SH at a higher rate than do members of other groups. Instead, we suggest that they are less likely to be targeted for SH by any perpetrator.¹ To the extent that a social structure is seen as legitimate (i.e., arranged in accordance with fair rules or norms and values accepted by a group; Kelman & Hamilton, 1989; Tyler, 2006; Zelditch, 2001), which appears to

¹ Our arguments do not claim that Caucasian males are never sexually harassed or that they are unaffected by SH climate. To the contrary, Caucasian males have been and
be the default expectation of individuals (Major & Schmader, 2001), hegemonic groups are less likely to be derogated, disliked, or envied of their social position and nonhegemonic group members are more likely to accept their own relatively lower positions (Olson & Hafer, 2001; Taylor, Wright, & Porter, 1994). Further, with hegemony comes power; the ability to sanction others for wrongs is part of power (French & Raven, 1959; Sidanius & Pratto, 1993). Thus, hegemonic group members are less likely to be harassed.

Why Sex and Ethnicity Are Unlikely to Affect SH-Outcome Relationships

Fitzgerald et al.’s (1994) model proposed personal vulnerability characteristics moderate SH-outcome relationships and not antecedent-SH relationships. The above review describes why we expect personal vulnerability characteristics to moderate organizational climate-SH relationships. But we have not yet addressed why we expect personal vulnerability characteristics will not moderate SH-consequence relationships. Briefly, the universality of the stress response suggests that given a stressor of a particular strength, different individuals will have similar responses (Selye, 1973, 1976). The consequences of a given stressor at a given level appear to be similar across sex and/or ethnicity groups (Bergman & Drasgow, 2003; Gutierrez, Saenz, & Green, 1994; James, 1994, 1997; James, Lovato, & Khoo, 1994). Thus, the accumulated evidence suggests that there will be no differences across sex or ethnicity in the relationships between SH and its consequences. Therefore, we propose:

Hypothesis 4: Sex and ethnicity do not moderate SH-outcome relationships.

Method

The Defense Manpower Data Center (DMDC) administered the 2002 *Status of the Armed Forces—Workplace and Gender Relations* survey (Elig, 2003; George & Kroeger, 2003). A stratified random sample was drawn from active duty personnel below general or flag rank with at least six months tenure (population $N = 1.39$ million; sample $N = 60,415$). Women and ethnic minorities were oversampled to ensure representation. DMDC sent a cover letter introducing the study, followed 3 weeks later by the survey and directions for the web version. Follow-up letters and surveys were subsequently sent to those who had not yet participated. Responses were received from 19,960, which is an adjusted weighted response rate of 36.1% (Willis, Mohamed, & Lipari, 2002). The data in this study were drawn from the publicly released data set.

Of the respondents, 51.3% were male and 48.7% were female. The majority were Caucasians (56.8%), followed by African Americans (20.8%), Hispanics (11.9%), and “Other” (10.4%). Of the five services, the sample was 30.3% Air Force, 25.1% Army, 20.9% Navy, 15.5% Marines, and 8.2% Coast Guard. In terms of rank, enlisted personnel made up 70.2% of the sample, while warrant officers were 3.8% and officers were 26%. The modal tenure category was less than 6 years (37.6%), followed by 10 to less than 20 years (35.1%), 6 to less than 10 years (13.5%), and 20 or more years of service (12.5%). Data were not collected on age.

Participants

Because there were many more Caucasians and African Americans (both male and female) in the sample than other ethnicity groups, random sub-samples were taken to obtain approximately equal

continue to be targets of SH (Bergman, Langhout, Palmieri, Cortina, & Fitzgerald, 2002; Berdahl et al., 1996; Stockdale, 1998; Stockdale et al., 1999; Waldo, Berdahl, & Fitzgerald, 1998). Research on cross-sex differences in perceptions of SH suggests that males who do not conform to idealized patterns of masculinity are more likely to be targeted for SH (Berdahl et al., 1996; Berdahl & Moore, 2006; Demetriou, 2001; Franke, 1997; Stockdale et al., 1999). This further supports our position that social identity processes influence the organizational climate-SH relationship. Although unmeasured in most SH studies (including this one), straying from idealized masculinity patterns is a marker of outsider status; Caucasian men who are not “man enough” might be perceived as outsiders and are therefore more likely to be targeted for SH than their more “manly” colleagues. Demographics of the sample ($N = 19,960$) are similar to the overall military population (except for sex) and to the invited sample. In 2002, women were 15% of the military population (Segal & Segal, 2004), but 46.6% of the 60,415 individuals contacted to participate in the study were female (George & Kroeger, 2003; Willis et al., 2002). In terms of race/ethnicity, the military was 67% Caucasian, 22% African American/Black, and 10% Hispanic (Segal & Segal, 2004). The invited sample was 53% Caucasian, 28.6% African American, 10.6% Hispanic, 4.5% Asian/Pacific Islander, and 1.5% Native Americans or Alaskan Natives; the remainder (1.8%) were of other or unknown race/ethnicity. 3 “Other” subsumes respondents who indicated Asian-Pacific Islander, Native American, or multiethnic identities; DMDC created this classification for the public release of the data to protect respondent confidentiality.
cell sizes across sex/ethnicity; the analyses can be influenced by differences in cell sizes, with larger groups having greater influence on the results than smaller ones. Each group was also randomly split to create derivation and cross-validation samples, so model revisions could be conducted and confirmed without capitalizing on chance. Final sample sizes, following listwise deletion for missing data, for each sex-ethnicity group for both the derivation and cross-validation samples appear in Table 1.

Measures

Means, standard deviations, correlations, and Cronbach’s alphas for all scales are reported in Table 2. Items were culled from previous surveys administered to the Armed Forces as well as from the extant relevant literature (see Ormerod et al. [2003] for detailed information).

