Quality-Aware Neural Complementary Item Recommendation

Yin Zhang, Haokai Lu, Wei Niu, James Caverlee

Department of Computer Science and Engineering
Texas A&M University, USA
Item-to-Item Recommendation
Complementary Item Recommendation:
items that might be purchased together
Complementary Item Recommendation: Ground Truth

Complementary Item Recommendation: Challenges

1. How to define “complementary" distance?

2. How to balance quality vs. complementary relationship?

3. How to model complex interactions?

- Potential non-linear relationships between items features and quality.

Our Solution: ENCORE

1. Detect Complementary Items

2. Quality-Aware Recommendation

3. Transform via Neural Model

ENCORE: Neural COmplementary item REcommendation

Complement threshold
1. Detecting Complementary Items

- Influence factors

- Style-Based Complements:

 \[d_{ji}^{(cm)}(I_i, I_j) = \| (m_i - m_j)^T E_M \|_2^2 \]

 - Image Feature Vector
 - Learned Low-ranked Embedding for image

- Functional Complements:

 \[d_{ji}^{(ct)}(I_i, I_j) = \| (t_i - t_j)^T E_T \|_2^2 \]

 - Word2Vec
 - Learned Low-ranked Embedding for text

- Complementary relationship between items is influenced by style (image) and function (text) and this influence varies by items.
2. Quality-Aware Recommendation

- Complement relationship vs Item Quality

 ![Complement relationship vs Item Quality](image)

 Users may not choose the nearest complementary items but the highest-quality complementary items.

- Item Quality Estimation

 ![Item Quality Estimation](image)
3. Neural Complementary Item Recommendation

- Relationship

Complementary item recommendation is influenced by the complex interactions of item visual, textual and quality information.

- ENCORE Framework
Experiments

• **How well** does ENCORE perform versus baselines?

• What **impact** do the **design choices** of ENCORE have? (images, textual information, Non-linearity)

Dataset: Six categories in **Amazon** (Electronics, Cell Phones & Accessories (C & A), Clothing, Books, Digital Music, and Movies)

Experimental Setup: Baselines

- \(\text{LR}_A \): Logistic Regression with Average Rating
- \(\text{LR}_B \): Logistic Regression with Bayesian Rating
- \(\text{WNN} \): Weighted Nearest Neighbor
- \(\text{FNN} \): Feedforward Neural Network
- \(\text{LMT} \): Low-rank Mahalanobis Transform \[\text{McAuley SIGIR 2015}\]
- \(\text{Monomer} \) \[\text{He ICDM 2016}\]
- Variations of ENCORE (see paper)

Metrics: Accuracy, Precision at top-k

* He, Ruining, Charles Packer, and Julian McAuley. "Learning compatibility across categories for heterogeneous item recommendation." Data Mining (ICDM), 2016.
Experiments: Recommendation Effectiveness

ENCORE outperforms state-of-the-art methods in accuracy, precision@5 and precision@10 for most situations, especially for Electronics and Clothing categories.
Experiments: Case Study

<table>
<thead>
<tr>
<th>Query Items</th>
<th>Complementary Items Recommended by ENCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) IdeaPad U430</td>
<td>External DVD Writer Adapter Protection Plan Tablet</td>
</tr>
<tr>
<td>(b) iPad Air</td>
<td>Screen Protector Screen Protector Case Protection Plan</td>
</tr>
<tr>
<td>(c) Apple iPhone 5 Verizon Wireless</td>
<td>Screen Protector SIM Card Case & Screen Protector Case</td>
</tr>
</tbody>
</table>
Conclusions and Future Work

• Complementary relationships vary for different items. Items visual and textual information can help find complement items.

• Users may not choose the nearest complementary items but the highest-quality ones. Modeling item rating distribution by Bayesian inference can improve the accuracy and precision for complementary recommendation.

• Neural network structure in ENCORE provides improvement to the accuracy and precision of complement item recommendation

• Future work:
 • Personalized complementary item recommendation.
 • Effectively model textual information to improve the quality of recommendation.
Quality-Aware Neural Complementary Item Recommendation

Yin Zhang, Haokai Lu, Wei Niu, James Caverlee

Department of Computer Science and Engineering
Texas A&M University, USA

Thank you!