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ABSTRACT. This is an expostion of various aspects of amenability and paradoxical decom-
positions for groups, group actions and metric spaces. First, we review the formalism of
pseudogroups, which is well adapted to stating the alternative of Tarski, according to which a
pseudogroup without invariant mean gives rise to paradoxical decompositions, and to defining
a Fglner condition. Using a Hall-Rado Theorem on matchings in graphs, we show then for
pseudogroups that existence of an invariant mean is equivalent to the Fglner condition; in the
case of the pseudogroup of bounded perturbations of the identity on a discrete metric space,
these conditions are moreover equivalent to the negation of the Gromov’s so-called doubling
condition, to isoperimetric conditions, to Kesten’s spectral condition for related simple ran-
dom walks, and to various other conditions. We define also the minimal Tarski number of
paradoxical decompositions associated to a non-amenable group action (an integer > 4), and
we indicate numerical estimates (Sections I11.4 and IV.2). The final chapter explores for metric
spaces the notion of superamenability, due for groups to Rosenblatt.
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I. Introduction

The present exposition shows various aspects of amenability and non-amenability. Our
initial motivation comes from a note on the Banach-Tarski paradox where Deuber, Si-
monovitz and Sés indicate one kind of paradoxical decomposition for metric spaces, in
relation with what they call an “exponential growth” property [DeSS]. Our first purpose is
to revisit their work which, in our view, relates paradoxical decompositions with amenabi-
lity rather than with growth (see in particular Observation 33 below).

For this, we recall in Chapter II the formalism of set-theoretical pseudogroups which is
well adapted to showing the many aspects of amenability: existence of invariant finitely
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additive measures, absence of paradoxical decomposition, existence of Fglner sets and
1soperimetric estimates. We also state one version of the basic Tarski alternative : a
pseudogroup is either amenable or paradoxical.

In Chapter III, we specialize the discussion to metric spaces and pseudogroups of
bounded perturbations of the identity; metric spaces, there, are discrete (except at the
very end of the chapter). On one hand, this is an interesting class, with many examples
given by finitely generated groups. On the other hand, it provides a convenient setting
for proving Fglner characterization as stated in Chapter II. We discuss also the Kesten
characterization in terms of simple random walks.

For a group G which is not amenable, we estimate in Chapter IV the Tarski number
T(G) € {4,5,...,00}, an integer which indicates the minimal number of pieces involved
in a paradoxical decomposition of G. It is known that 7(G) = 4 if and only if G has a
subgroup which is free non abelian. We show that one has 5 < 7(G) < 34 [respectively
6 < 7(G) < 34] for some torsion-free groups [resp. for some torsion groups| constructed
by Ol'shanskii [O11], and 6 < T (B(m,n)) < 14 for B(m,n) a Burnside group on m > 2
generators of odd exponent n > 665 [Ady].

Building upon the seminal 1929 paper by von Neumann [NeuJ], Rosenblatt has defined
for groups a notion of superamenability. He has shown that superamenable groups include
those of subexponential growth, and it is not known whether there are others. In Chapter
V, we investigate superamenability for pseudogroups and for discrete metric spaces; in
particular, we describe a simple example of a graph which is both superamenable and of
superexponential growth.

We are grateful to Joseph Dodziuk, Vadim Kaimanovich, Alain Valette and Wolf-
gang Woess for useful discussions and bibliographical informations, as well as to Laurent
Bartholdi for Presentation 12, Example 74 and his critical reading of a preliminary version
of this work.

II. Amenable pseudogroups
II.1. PSEUDOGROUPS

1. Definition. In the present set-theoretical context, a pseudogroup G of transformations
of a set X is a set of bijections 7y : S — T between subsets S,T of X which satisfies the
following conditions (as listed, e.g., in [HS1]):

(i) the identity X — X isin G,

(i) if y: S — T is in G, so is the inverse v ™1 : T — S,

(iii) if y: S = T and § : T'— U are in G, so is their composition §v: S — U,

(iv) if y: S — T isin G and if S’ is a subset of S, the restriction v|S’ : " — v(5’) is in

g,

(v) if v: S — T is a bijection between two subsets S,T" of X and
if there exists a finite partition S = Uj<,;<,S; with v]S; in G for j € {1,...,n},
then v is in G (where U denotes a disjoint union).
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Property (v) expresses the fact that G is closed with respect to finite gluing up; together
with (iv), they express the fact that, for a bijection 7, being in G is in some sense a local
condition.