Sexual harassment was assessed with a 16-item version of the Sexual Experiences Questionnaire (Fitzgerald et al., 1988; Fitzgerald, Gelfand, & Drasgow, 1995; Fitzgerald, Magley, Drasgow, & Waldo, 1999). Items shared a stem referring to experiences over the past year with on- or off-duty military or civilian personnel while at work; responses were made on a 0 (never) to 4 (very often) scale. Four types of SH were assessed: sexist behavior (“treated you “differently” because of your gender”); offensive sexual behavior (“made unwelcome attempts to draw you into a discussion of sexual matters”); unwanted sexual attention (“made unwanted attempts to stroke, fondle, or kiss you”); and sexual coercion (“implied faster promotions or better treatment if you were sexually cooperative”).

Antecedents. Thirty-three items composed the measure of **perceived organizational tolerance of SH**. Organizational climate is a group-level phenomenon (Rousseau, 1990), and the data available in this study were at the individual-level with no means of aggregating at a higher order. Therefore, although our theoretical arguments deal with the group-level phenomenon, our methods can only cope with the individual perceptions of the group-level phenomenon.

Several kinds of items were used to measure perceived tolerance. First, three scenarios (coworker repeatedly asking for dates; coworker talking about sex and trying to get others to join in; supervisor asking for sexual cooperation in exchange for favorable assignments) were each followed by seven items including “Others in the unit would not care,” “The coworker would get in trouble with his or her supervisor” (reverse-coded), and “If another coworker were to complain about this, the complaint would be taken seriously” (reverse-scored). Responses for these items were made on a 1 (strongly disagree) to 5 (strongly agree) scale. Three additional items assessed whether particular leadership personnel (senior Service leadership; senior leadership of the installation/ship; immediate supervisor) were perceived to “make honest and reasonable efforts to stop sexual harassment, regardless of what is said officially” (all reverse-scored). Responses were made on a 3-point (no/don’t know/yes) scale. Finally, nine items assessed the extent to which antiharassment and complaint policies existed, were well publicized, and perceived as fair. Responses to these items were made on a 5-point scale ranging from “not at all” to “very large extent.” Higher scores indicate a climate that is more tolerant of SH; thus, there should be a positive relationship between climate and SH.

Additionally, three components of **job-gender context** were assessed. Respondents indicated their supervisor’s sex, the sex ratio of coworkers, and whether they were in a job not usually held by persons of their gender. Higher scores indicated a more masculine context.

Table 1

<table>
<thead>
<tr>
<th>Cell Sizes for Each Sex-Ethnicity Group</th>
<th>Caucasian</th>
<th>African-American</th>
<th>Hispanic</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derivation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>530 (710)</td>
<td>449 (640)</td>
<td>461 (666)</td>
<td>442 (599)</td>
</tr>
<tr>
<td>Female</td>
<td>479 (644)</td>
<td>459 (714)</td>
<td>392 (545)</td>
<td>338 (486)</td>
</tr>
<tr>
<td>Cross-validation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>530 (699)</td>
<td>411 (603)</td>
<td>492 (687)</td>
<td>396 (561)</td>
</tr>
<tr>
<td>Female</td>
<td>493 (663)</td>
<td>479 (713)</td>
<td>374 (542)</td>
<td>336 (483)</td>
</tr>
</tbody>
</table>

Note. First entry in each cell is sample size used in analyses; numbers in parentheses are sample sizes prior to listwise deletion for missing data.
Outcomes. Work satisfaction was assessed with six items that focused on the type of work and the skills used on the job. Sample items include “Your work makes good use of your skills” and “You are satisfied with your job as a whole.” Responses to all items were made on 5-point agreement or satisfaction scales, with 5 representing higher satisfaction.

Supervisor satisfaction was measured with nine items, including “The leaders in your work group are more interested in furthering their careers than in the well-being of their Service members” (reverse-scored). Coworker satisfaction was measured with six items, including “There is very little conflict among your coworkers” and “You like your coworkers.” Military life satisfaction was assessed with seven items tapping various aspects of military life, including “opportunities for professional development” and “your career, in general.”

Mental health distress was measured with eight items. Five items focused on mental health feelings, including “How much of the time during the past 4 weeks have you... felt calm and peaceful?” and “...felt downhearted and blue?” The remaining items focused on the extent to which respondents’ emotional problems interfered with daily activities. Responses to all items were on a 4-point scale ranging from “Little or none of the time” to “All or most of the time.”

Physical health distress was assessed with eight items. Four used the response scale described for the mental health distress items and assessed interference with work or other daily activities due to physical health; a sample item is “had difficulty performing the work or other activities that you do.” The remaining four items assessed perceptions of health, including “My health is excellent” and “I seem to get sick a little easier than other people.” Responses to these four items were made on a 4-point scale ranging from “definitely false” to “definitely true.”

Job withdrawal was indexed with 10 items that assessed activities in the last 6 months to “explore the possibility of leaving the military.” These included both passive (“Thought seriously about leaving the

Table 2
Means, Standard Deviations, Coefficient Alphas, and Intercorrelations of Study Variables

