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Abstract—This article combines the features of a survey and a research paper. It presents
a review of some results obtained during the last decade in problems related to the dynamics
of branch and self-similar groups on the boundary of a spherically homogeneous rooted tree
and to the combinatorics and asymptotic properties of Schreier graphs associated with a group
or with its action. Special emphasis is placed on the study of essentially free actions of self-
similar groups, which are antipodes to branch actions. At the same time, the theme “free
versus nonfree” runs through the paper. Sufficient conditions are obtained for the essential
freeness of an action of a self-similar group on the boundary of a tree. Specific examples of
such actions are given. Constructions of the associated dynamical system and the Schreier
dynamical system generated by a Schreier graph are presented. For groups acting on trees,
a trace on the associated C*-algebra generated by a Koopman representation is introduced,
and its role in the study of von Neumann factors, the spectral properties of groups, Schreier
graphs, and elements of the associated C*-algebra is demonstrated. The concepts of asymptotic
expander and asymptotic Ramanujan graph are introduced, and examples of such graphs are
given. Questions related to the notion of the cost of action and the notion of rank gradient are
discussed.
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1. INTRODUCTION

The modern theory of dynamical systems studies systems defined by group actions, i.e., systems
of the form (G, X, u1), where the measure p is invariant or at least quasi-invariant (semigroup actions
are also considered, but this subject is much less developed compared with group actions). The
theory also deals with topological dynamical systems of the form (G, X), where X is a topological
space and the group G acts by homeomorphisms (topological dynamics). An important class of
actions that are considered in modern dynamics is formed by the actions of countable groups,
among which a special role is played by the actions of finitely generated groups. The study of
rough properties (such as the structure of the partition into orbits) of the actions of countable
groups is closely related to the study of countable Borel partitions, while the latter direction is

¢ Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA.
bSteklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia.
E-mail address: grigorch@math.tamu.edu

64




SOME TOPICS IN THE DYNAMICS OF GROUP ACTIONS 65

closely linked with modern studies in descriptive set theory (which traces its roots to the Russian
scientific school due to the pioneering works of N.N. Luzin and M.Ya. Suslin). The group aspect of
dynamical systems theory is also largely due to the Russian mathematical school and is associated
with the fundamental studies by N.N. Bogolyubov, .M. Gel’fand, Yu.V. Linnik, M.L. Gromov,
G.A. Margulis, and other outstanding mathematicians. From among the Western school, we should
mention, first of all, the studies by J. von Neumann, H. Furstenberg, A. Connes, and R. Zimmer.

In the studies carried out until recently, the (essentially) free actions played a major role, while
nonfree actions appeared episodically. Among the first works that dealt with nonfree actions were
the studies by the present author [70, 72] and by Vershik and Kerov [185]; the results obtained by
the author in the early 1980s were mainly of an algebraic character (related to the geometric and
asymptotic directions in group theory) and gave rise to the theory of branch groups and self-similar
groups, whereas the studies by Vershik and Kerov were mainly related to representation theory and
concentrated around the analysis of the infinite symmetric group S{co) and some other locally finite
groups. In the last decade, especially after the publications [87, 16], it has become clear that it is
important to study group actions on individual orbits for nonfree actions on measure spaces and
on topological spaces. This led to the study of Schreier graphs and orbital graphs (associated with
actions on orbits). At the same time, two years ago, Vershik put forward a new idea related to the
study of the so-called totally nonfree actions. It turned out that the approach of the present author
and Vershik’s approach have common points; in particular, branch-type actions are totally nonfree
(we will touch upon this question below). At the same time, dealing with nonfree actions for many
years, I realized the importance of free actions in the case of actions on the boundaries of rooted
trees. Therefore, in this paper I pay approximately equal attention to both types of actions and to
their relation to various topics.

Originally this paper was planned as a review of a certain range of problems concerning group
dynamics on rooted trees, the problems that were first considered about ten years ago in [79, 80, 16,
87, 95]. However, while writing this paper, I came up with new ideas, revealed new relations, and
the contours of new directions of investigations started to emerge. Therefore, the paper turned out
to be not a pure survey; it contains a lot of new observations and sketches. I devote the following
part of the Introduction to the brief description of my philosophy concerning group-action dynamics
and then list the contents of the sections of the paper.