For v : S — T in G, we write also a(y) for the domain S of v and w(7) for its range
T. For “a pseudogroup G of transformations of a set X”, we write shortly “a pseudogroup
(G, X)”, or even “a pseudogroup G”.

2. Examples. (i) Any action of a group G on a set X generates a pseudogroup G¢, x. More
precisely, a bijection v : S — T is in Gg x if there exists a finite partition S = Li<;<pS;
and elements g1, ..., g, € G such that y(z) = g;(z) for all x € §;,5 € {1,...,n}. If there
exists such a +, the subsets S,T of X are sometimes said to be G-equidecomposable (or
“endlich zerlegungsgleich” in [NeulJ]).

In case G = X acts on itself by left multiplications, we write G instead of Gg .

(ii) Piecewise isometries of a metric space X constitute a pseudogroup PiZs(X), gen-
erated (in the obvious way) by the partial isometries between subsets of X. Observe that
it may be much larger than the pseudogroup associated as in the previous example with
the group of isometries of X; see for example the metric space obtained from the real line
by gluing two hairs of different length at two distinct points of the line.

(iii) For a metric space X, the pseudogroup W(X) of bounded perturbations of the
identity consists of bijections v : § — T such that sup, g d(v(z),z) < oo. This is the main
example in [DeSS], where it is called the group of wobbling bijections; the notion seems to
come from the important work by Laczkovich [Lacz]. See also Item 0.5.CY in [Gro3|.

(iv) Given a pseudogroup G of transformations of a set X and a subset A of X, the set of
bijections v € G with a(v) C A and w(7y) C A constitute a pseudogroup of transformations
of A, denoted below by G(4).

(v) From a pseudogroup (G, X) and an integer k > 1, one obtains a pseudogroup Gy of
transformations of the direct product X of X and {1,...,k}, generated by the bijections

of the form
Sx{j} — Tx{j'}
(z,5) —  (v(2).4)
where v: S — T isin Gand 1 < j,j <k.

3. Remarks. The above notion of pseudogroup of transformations is strongly motivated
by the study of Banach-Tarski paradoxes, as shown by the first three observations below.

(i) The very definition of a paradoxical decomposition with respect to a group action
involves the associated pseudogroup as in Example 2.i.

(ii) Pseudogroups are easily restricted on subsets as in Example 2.iv. This is important
for the study of superamenability (see Chapter V below).

(iii) Pseudogroups are easily induced on oversets, as in Example 2.v. This is useful in
the setting of a pseudogroup constituted by bijections with domains and range required to
be in a given algebra (or o-algebra) of subsets of X (for example the measurable sets of a
measure space), and in corresponding variations on the Tarski alternative [HS1].
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(iv) For a pseudogroup (G, X), the set
R={(r,y) e X xX ‘ there exists v € G such that 2 € a(v) and y = y(z) }

is an equivalence relation. A natural problem is to study the existence of measures p
on X such that, for each measurable subset A of X of measure zero, the saturated set
{x € A| there exists a € A with (z,a) € R} has also measure zero, see [CoFW], [Kai2],
[Kai3].

(v) In a topological context, Conditions (iv) and (v) in Definition 1 are usually replaced
by a condition involving restrictions to open subsets; see [Sac] and page 1 of [KoNo].

(vi) Consider a metric space X, the pseudogroup W(X) of Example 2.iii, and a subspace
A of X. Tt is then remarkable (though straightforward to check) that the pseudogroup W(A)
coincides with the restriction of W(X) to A in the sense of Example 2.iv.

II.2. AMENABILITY AND PARADOXICAL DECOMPOSITIONS - THE TARSKI ALTERNATIVE

Let (G, X) be a pseudogroup. We denote by P(X) the set of all subsets of X.
4. Definitions. A G-invariant mean on X is a mapping p : P(X) — [0, 1] which is

(fa) finitely additive: p(S1US2) = p(S1) + p(S2) for S1,S2 € X with S1 NSy =0,
(in) invariant: p(w(y)) = p(a(y)) for all v € G,
(no) normalised: pu(X) = 1.