<table>
<thead>
<tr>
<th></th>
<th>M (SD)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sexual harassment</td>
<td>3.04 (6.43)</td>
<td>(92)</td>
<td></td>
</tr>
<tr>
<td>2. Perceived tolerance</td>
<td>70.58 (19.88)</td>
<td>(95)</td>
<td></td>
</tr>
<tr>
<td>3. Supervisor’s sex</td>
<td>0.85 (0.36)</td>
<td></td>
<td>-00</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>4. Coworker sex ratio</td>
<td>0.61 (0.49)</td>
<td></td>
<td>-14</td>
<td>-07</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>5. Gendered job tradition</td>
<td>0.55 (0.50)</td>
<td></td>
<td>-22</td>
<td>-11</td>
<td>15</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Work satisfaction</td>
<td>21.63 (5.90)</td>
<td></td>
<td>-21</td>
<td>-35</td>
<td>02</td>
<td>03</td>
<td>06</td>
<td>(91)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Supervisor satisfaction</td>
<td>30.39 (7.84)</td>
<td></td>
<td>-29</td>
<td>-54</td>
<td>04</td>
<td>06</td>
<td>09</td>
<td>46</td>
<td>(89)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Coworker satisfaction</td>
<td>21.78 (4.87)</td>
<td></td>
<td>-28</td>
<td>-42</td>
<td>03</td>
<td>06</td>
<td>08</td>
<td>38</td>
<td>58</td>
<td>(91)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Military satisfaction</td>
<td>24.01 (5.65)</td>
<td></td>
<td>-27</td>
<td>-45</td>
<td>00</td>
<td>01</td>
<td>04</td>
<td>52</td>
<td>61</td>
<td>44</td>
<td>(82)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Mental health withdrawal</td>
<td>12.57 (4.31)</td>
<td></td>
<td>30</td>
<td>34</td>
<td>-03</td>
<td>-04</td>
<td>-08</td>
<td>-36</td>
<td>-36</td>
<td>-33</td>
<td>-40</td>
<td>41</td>
<td>(87)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Job tenure</td>
<td>4.18 (2.51)</td>
<td></td>
<td>13</td>
<td>15</td>
<td>-02</td>
<td>01</td>
<td>01</td>
<td>-23</td>
<td>-22</td>
<td>-13</td>
<td>-27</td>
<td>17</td>
<td>20</td>
<td>(80)</td>
<td></td>
</tr>
<tr>
<td>13. Rank</td>
<td>2a</td>
<td></td>
<td>-13</td>
<td>-19</td>
<td>01</td>
<td>04</td>
<td>04</td>
<td>15</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>-16</td>
<td>-17</td>
<td>-09</td>
<td></td>
</tr>
<tr>
<td>14. Tenure</td>
<td>2a</td>
<td></td>
<td>-19</td>
<td>-24</td>
<td>01</td>
<td>09</td>
<td>12</td>
<td>18</td>
<td>16</td>
<td>19</td>
<td>17</td>
<td>-05</td>
<td>-20</td>
<td>05</td>
<td>41</td>
</tr>
</tbody>
</table>

Note. N = 7,061; Coefficient alphas are shown on the diagonal in italicized font. Dashes indicate that coefficient alpha was not appropriate (one-item measures). Correlations equal to or greater than .04 in absolute value are significant at \(p < .001 \).

aMedian response category is reported for rank and tenure. For rank, 2 represents ranks E5–E9. For tenure, 2 represents service of at least 6 years, but less than 10 years.

SEX, ETHNICITY, AND SEXUAL HARASSMENT
military”) and active (“Attended a program that helps people prepare for civilian employment”) actions. Responses were made on a dichotomous yes/no scale.

Controls. Both rank and tenure were included as control variables on SH. These were included because each represent powers (i.e., legitimate and expert; French & Raven, 1959) that differ from the societal power of hegemonic masculinity. Rank and tenure could vary with sex and ethnicity. Controlling for rank and tenure, yet still finding moderating effects of sex or ethnicity, increases understanding of the phenomenon and helps rule out alternate explanations.

Rank was assessed with a single item assessing pay grade. Titles of ranks differ across services, but pay grade is consistent across branches and corresponds to ranks within each service in the same way. Although respondents could mark their specific pay grade, DMDC grouped responses in order to protect respondent confidentiality. Categories were grouped as (1) lower enlisted, E1–E4; (2) higher enlisted, E5–E9; (3) warrant officers, W1–W5; (4) lower officers, O1–O3; and (5) higher officers, O4–O6. Similarly, although respondents could write in their years of service in the military, the tenure variable was grouped by DMDC in order to protect respondent confidentiality. Responses were grouped as less than 6 years (1), 6 years to less than 10 years (2), 10 years to less than 20 years (3), and greater than 20 years of service (4).

Measurement Evidence

Prior to assessing the hypothesized relationships, measurement models were evaluated to demonstrate the discriminability of the scales. Analyses proceeded in several stages (Anderson & Gerbing, 1988) and were conducted in LISREL 8.51 (Jöreskog & Sörbom, 2001) using sample covariance matrices and maximum likelihood estimation. Where possible, three multi-item composites were constructed for each scale balancing item content and classical test theory indicators of item quality (e.g., corrected item-total correlations) for the entire sample (Drasgow & Kanfer, 1985). An exception was made for the single items of rank and tenure, which were assigned to separate factors, with loadings set to 1.0 and error terms set to 0. This conservative way of dealing with single item indicators artificially assumes there is no measurement error (Bollen, 1989). The set of analyses was repeated twice, first with the derivation sample, and then with the cross-validation sample in order to show whether capitalization on chance has occurred and to allow for the confirmation of any changes in the model that might arise.

Derivation sample measurement model. The initial measurement model required indicators for each latent construct to load on their own factor and no other. However, this model would not converge for several of the male groups when supervisor sex, coworkers’ sex ratio, and gendered tradition of the job were constrained to load on a single job-gender context factor. Further investigation showed that there was very little variance on these items among the male groups, making it difficult for any covariance modeling to work. The model was revised so that each of these items was on a separate factor, with loadings set to 1.0 and error terms set to 0. The revision resulted in models that fit each group well (see Table 3), with high values for the Non-Normed Fit Index (NNFI), the Comparative Fit Index (CFI), and LISREL’s Goodness-of-Fit and Adjusted Goodness-of-Fit Indices (GFI and AGFI, respectively), all of which indicate better fit as they approach 1.0, and low values for the Root Mean Square Error of Approximation (RMSEA), which indicates better fit as it approaches zero. Several of these fit statistics are parsimony indices (i.e., NNFI, CFI, RMSEA), meaning they provide better values when there is both good fit and few parameters freed (Cudeck & Browne, 1983; Tucker & Lewis, 1973).