There is a close relationship between noncommutative dynamical systems and operator algebras
(first of all, von Neumann algebras and C*-algebras). Any action with a quasi-invariant measure
generates a unitary representation of a group; thus, the problems and methods of noncommutative
dynamics are often intertwined with the problems and methods of representation theory (which,
in turn, are intertwined with the problems and methods of the theory of operator algebras). It is
well known that the spectrum of a representation (i.e., its decomposition into irreducible ones) may
be either a pure point spectrum (i.e., it may contain only finite-dimensional subrepresentations), a
continuous spectrum (i.e., it may contain only infinite-dimensional subrepresentations), or a mixed
spectrum (i.e., it may contain both finite-dimensional and infinite-dimensional subrepresentations).
For the dynamics of a single automorphism (meaning an action of the cyclic group Z), it is well
known that an action with a pure point spectrum is isomorphic to a shift action on a compact
abelian group. This classical result by von Neumann and Halmos was generalized by Mackey [131],
who proved that faithful ergodic actions with invariant measure and pure point spectrum of a locally
compact topological group are isomorphic to the actions of this group on spaces of the form K/H
equipped with the image A of the normalized Haar measure on K, where K is a compact topological
group that contains a subgroup isomorphic to the given group or its homomorphic image and H is
a closed subgroup of K.

In the classical situation of a single automorphism of a measure space, the discrete case (i.e.,
the case of a pure point spectrum) is considered trivial (or at least very simple). For the actions
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of noncommutative groups, the case of a pure point spectrum is not any simpler (and maybe even
more complicated) than the case of a continuous spectrum. Of special interest are the actions of
discrete groups G on homogeneous spaces K/ P of profinite groups (i.e., when K is a compact totally
disconnected group). If such an action is faithful, then the group G is embeddable in a profinite
group and hence is residually finite (i.e., it has a large family of finite-index subgroups; namely, the
intersection of these subgroups is a trivial subgroup). Actually, residually finite groups give precisely
the class of groups that have a faithful action with an invariant measure and a pure point spectrum.
The Mackey realization of such an action on a homogeneous space K/H may lead to the case when
the group K is either connected (and then it is a Lie group), is totally disconnected (the profinite
case), or is of mixed type (i.e., it has a nontrivial connected subgroup such that the quotient by
this subgroup is totally disconnected). The case of connected K seems to be the simplest case and
is the most studied one. All of what is written in the few paragraphs above is well known. Less
known are the following facts.

It turns out that dynamical systems of the form (G, K/P,)\), G < K, where K is a profinite
group, arise on a seemingly very different basis; namely, they are isomorphic to systems of the
form (G,0T,v), where T is a spherically homogeneous rooted tree, 8T is its boundary, G acts by
tree automorphisms, and v is a uniform measure on the tree boundary (Theorem 2.9). The first
nontrivial actions of this type were considered in [70, 72, 99]; the results obtained there are more
related to algebra. The dynamical aspect was given greater attention in [80, 87, 16, 18, 142, 86]
and other papers, which initiated a number of new directions of research at the interface between
algebra, dynamical systems theory, holomorphic dynamics, theory of operator algebras, discrete
mathematics, and other fields of mathematics. Although the theory of actions on trees and their
various generalizations (such as R-trees, hyperbolic spaces, buildings, CAT(0)-spaces, etc.) has
long become a well-developed theory (an excellent example is given by the material of Serre’s
book Trees [168]), the study of actions on rooted trees has required new concepts and methods
and allowed one to reformulate many results related to the widely used group-theory operation
of taking the wreath product in geometric and dynamic terms. This fact has made it possible to
significantly extend the application domain of this operation (especially under its iteration) and to
better understand it. The concept of branch group introduced by the present author [80, 79| is
one of the key concepts related to the actions on rooted trees. In terms of dynamical systems, the
definition of a branch group looks as follows.

Definition 1.1. (a) A group G acts on a space (X,u) with invariant measure in a weakly
branch way if there exists an increasing sequence {£,}52; of finite G-invariant partitions of X that
tends to the partition into points and is such that the action of G is transitive on the set of atoms
of each partition &, and, for any n» and any atom A € &,, there exists an element g € G acting

nontrivially on A and, at the same time, acting trivially on the complement A€ of A.

(b) An action (G, X, u) belongs to a branch type if it is weakly branch and, in addition, for
any atom A of any of the partitions &,, the subgroup ristg(A) < G consisting of elements that act
trivially on the complement A® has finite index in the restriction stg(A)|a of the stabilizer stg(A)
of the set A to this set, provided that this subgroup is identified with the restriction ristg(A4)|4.
A group is called a branch group if it has a faithful action of branch type.

