OS22 2000 Ocean Sciences Meeting

temperature regime (-5°C ≤ T ≤ 15°C). We therefore will calculate the initial concentration, which is based on solubility and compromising species in the surface water.

OS22F-02 1330h POSTER
Total Alkalinity Crossover Points in the Pacific Ocean
Paul J. Muller* (908-361-4707) and Donald L. Bullister
36) and the magnitude of the temperature changes was 3.5°C, so the current deep water probably contributed to the warming of the upper water column over the upper water column.

OS22F-03 1330h POSTER
Dissolved Inorganic Carbon Crossover Points in the Pacific Ocean
Mary R. Lamoreaux1 (1-503-589-6000), Christopher L. Sabine2 (1-503-589-6000), Robert M. Key3 (1-503-589-6000), and Donald L. Bullister2 (1-503-589-6000)

The results indicate that dissolved inorganic carbon (DIC) concentrations and the temperature regime influence the crossover points in the Pacific Ocean. The crossover points are defined as the depths where the dissolved inorganic carbon (DIC) concentrations are equal to 0.05 mmol kg⁻¹ in the surface water and 0.5 mmol kg⁻¹ in the deep water. The crossover points were determined using a combination of temperature, salinity, and dissolved inorganic carbon (DIC) concentrations. The crossover points are important for understanding the carbon cycle and the biogeochemical processes that occur in the ocean. The results indicate that the crossover points in the Pacific Ocean are influenced by the temperature regime and the dissolved inorganic carbon (DIC) concentrations.