The measurement model was then reestimated twice, once to get a baseline multigroup fit (unconstrained common metric model) and again with an equality constraint placed on the factor loadings across groups. This step tested metric equivalence (i.e., whether factor loadings for the indicators were the same for all groups). The results indicated that the equality constraint did not cause a substantial decrement in fit, as the fit statistics (see Table 3) for the metric invariant model were objectively good, as well as similar to the unconstrained model. A change in chi-square to change in degrees of freedom (\(\Delta \chi^2/\Delta df\)) ratio of \((5,296.02–5,044.03)/[3,150–3,024] = 2.00\) was computed; this small value—indexing how much fit changes per degree of freedom, and demonstrating the change in fit per parameter constrained—suggested that the effect of each constrained parameter had very little effect on the overall fit of the model. Metric equivalence was demonstrated; the variables represented their latent constructs equally well for all groups.

Cross-validation sample measurement model. These analyses were replicated in the cross-validation sample. The measurement model—with the three components of job-gender context assigned to separate factors—fit the data for each group in the
cross-validation sample well (see Table 3). Then it was reestimated simultaneously in all groups, first to provide baseline fit and then with an equality constraint placed on the matrix of factor loadings. As is often the case in cross-validation, the addition of the equality constraint caused a greater decrement in fit in the cross-validation sample (Δχ²/Δdf = 2.39) than in the derivation sample, but was still objectively small. Thus, measurement invariance across sex-ethnicity groups was replicated.

Results

As with the measurement model, analysis of the theoretical propositions (see Figure 1) proceeded in several steps repeated in each of the derivation (models ending with “1”) and cross-validation (models ending with “2”) samples; these steps are summarized briefly. First, the theoretical model was fit to each group separately to determine configural invariance (i.e., the shape of the model is the same for each group). Then, the unconstrained, multigroup common metric model (Model A) was estimated, summarizing configural invariance across groups and providing a baseline of minimal fit. Model B constrained the factor loadings across groups, essentially repeating measurement model results; this controls for the influence of measurement on the fit of the theoretical model. Model C added additional constraints, requiring the structural path parameters to be equal across groups. This is the most constrained model, treating the paths as though they were identical across groups (i.e., relational invariance). Model C is a “null” model because it will be the best fitting model if none of sex, ethnicity, and their interaction moderate the perceived tolerance-SH relationship. Model D then begins the test of the hypotheses by allowing for the free estimation of the path between

<table>
<thead>
<tr>
<th>Table 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fit Statistics for Measurement Models</td>
</tr>
<tr>
<td>Fit statistics</td>
</tr>
<tr>
<td>Derivation sample</td>
</tr>
<tr>
<td>Single group models</td>
</tr>
<tr>
<td>Caucasian men</td>
</tr>
<tr>
<td>African-American men</td>
</tr>
<tr>
<td>Hispanic men</td>
</tr>
<tr>
<td>Other men</td>
</tr>
<tr>
<td>Caucasian women</td>
</tr>
<tr>
<td>African-American women</td>
</tr>
<tr>
<td>Hispanic women</td>
</tr>
<tr>
<td>Other women</td>
</tr>
<tr>
<td>Multi-group models</td>
</tr>
<tr>
<td>Unconstrained common metric</td>
</tr>
<tr>
<td>Metric invariance</td>
</tr>
<tr>
<td>Cross-validation sample</td>
</tr>
<tr>
<td>Single group models</td>
</tr>
<tr>
<td>Caucasian men</td>
</tr>
<tr>
<td>African-American men</td>
</tr>
<tr>
<td>Hispanic men</td>
</tr>
<tr>
<td>Other men</td>
</tr>
<tr>
<td>Caucasian women</td>
</tr>
<tr>
<td>African-American women</td>
</tr>
<tr>
<td>Hispanic women</td>
</tr>
<tr>
<td>Other women</td>
</tr>
<tr>
<td>Multi-group models</td>
</tr>
<tr>
<td>Unconstrained common metric</td>
</tr>
<tr>
<td>Metric invariance</td>
</tr>
</tbody>
</table>

Note. RMSEA = Root Mean Square Error of Approximation; NNFI = Non-normed Fit Index; CFI = Comparative Fit Index; GFI = Goodness of Fit Index; AGFI = Adjusted Goodness of Fit Index. Dashes indicate that the fit statistic is not provided by LISREL for the model.
perceived tolerance and SH across all groups. This model will fit best if all sex-ethnicity groups have different perceived tolerance-SH relationships. For Model E, the paths between perceived tolerance and SH were freely estimated between sex but constrained within sex across ethnicity; in other words, these paths were required to be the same for all women, regardless of ethnicity, and for all men, regardless of ethnicity, but could differ across men and women. Similarly, Model F freely estimated the perceived tolerance-SH relationship between ethnicities while constraining it within ethnicity across sex. The relative fit of Model E to Models C and D provide for the test of Hypothesis 1; the relative fit of Model F to Models C and D provide for the test of Hypothesis 2. The relative fits of Models C–F test Hypothesis 3.