Note that the definition of branch groups has never been presented in this form; instead, either
a purely algebraic definition or a geometric definition in the language of actions on rooted trees was
used [80, 19]. In Section 2, we present a geometric definition and prove that it is equivalent to the
one given above.

Branch (just-infinite) groups constitute one of the three subclasses into which the class of just-
infinite groups (i.e., infinite groups each proper quotient group of which is finite) is naturally split;
it is this fact that primarily determines the importance of branch groups in group theory.
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Another important class of groups that act on rooted trees is formed by self-similar groups, in
other words, groups generated by Mealy-type automata. Mealy-type automata are automata that
operate as transducers, or sequential machines; i.e., these are automata operating as synchronous
transducers of information that transmit, letter by letter, an input sequence of letters from a certain
alphabet into an output sequence. Invertible initial synchronous automata (more precisely, their
equivalence classes) constitute a group with a well-known (in informatics) operation of composition
of automata [56, 119]. This group depends on the cardinality of the alphabet; i.e., in fact, there
exists a sequence of groups that is indexed by positive integers (by the cardinality of the alphabet).

If we consider a more general class of automata, namely, the asynchronous automata, then, as
shown in [87], there is only one universal group, independent of the cardinality of the alphabet, in
which all groups of synchronous automata are embedded. In [87] this group was called the group
of rational homeomorphisms of the Cantor set. In addition to self-similar groups, it contains other
quite interesting subgroups, for example, the famous Thompson groups. A group is said to be self-
similar if it is isormorphic to a group generated by the states of a noninitial invertible synchronous
automaton.

The groups generated by finite automata (we call them strongly self-similar groups in this paper)
are specially distinguished. A simple example of a self-similar group is the infinite cyclic group,
which can be realized by the action of an odometer (also called an adding machine in the English-
language literature and often translated into Russian as a d-adic counter, where d is the cardinality
of the alphabet). The odometer acts in the space of right-infinite sequences of letters in an alphabet
of cardinality d > 2 equipped with a uniform Bernoulli measure, or, equivalently, on the boundary
of a d-regular rooted tree (there is a generalization of the concept of odometer to the case when the
phase space is the Cartesian product of a sequence of various alphabets). This dynamical system
with discrete spectrum is well known in ergodic theory. A considerably more complex example of a
(strongly) self-similar group is given by a group G that was constructed by the author in [70] and
then studied in [72] and many other papers. The main properties of this group are the periodicity,
intermediate growth (between polynomial and exponential), and nonelementary amenability.

Self-similar groups, especially those possessing the branch property, form quite an interesting
class of groups related to many aspects of dynarmical systems theory and other fields of mathematics.
The theory of iterated monodromy groups developed by Nekrashevych [142] has breathed new life
into holomorphic dynamics and found wide applications in the study of Julia sets and other fractal
objects [142].

Actions on rooted trees turned out to be useful for the theory of profinite groups, since any
profinite group with a countable base of open sets is embedded in the automorphism group (equipped
with the natural topology) of an appropriate rooted tree T'. Moreover, if a group G acts transitively
on the levels of a tree (or, equivalently, its action on the boundary is ergodic), then the closure G in
Aut(T'), which is a profinite group, acts transitively on the boundary 0T, and the uniform measure v
becomes the image of the Haar measure on G. In this case, the dynamical system (G,dT,v) is
isomorphic to the system (G,G/P,v), where P = stg(¢), £ € 8T. As already mentioned, the
converse is also true; namely, any action with pure point spectrum of type (G, K/P, i), where K is
a profinite group, is isomorphic to the action on the boundary of an appropriate rooted tree (which
can easily be verified by applying the construction of the action of a residually finite group on a
coset tree as described in the next section; see Theorem 2.9 there). Thus, in the Mackey theorem,
the profinite case corresponds to actions on rooted trees. Another argument in favor of rooted trees
is that, as noticed in [87], any compact homogeneous ultrametric space is isometric to the boundary
of a rooted tree with an appropriate metric on it (a weaker version of this statement is contained
in [59])

" When studying group actions, one usually assumes that the actions are essentially free, i.e., for
any nonidentity element of a group, the measure of the fixed point set is zero. One of the first
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attempts to draw attention to the case of actions that are not essentially free was made in [70]
and the following studies [72, 73, 99], which led to the concept of branch action and, accordingly,
branch group. Obviously, a weakly branch action is not essentially free. Paper [185] by Vershik
and Kerov was also one of the pioneering works on the use of actions that are not essentially free.
The importance of studying nonfree actions has recently been pointed out by Vershik in [184]. The
theme of the “free versus nonfree action” alternative runs through the larger part of our paper.