Test of the theoretical model. The model fit the data of each separate group well, indicating that the form of the theoretical model was the same across groups (see Table 4). Model A1 was then estimated to provide baseline fit and Model B1 added an equality constraint on the factor loadings, reproducing measurement model results. Then, path parameters were constrained across groups (Model C1), testing the equivalence of the strength of relationships among the constructs across groups. Model C1 fit the data well and showed little misfit when compared to the model in which only the factor loadings were constrained (Model B1: $\Delta \chi^2/\Delta df = 3.28$). Examination of modification indices and residuals showed that the misfit, while small, was due to the path from perceived tolerance to SH, suggesting that this relationship could not be adequately represented by the same parameter for all groups. Thus, following the a priori analysis plan, Model D1 was estimated with the perceived tolerance-SH paths freely estimated across all groups; this resulted in an improved fit compared to the completely constrained Model C1 ($\Delta \chi^2/\Delta df = 25.50$) and a lessened decrement in fit compared to Model B1 ($\Delta \chi^2/\Delta df = 2.39$).

Next, in order to determine which personal characteristics contributed to cross-group differences, Models E1 and F1 were evaluated. Model E1 tests whether different perceived tolerance-SH paths are needed for women and for men; the results indicated that Model E1 fit the data substantially better than Model C1 ($\Delta \chi^2/\Delta df = 159.09$) and similarly to Model D1 ($\Delta \chi^2/\Delta df = 3.24$). Together, these results suggest that constraining this relationship within sex across ethnicities does little harm to fit compared to freely estimating this parameter across all groups. Thus, there is support for Hypothesis 1: sex moderates the perceived tolerance-SH relationship.

In contrast, although the fit of Model F1 is objectively good, it does not fit much better than Model C1 ($\Delta \chi^2/\Delta df = 5.99$) and fits worse than Model D1 ($\Delta \chi^2/\Delta df = 40.14$). Thus, Hypothesis 2 is not supported: ethnicity does not moderate the effect of perceived tolerance on SH. The results also do not support Hypothesis 3; there is no interaction between sex and ethnicity in the moderation of the perceived tolerance-SH relationship. Evidence for this conclusion is found in the comparisons among Models C1–F1; considering standards of both objective fit and parsimony, the set of models show that fit is best when differences in the perceived tolerance-SH relationship are permitted across sex only (Model E1).

Cross-validation of the theoretical model. To confirm these findings, cross-validation was undertaken, following the same series of analyses. Results for the baseline (i.e., each group separately, Model A2, and Model B2) and the remaining cross-validation models are reported in Table 4. Model C2 included an equality constraint on the path parameters and exhibited the same pattern of residuals and modification indices between perceived tolerance and SH as did the derivation sample, and again did not identify other parameters to be freed instead of or in addition to this. Model D2 cross-validated that fit improved when groups were permitted separate values for the perceived tolerance-SH relationship.

Next, whether sex and/or ethnicity moderated the effect of perceived tolerance on SH was tested. Again, Model E2 (moderating effect of sex) provided a better fit than Model C2 ($\Delta \chi^2/\Delta df = 138.12$) and fit similarly to Model D2 ($\Delta \chi^2/\Delta df = 2.07$), supporting Hypothesis 1 (sex moderates the organizational climate-SH relationship). Model F2 (moderating effect of ethnicity) did not fit better than Model C2 ($\Delta \chi^2/\Delta df = 0.89$) and provided a worse fit than Model D2 ($\Delta \chi^2/\Delta df = 36.96$), failing to support Hypothesis 2. Additionally, the totality of Models C2–F2 demonstrate that fit is best when there are different values for the perceived tolerance-SH relationship across sex, but not for sex-ethnicity groups, failing to support Hypothesis 3. Thus, it appears that sex but not ethnicity moderates the effect of perceived tolerance on SH.

--

4 In addition to the hypothesized relationships (see Figure 1), the covariances among the residuals of the four satisfaction constructs were freely estimated (i.e., elements of the ψ matrix were freed) because work-related satisfactions covary due to factors other than SH that were not measured in this study (e.g., job duties, job stress).
Table 4
Fit Statistics for Theoretical Models

<table>
<thead>
<tr>
<th>Fit Statistics</th>
<th>Caucasian men</th>
<th>African-American men</th>
<th>Hispanic men</th>
<th>Other men</th>
<th>Caucasian women</th>
<th>African-American women</th>
<th>Hispanic women</th>
<th>Other women</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2</td>
<td>925.22</td>
<td>1016.47</td>
<td>927.44</td>
<td>868.34</td>
<td>976.53</td>
<td>920.23</td>
<td>810.84</td>
<td>805.91</td>
</tr>
<tr>
<td>df</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
<td>422</td>
</tr>
<tr>
<td>χ^2/df</td>
<td>2.19</td>
<td>2.41</td>
<td>2.20</td>
<td>2.06</td>
<td>2.31</td>
<td>2.18</td>
<td>1.92</td>
<td>1.91</td>
</tr>
<tr>
<td>RMSEA</td>
<td>.047</td>
<td>.056</td>
<td>.051</td>
<td>.049</td>
<td>.052</td>
<td>.051</td>
<td>.049</td>
<td>.052</td>
</tr>
<tr>
<td>NNFI</td>
<td>.94</td>
<td>.92</td>
<td>.94</td>
<td>.94</td>
<td>.94</td>
<td>.94</td>
<td>.94</td>
<td>.94</td>
</tr>
<tr>
<td>CFI</td>
<td>.95</td>
<td>.93</td>
<td>.95</td>
<td>.95</td>
<td>.95</td>
<td>.95</td>
<td>.95</td>
<td>.95</td>
</tr>
<tr>
<td>GFI</td>
<td>.90</td>
<td>.89</td>
<td>.95</td>
<td>.95</td>
<td>.95</td>
<td>.95</td>
<td>.95</td>
<td>.95</td>
</tr>
<tr>
<td>AGFI</td>
<td>.88</td>
<td>.84</td>
<td>.86</td>
<td>.86</td>
<td>.86</td>
<td>.86</td>
<td>.86</td>
<td>.84</td>
</tr>
<tr>
<td>Cross-validation sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Single group models

Caucasian men
African-American men
Hispanic men
Other men
Caucasian women
African-American women
Hispanic women
Other women

Multi-group models: description

A1: unconstrained common metric
B1: factor loadings (λ_x, λ_y) constrained
C1: λ_x, λ_y, and structural parameters (β, γ) constrained
D1: λ_x, λ_y, β, γ constrained, except free estimation of γ for perceived tolerance to SH
E1: adds an equality constraint across sex only for the perceived tolerance to SH path parameter
F1: adds an equality constraint across ethnicity only for the perceived tolerance to SH path parameter

Cross-validation sample

Caucasian men
African-American men
Hispanic men
Other men
Caucasian women
African-American women
Hispanic women
Other women

Multi-group models: description

A2: unconstrained common metric
B2: factor loadings (λ_x, λ_y) constrained
C2: λ_x, λ_y, and structural parameters (β, γ) constrained
D2: λ_x, λ_y, β, γ constrained, except free estimation of γ for perceived tolerance to SH
E2: adds an equality constraint across sex only for the perceived tolerance to SH path parameter
F2: adds an equality constraint across ethnicity only for the perceived tolerance to SH path parameter

Note. RMSEA = Root Mean Square Error of Approximation; NNFI = Non-normed Fit Index; CFI = Comparative Fit Index; GFI = Goodness of Fit Index; AGFI = Adjusted Goodness of Fit Index. Dashes indicate that the fit statistic is not provided by LISREL for the model.
Hypothesis 4. The totality of evidence supports Hypothesis 4, that neither sex nor ethnicity moderate the relationships between SH and the included job-, psychological-, and health-related outcomes. First, all of the models fit the data well, suggesting that the proposed relationships represented the observed data well. Second, successful cross-validation of the models demonstrates that the cross-group equivalency of the relationships is not a chance effect. Finally, none of the modification indices associated with the parameters between SH and its outcomes in either the derivation or the cross-validation samples were large or even moderate, indicating that only one parameter was necessary to describe each SH-outcome relationship for all groups. Thus, a universal set of parameters can be used to describe the relationships between SH and these outcomes for these eight groups in the military, supporting Hypothesis 4.

Model interpretation. Common metric completely standardized parameters from Model E2 appear in Table 5. The alpha level for each specific path was set to .005 (one-tailed) because of the large number of paths estimated as well as evidence that maximum likelihood estimation provides slightly too small standard errors when dealing with multiple groups (Brummel, 2005). Consistent with previous research and theory (Fitzgerald et al., 1995, 1997; Fitzgerald, Drasgow, & Magley, 1999), SH negatively affected work-related satisfactions, including satisfaction with the military (–.18), the work itself (–.10), supervisors (–.20), and coworkers (–.18). SH was also significantly associated with physical (.17) and mental (.31) health distress. Relationships among the outcome variables were consistent with previous research, with physical and mental health distress affecting work-related satisfactions, and these variables generally affecting job withdrawal, such that increases in mental and physical health distress and decreases in work-related satisfactions were met with increases in job withdrawal.

None of the three job-gender context components were significantly related to SH; this result should be interpreted cautiously as these three variables did not conform to a latent construct in this study, although they have done so in previous research (e.g., Fitzgerald et al., 1997). The measurement of some of these items—as dichotomous variables—was less good here; dichotomous responses created a more extreme distribution of an already very masculine context (especially for male respondents). Rank was also unrelated to SH, whereas tenure was negatively related to SH (–.03) such that less tenured individuals experienced more SH.

<table>
<thead>
<tr>
<th>Antecedent</th>
<th>Outcome</th>
<th>Parameter value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organizational climate</td>
<td>Sexual harassment</td>
<td>.63 / .18</td>
</tr>
<tr>
<td>Gendered job tradition</td>
<td>Sexual harassment</td>
<td>.03</td>
</tr>
<tr>
<td>Coworker sex ratio</td>
<td>Sexual harassment</td>
<td>.02</td>
</tr>
<tr>
<td>Supervisor sex</td>
<td>Sexual harassment</td>
<td>.01</td>
</tr>
<tr>
<td>Rank</td>
<td>Sexual harassment</td>
<td>–.02</td>
</tr>
<tr>
<td>Tenure</td>
<td>Physical health distress</td>
<td>.31</td>
</tr>
<tr>
<td>Sexual harassment</td>
<td>Physical health distress</td>
<td>.17</td>
</tr>
<tr>
<td>Mental health distress</td>
<td>Work satisfaction</td>
<td>–.10</td>
</tr>
<tr>
<td>Mental health distress</td>
<td>Supervisor satisfaction</td>
<td>–.20</td>
</tr>
<tr>
<td>Physical health distress</td>
<td>Coworker satisfaction</td>
<td>–.18</td>
</tr>
<tr>
<td>Physical health distress</td>
<td>Military satisfaction</td>
<td>–.18</td>
</tr>
<tr>
<td>Physical health distress</td>
<td>Work satisfaction</td>
<td>–.35</td>
</tr>
<tr>
<td>Physical health distress</td>
<td>Supervisor satisfaction</td>
<td>–.33</td>
</tr>
<tr>
<td>Mental health distress</td>
<td>Coworker satisfaction</td>
<td>–.30</td>
</tr>
<tr>
<td>Mental health distress</td>
<td>Military satisfaction</td>
<td>–.39</td>
</tr>
<tr>
<td>Supervisor ratio</td>
<td>Work satisfaction</td>
<td>–.08</td>
</tr>
<tr>
<td>Gendered job tradition</td>
<td>Supervisor satisfaction</td>
<td>–.02</td>
</tr>
<tr>
<td>Gendered job tradition</td>
<td>Military satisfaction</td>
<td>–.06</td>
</tr>
<tr>
<td>Gendered job tradition</td>
<td>Job withdrawal</td>
<td>.07</td>
</tr>
<tr>
<td>Gendered job tradition</td>
<td>Job withdrawal</td>
<td>.07</td>
</tr>
<tr>
<td>Supervisor satisfaction</td>
<td>Job withdrawal</td>
<td>–.10</td>
</tr>
<tr>
<td>Coworker satisfaction</td>
<td>Job withdrawal</td>
<td>–.06</td>
</tr>
<tr>
<td>Coworker satisfaction</td>
<td>Job withdrawal</td>
<td>.09</td>
</tr>
<tr>
<td>Military satisfaction</td>
<td>Job withdrawal</td>
<td>–.23</td>
</tr>
</tbody>
</table>