An important object that arises when studying actions that are not essentially free is an orbital
graph I'¢, £ € X, of an action (on the space X). The vertices of this graph are points of the orbit
and the edges correspond to transitions from one vertex to another under the action of a generator
(in this case, the edges are labeled by the respective generators). If the action is essentially free,
then such graphs are almost surely isomorphic to the Cayley graph constructed for the group by
means of the same system of generators. For actions that are not essentially free, the graphs T¢ are
almost surely nonisomorphic to the Cayley graphs but are isomorphic to Schreier graphs, i.e., to
graphs of the form I' =T'(G, H, A), where H < G is a subgroup (corresponding to the stabilizer of
some boundary point) and A is a system of generators. The vertices of such a graph are left (one
may also consider right) cosets gH, and two vertices fH and gH are connected by an oriented edge
labeled by a generator a € A if gH = afH. The Cayley graphs are obtained in this construction
when H is the trivial subgroup. Depending on the situation, one can consider various modifications
of the concept of a Schreier graph: one can make edges nonoriented, remove labels from them,
distinguish a vertex in a graph and consider it as a root, etc. According to the category chosen, it is
expedient to consider appropriate spaces of graphs with natural compact topology and speak of the
convergence of graphs in this topology. For example, a topology in the space of Cayley graphs was
first defined in [72] and used for studying group properties such as intermediate growth, impossibility
of presentations by a finite set of relations, Kolmogorov complexity of the word problem [74], etc.
Later, this topology and its variations were examined more carefully (first of all in [43]), and now it
plays a significant role in many investigations. Note that, in the much earlier work [42], Chabauty
introduced a topology on the set of closed subgroups of a locally compact group and applied it to
the study of lattices in such groups. The Chabauty topology is widely used in the studies of lattices
in Lie groups (see [158]). In terms of this topology one can also interpret topologies in the spaces
of Cayley graphs and Schreier graphs.

The first publications in which the authors realized the importance of studying Schreier graphs
that arise as orbital graphs of actions are [16, 87]. For example, the following simple but important
fact is borrowed from [87, Proposition 6.22].

Proposition 1.1 [87]. Let G be a finitely generated group that acts ergodically on a space
(X, ) by transformations that preserve the measure p (i.e., the measure u is quasi-invariant). Then
the Schreier graphs of the action on orbits are p-almost surely locally isomorphic to each other.

In this proposition the local isomorphism of two graphs means that, for any radius 7 and an
arbitrary vertex of any of the graphs, there exists a vertex of the other graph such that the neighbor-
hoods (subgraphs) of radius r around the chosen vertices in the two graphs are isomorphic. A similar
proposition is valid in the topological situation as well, but it requires the concept of a G-typical
point and a slight correction in the formulation of the proposition above; moreover, there are exam-
ples of graphs that are generic in the topological sense but are not generic in the metric sense [2].

Schreier graphs associated with the actions of self-similar groups and branch-type groups on the
levels and the boundary of a tree are important both for solving various problems of graph theory
and for studying asymptotic problems involving graphs and groups. These graphs model various
phenomena and reflect the complexity of many related problems. For example, the classical Tower
of Hanoi problem with four or more pegs is equivalent to calculating the distance between specific
vertices in these graphs and finding the shortest path between them in an algorithmic manner.
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See [91-93] for more details on this subject. There are a lot of questions that arise when studying
Schreier graphs; first of all, these questions are related to group theory and dynamical systerns.
These are questions on the number of ends of the graphs, on the growth, amenability, and the
possibility to define the graph by a finite system of substitution rules, on the possibility of recon-
structing a system from a generic Schreier graph, on the asymptotic behavior of the first nonzero
eigenvalue of the discrete Laplace operator, on the spectrum of the discrete Laplace operator, on
the construction of expanders, on the asymptotic behavior of random walks, on the calculation of
the cost of actions and cost of groups, etc. Many of these questions are touched upon in the present
paper or in the references cited. One of the new results given below is the construction of asymptotic
expanders on the basis of finite automata (and on the basis of related self-similar groups). It is an
interesting open problem to find out whether these graphs are true expanders. Another circle of
questions related to the study of actions on rooted trees is the study of infinite decreasing chains
of finite-index subgroups in residually finite groups, in particular, the study of the rank gradient of
these subgroups [121, 5].

As already mentioned, actions on rooted trees and the problems of self-similar groups are mys-
teriously related to many questions of dynamical systems theory. These questions arise when
restricting the actions to Lyapunov stable attractors [87, Theorem 6.16]. They are related to
substitution dynamical systems (which arise when finding presentations of groups by generators
and relations) [129, 97, 14]. The description of invariant subsets of multidimensional rational map-
pings served as a basis for a new unexpected method of solution of the spectral problem for the
discrete Laplace operator [16]. Owing first of all to the studies of Nekrashevych, the theory of
iterated monodromy groups has led to significant changes in the strategy of studies on holomorphic
dynamics [142].

In Section 8, we propose a construction of a Schreier dynamical system: given a combinatorial
structure (a Schreier graph) or algebraic data (a pair consisting of a group and its subgroup), one
can use this construction to obtain a dynamical systerm. The examples presented in Section 8 show
that in many cases the original dynamical system can be recovered from this construction if one
takes the orbital graph of the action on a specific orbit as the Schreier graph, or if one considers
the stabilizer of a point of the phase space as a subgroup of the acting group.

In essence, all new results concerning the structure of the class of amenable groups, which was
introduced by von Neumann and independently by Bogolyubov, as well as the class of intermediate
growth groups (about which Milnor asked whether it is empty) have been obtained on the basis
of studying group actions on rooted trees. An original method for proving the amenability, called
a “Miinchhausen trick,” was developed in [23, 109]. Various operator algebras associated with
actions on rooted trees (as well as with Cuntz algebras in some cases) were defined and studied
in [16, 141, 86]. It turned out that among these algebras there are both simple C*-algebras and
algebras that can be approximated by finite-dimensional algebras, similar to residually finite groups.
The classical method known as the “Schur corplement” found an unexpected application to these
algebras in [86]. This list of research directions related to actions on rooted trees is far from complete
but we stop here.

Now we briefly outline the contents of the paper. Section 2 is of preliminary character and
contains many definitions used in the paper. First of all, we define the main concepts related
to spherically homogeneous rooted trees and actions on them. We give a different (compared with
Definition 1.1) definition of branch groups and explain how to construct a rooted tree by a decreasing
chain of subgroups of finite index. We define just-infinite groups and hereditary just-infinite groups
and formulate a theorem describing the trichotomy of the structure of the class of just-infinite
groups. We give examples of groups and of their actions.

Section 3 is devoted to groups of automata and self-similar groups. We explain what wreath
recursions are. We give definitions of a contracting group and a self-replicating group.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 273 2011




70 R.I. GRIGORCHUK

Section 4 is devoted to studying essentially free actions on the boundary of a tree. Abért and
Virsg [6] proved that a randomly chosen action of a group with a finite number of generators on
a binary tree is free (moreover, the group itself is free). However, the explicit construction of an
essentially free action is, as a rule, a complicated problem. We present a number of conditions of
algebraic character that guarantee the freeness of an action and discuss the relationship between
the freeness of actions in the topological and metric senses. Although in the general case there is no
direct relation between topological freeness and freeness in the metric sense (i.e., with respect to a
measure), a remarkable fact is that for the actions of strongly self-similar groups the two concepts
are equivalent; this result was obtained by Kambites, Silva, and Steinberg [112].

In Section 5, we give specific examples of essentially free actions. We consider both the actions of
well-known groups, such as the lamplighter realized by a two-state automaton [95], and new actions,
and discuss an approach to finding out under what conditions a self-similar group acts essentially
freely. A certain role in this discussion is played by the Mikhailova subgroups of the direct product
of two copies of a free group.

In Section 6, we consider various topologies on the spaces of Schreier graphs and prove the Gross
theorem stating that any connected regular graph with even-degree vertices can be realized as a
Schreier graph of a free group.

In Section 7, we give examples of Schreier graphs related to self-similar groups. We define various
types of substitution rules and recursions for infinite sequences of finite graphs. The main objects
here are the Schreier graphs of the group G of intermediate growth and of the group called the
Basilica. The material of this section is mainly based on the publications [16, 142, 93, 31, 81, 48].