Table 5 Path Coefficients for the Cross-Validated Final Model

a Parameter could not be constrained to be equal across sex; first path listed is for female respondents, second path is for male respondents. Values were taken from the completely standardized common metric solution.

Hypothesis 1 was supported. Sex moderated the perceived tolerance-SH relationship, with a strong relationship (.63) for women and a much weaker but still significant effect (.18) for men. Neither Hypotheses 2 nor 3 were supported.

Discussion

This paper suggested that Fitzgerald et al.’s (1994) proposition that personal vulnerability characteristics (such as sex and ethnicity) moderate the SH-outcome process is incorrect. We argued that personal vulnerability characteristics were instead important to understanding the effect of organizational climate on SH. We based our view on social identity and social power theories, which suggest that individuals with
greater power will be treated with favoritism, whereas those with less power will be treated derogatorily. We stated that in lax SH climates, perpetrators would be more likely to choose less powerful people as targets for SH, which would lead to a stronger relationship between organizational climate and SH among less powerful groups. We contended that the effect of SH on outcomes would not be moderated by personal vulnerability characteristics because of the universality of the stress response.

Our view was supported in relation to sex as a personal vulnerability characteristic. Perceived tolerance was differentially related to SH across sex, even with rank and tenure—as other indicators of power—controlled for. Also, there were no differences across sex or ethnicity in the effect of SH on its physical health, mental health, or work satisfaction outcomes. Thus, it appears that social identity and social power, with respect to at least one personal vulnerability characteristic (sex), play an important role in the SH phenomenon, affecting the relationship between perceived organizational climate and SH, but not between SH and its outcomes.

We must acknowledge that social identity and social power processes were not measured in this study. Although the framework we described is solidly built on the literature, our view remains largely untested directly. It is more accurate to say that this paper provides evidence that does not rule out the framework we have proposed, rather than providing evidence for the framework. However, this framework is the first to explain why climate-harassment relationships might be moderated by individual difference characteristics and the hypotheses based on it were reasonably drawn. Further, an alternative explanation that other forms of power (legitimate and expert, in the forms of rank and tenure) are the relevant moderators and only approximated by sex and ethnicity was minimized by including these variables as controls. Thus, although this study does not directly measure and test questions of social identity and hegemonic masculinity, it is reasonable to conclude that our results are consistent with their propositions. Further study with this framework is warranted.

Why Ethnicity Did Not Affect the Climate-SH Relationship

Although our position suggests that ethnicity could moderate the organizational climate-SH relationship, the effect was not found. On one hand, these results are somewhat surprising, given the literature on identity, outsider status, and social dominance processes (Ashforth & Mael, 1989; David & Turner, 1999; Sidanius & Pratto, 1993; Tajfel, 1982). However, it is essential to consider these processes in light of the problem: here, sexual harassment and its climate. As such, targets might be chosen mainly on their sex-based characteristics, most notably biological sex, but also on other indicators of “manliness” and “femininity” (Connell, 1985, 1995; Demetriou, 2001). Further, because hegemonic masculinity relies on sex differences in power and can subsume masculinities other than the cultural ideal in order to achieve its goals of power maintenance, targeting women (regardless of ethnicity) instead of minority men would do more to preserve sex differences in power (Connell, 1985, 1990, 1993).

We believe that there is merit for our general view of climate-harassment relationships as moderated by personal vulnerability characteristics. However, the characteristic might need to be related to harassment type. With ethnic harassment, for example, we might see that ethnicity moderates the relationship between climate and harassment, but sex does not. Similarly, we might find that both ethnicity and religion are related to harassment based on religion, to the extent that ethnicity and religion are related. If more general forms of harassment were considered, such as incivility or generalized workplace harassment (Cortina, Magley, Williams, & Langhout, 2001; Rospenda & Richman, 2004), we might find that both sex and ethnicity, as well as other characteristics, affect climate-harassment relationships. Thus, although it is an open question whether our view generalizes to other forms of harassment, we believe there are reasons to expect that generalizability of the framework can be achieved.

No Moderation of the SH-outcome Relationships

In contrast to Fitzgerald et al.’s (1994) proposition that personal vulnerability characteristics moderate SH-outcome relationships, neither sex nor ethnicity affected these relationships. As we suggested, this speaks to the universality of the stress response (Selye, 1973, 1976). For a particular level of SH, the experience has the same impact on individuals regardless of their sex and/or ethnicity. However, we do not claim that sex and ethnicity have no influence on SH-outcome relationships as targets experience SH. There is considerable evidence that individuals construe and cope with harassment differently (Buchanan & Ormerod, 2002; James, 1994, 1997;
Yoder & Aniakudo, 1995). Instead, we demonstrated consistency in the linear effect of SH on the included outcomes across sex and ethnicity; higher rates of SH were equally met with worsened personal outcomes across different sex-ethnicity groups.

It is important to note that although our statement of Hypothesis 4 (“sex and ethnicity do not moderate SH-outcome relationships”) seems to imply that we expected a null effect, our analytic structure permits the testing of “no differences,” which is a somewhat different position. Essentially, the lack of poor fit when SH-outcome relationships are constrained to be equal across groups demonstrates that these relationships are the same across groups. In other words, it shows that the difference between each pair of groups is equal to zero. Thus, the analytic structure allows for a stronger interpretation of these results than a “null hypothesis” would.

Limitations and Future Directions

We proposed that the effect of sex and ethnicity on the organizational climate-SH relationship was rooted in social identity and social power processes. Although our work contains no direct measures of these processes, it does not disqualify our work from making a contribution. We proposed a view of how personal characteristics might moderate harassment processes, but this view must be tested in future research to determine whether it generalizes to other forms of harassment and other characteristics. Only after examination of the proposed effects in other samples with other types of harassment can the validity of the general view of the role of personal vulnerability characteristics in harassment phenomena be assessed.

The lack of knowledge regarding SH perpetrators is a limitation in this study, as well as in the SH literature more generally. Here, we based our arguments on the well-established social identity and social power literatures, which have long shown that in-group members often treat out-group members with derision, especially when the in-group is threatened by the presence of the out-group, the out-group is less powerful, and the out-group might impinge on the privileged status that the in-group enjoys (Ashforth & Mael, 1989; Connell, 1985, 1995; Levine & Campbell, 1972; Moon & Rolison, 1998; Sidanius & Pratto, 1993; Sumner, 1907; Tajfel, 1982). However, to confirm that these processes are important, we need to study not only the targets of SH but also the perpetrators. Little systematic research on perpetrators exists (for an exception, see the work of Pryor, 1987; Pryor et al., 1993, 1995). Thus, we recommend that once the general process of personal vulnerability characteristics moderating climate-harassment relationships is established, efforts should be expended on examining the social identity processes as they happen in the minds of perpetrators.

Importantly, the data used in this study were collected cross-sectionally and from a single source, and the response rate was not high. Although the analyses used here assume a predictive if not causal ordering, just as regression analyses do, these data cannot truly speak to the causes or effects of SH. The model evaluated in this paper is consistent with theory and with previous longitudinal work (Fitzgerald et al., 1994; Glomb, Munson, Hulin, Bergman, & Drasgow, 1999). However, it must be acknowledged that there are other possible interpretations of the data. Notably, it is possible that the climate perceptions are a result of SH, rather than a contributor to SH. It is possible that as individuals experience more SH, they come to perceive their organization’s climate toward SH as more lax. This alternate interpretation of the data cannot be ruled out. An additional limitation in regards to organizational climate is that the construct was only assessed at the individual level (i.e., individual’s perceptions of the organization’s tolerance of SH) and not as a group- or organizational-level phenomenon. Although it is likely that individuals’ perceptions of climate reflect the organization’s actual climate, as stated previously, other events could influence perceptions of climate as well.

Other constructs important to this research were not available in the otherwise rich data set. Age, for example, is a personal vulnerability characteristic that appears to contribute to rates of SH (Fain & Anderton, 1987; Gutek, 1985) and might interact with sex in the prediction of SH (Jackson & Newman, 2004), but was not available in the data set. Similarly, negative affectivity and general job stress were not available to be used as control variables. Although we had indicators of job-gender context, there were no available indices of job-ethnicity context. This concept might be useful in further understanding SH risk, as well as an important contributor to risk for ethnic harassment. Further, although job-gender context data were available, the low variability of these items for men limited the extent to which we could examine their influence on SH or any moderation of this relationship. Future research, with more variable measures of job-gender context, should examine whether this construct also has a moderated effect on SH.

Finally, it cannot be ignored that this research was conducted in the US military, an organization with a
unique history, culture, and mission in US society. It is an open question whether these results will generalize to other populations. On one hand, the US military has a long, well-publicized history of ethnic integration (by President Truman), dating to before the Civil Rights Act; there is also greater minority participation in the military than in the general labor market or in the population as a whole (www.bls.gov; www.census.gov). On the other hand, sex segregation is still mandated in some parts of the military, with women excluded from many battlefield positions. Further, the military has the most obvious organizational status of all organizations, where symbols of rank are literally part of the uniform. Thus, there are a number of situations particular to the US military that are related to sex, ethnicity, and organizational status—all personal vulnerability characteristics—that could potentially limit the generalizability of these results because different dynamics could exist in other organizations. However, we still believe that our position that the particular type of harassment (e.g., sexual, racial) and its attendant climate could be influenced by related personal vulnerability characteristics. Future research should determine whether the effects found here generalize to other organizations.

Conclusion

It cannot be stated often enough that SH is a leadership problem. Organizational climate is a reflection of the values, assumptions, norms, and behavioral contingencies of an organization (Rousseau, 1990). SH climate probably reflects a confluence of cultural components, including tolerance for sexual behavior, tolerance of incivility, and an undervaluation of women’s roles in organizations. Only by changing the underlying cultural norms about women in organizations—without denigrating the contributions men make—can organizational climates toward SH be affected, especially in masculinized organizations such as the US military. At the heart of the matter, these cultural values are ultimately crafted, transmitted, and perpetuated by the organizations’ strategic apex. To reduce SH in the US military as well as other organizations, organizational leadership must make clear that SH will not be accepted and that perpetrators will be punished. Then, they must follow through.

References

ogy, justice, and intergroup relations (pp. 157–175). Cambridge: Cambridge University Press.

Received July 11, 2006
Revision received May 10, 2007
Accepted June 9, 2007

Correction to Probst et al. (2008)

In the article “A preliminary evaluation of SOLVE: Addressing psychosocial problems at work,” by Tahira Probst, David Gold, and Joannah Caborn (Journal of Occupational Health Psychology, 2008, Vol. 13, No. 1, pp. 32-42), the copyright attribution is incorrect. The article is in the public domain.

DOI: 10.1037/1076-8998.13.2.167