In Section 8, we describe a construction that starts with a dynamical system and yields an
associated dynamical system in the space of Schreier graphs or in the space of subgroups of a group.
This material correlates with some questions touched upon in [184]. In addition, we describe a
technique that allows one to construct an action of a group on a certain compact set by an infinite
Schreier graph of this group. This technique leads to interesting actions when the automorphism
group of the graph is small (for example, trivial). We show how this technique works in the
case of the group G and the Thompson group (for the latter we use the results of Vorobets [188]
and Savchuk [166]). An interesting fact exhibited in these examples is that on the metric level
a dynamical system is reconstructed by the Schreier graph, whereas on the topological level the
arising space and action are simple perturbations of the original phase space and an action on it. In
general, the approach proposed in this part of the paper to the study of dynamical systems should
have been called an orbit method in the dynamics of finitely generated groups, by analogy with
Kirillov’s orbit method in representation theory. We stress that while Kirillov’s orbit method is
mainly used in the representation theory of Lie groups, our approach applies to actions of countable
groups equipped with a discrete topology. In this section, we also emphasize the importance of
weakly maximal subgroups for the orbital approach to dynamical systems and present some results
from [16, 17] (most of which are known) that are related to this class of subgroups. We also
present E. Pervova’s nontrivial example of a weakly maximal subgroup of the intermediate growth
group G.

In Section 9, we discuss unitary representations of groups acting on trees and consider C*-alge-
bras associated with these representations (we also touch upon von Neumann algebras). On one of
these C*-algebras, we define a trace, which is called a recurrent (or self-similar) trace, and describe
some of its properties. Here we mainly use the results obtained in [16, 95, 141, 86, 184]. The
recurrent trace has additional useful properties in the case when a group is strongly self-similar.
For the intermediate growth group G, we give an explicit description of the values of the trace on
the elements of the group. We discuss some properties of the C*-algebras under consideration. We
show that the weakly branch groups belong to the class of ICC (infinite conjugacy class) groups,
which possess infinite (nontrivial) conjugacy classes of elements.
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In Section 10, we consider questions related to random walks on groups and graphs, the spectral
properties of the discrete Laplace operator (or, equivalently, of the Markov operator related to a
random walk), as well as the Kesten spectral measure and the so-called KNS (Kesten—von Neumann—
Serre) spectral measure, which was introduced and examined in [16, 98]. Examples of a self-similar
essentially free action of a free rank 3 group and of the free product of three copies of an order 2
group and results on the recurrent trace are used for constructing asymptotic expanders. We
discuss various questions concerning the asymptotic behavior of infinite graphs and infinite covering
sequences of finite graphs.

Finally, in Section 11 we discuss questions related to the concept of the cost of actions of
countable groups and of countable Borel equivalence relations, as well as the concept of rank gradient
of infinite decreasing sequences of finite-index subgroups. This material is based on the studies
by G. Levitt, D. Gaboriau, M. Lackenby, M. Abért, and N. Nikolov. We discuss the problems
of amenability and hyperfiniteness of groups and equivalence relations and present classical results
associated with the names of H. Dye, J. Feldman, C. Moore, A. Connes, and B. Weiss. We introduce
the concepts of self-similar and self-replicating equivalence relations and show that the latter are
“cheap” in the sense of cost.

This paper is mainly a survey that summarizes the results of research carried out during the
last decade in a certain direction. However, it also presents some new observations. Moreover, the
paper formulates many open questions. I hope that this paper will stimulate further investigations
in the field of dynamics with a pure point spectrum, dynamics of actions on trees, and other related
fields of mathematics.

Since the paper is addressed to readers involved in different fields of mathematics, starting
from algebraists and ending with specialists (or beginners) in dynamical systems theory, theory of
operator algebras, and discrete mathematics, in many places I go into greater detail than I should
have to if the paper was addressed only to the reader involved in one specific field. Sometimes, I do
not consider it beneath me to remind an already introduced notion or an already formulated result.
I hope that the reader will not judge me harshly for this.

2. ACTIONS ON ROOTED TREES

Let T = {my}32;, mn > 2, be a sequence of positive integers (called a branch index in what
follows) and Ts be a spherically homogeneous rooted tree defined by the sequence 7. This tree
has a root vertex denoted by &, m; vertices of the first level, mymgy vertices of the second level,
and generally myms ... m, vertices of the nth level, n =1,2,.... Each vertex of level n has m, 1
“successors” situated at the next level and connected by an edge with this vertex. A clear idea
of a rooted tree is given by Fig. 2.1. Note that according to the tradition established in Russian
mathematics, a tree is depicted top down.

The norm of a vertex u (denoted by |ul) is the level to which this vertex belongs. When the
sequence 7% is constant, i.e., m, = d for some d > 2 and any n, the tree Ti7 is called a regular

Fig. 2.1. A spherically homogeneous rooted tree.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 273 2011