More generally, for A C X, a G-invariant mean on X normalised on A is a mapping
p: P(X) — [0, 00] which satisfies Conditions (fa) and (in) above, as well as

(no') p(A) = 1.

The pseudogroup G is amenable if there exists a G-invariant mean on X, and the triple
(G, X, A) is amenable if there exists a G-invariant mean on X normalised on A. These
notions are essentially due to von Neumann [NeuJ].

5. Definition. A paradozical G-decomposition of X is a partition X = X; LI X5 such that
there exist 7, € G with a(v;) = X, and w(vy;) = X (j =1,2).

A pseudogroup (G, X) is paradozical if it has a paradoxical G-decomosition, or equiva-
lently (because of Theorem 7 below) if it is not amenable.

6. Remarks. (i) There cannot exist such paradozical G-decomposition if G is amenable.

This is obvious, because (with the notations of Definitions 4 and 5) one cannot have
1= u(X) = p(X1) + p(Xz) = 2 !

It is remarkable that there is no further obstruction, as Theorem 7 shows.

(ii) Let G, H be two pseudogroups of transformations of the same set X, with G C H. If
‘H is amenable, then so is G; if G is paradoxical, then so is H. This will be used for example
in the proof of Theorem 25 (Item 36).

(iii) In short-hand, Definition 5 reads 2[X] 2 [X]. It has variations in the literature; for

n

example, one may ask (n + 1)[X] < n[X], or more precisely :
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there exists an integer n > 1 and elements v1,..., vy € G such that

{je{l,...,N} |z €a(y)}| >n+1forall z € X, namely Z?Zl [a(v5)] > (n+1)[X],
and

[{j€{l,....N} |z €w(y)}| <nforall € X, namely 35 [w(v;)] < n[X].

Then Remark (i) still holds for the same obvious kind of reason. Indeed, the variation is
equivalent to Definition 5, as can be seen either with manipulations a la Cantor-Bernstein
(see for example [HS1]) or as a consequence of the following theorem.

7. Theorem (Tarski alternative). Let G be a pseudogroup of transformations of a set
X. Exactly one of the following holds :

- either G is amenable,
- or there exists a paradoxical G-decomposition of X.

Let moreover A be a non-empty subset of X and let G4y be the pseudogroup obtained by
restriction of G, as in FExample 2.iv. Fxactly one of the following holds :

- either there exists a G-invariant mean on X normalised on A,
- or there exists a paradoxical G a)-decomposition of A.

The theorem originates in Tarski’s work : see [Tar3], as well as earlier papers by Tarski
([Tarl], [Tar2]).

One proof for pseudogroups has been written up in [HS1]. Its starting point is an
application of the Hahn-Banach theorem, to the Banach space ¢°°(X) of bounded real-
valued functions on X, to the subspace d*°(X) of finite linear combinations of functions of
the form x (w(7)) —x(a(y)) for some v € G (where x(A) denotes the characteristic function
of A), and to the open cone C of functions F' € />°(X) such that inf,c x F(x) > 0; one has
to observe that G has an invariant mean if and only if d*°(X)NC = ). This proof uses also
ideas of Banach, Cantor-Bernstein, Hausdorff, Konig, Kuratowski and von Neumann.

We give here another proof, based on what we call the Hall-Rado theorem (Theorem
35), which is essentially the “Konig theorem” of [Wag]. More precisely, the first statement
of Theorem 7 is a straightforward consequence of Theorems 25 and 32, and the second
statement follows (see the sketch below).

Much more complete information on all this can be found in Wagon’s book (see [Wag],
in particular Corollary 9.2 on page 128). Important more recent work in this area include
[DouF].

Let us sketch the proof of the second statement of the theorem. Assume that the
pseudogroup G(4) is not paradoxical, so that, by the first statement, there exists a G4)-
invariant mean p4 : P(A) — [0, 1]. Define then a mapping p : P(X) — [0,00] as follows;
for a subset Y of X, if there exists a partition ¥ = U;<;<,Y; and elements v; : Y1 —
Bi,...; Yy — By in G with By, ..., B, C A, thenset u(Y) = 3°7_, pa(B;); otherwise,
set u(Y) = oo. Then one checks that p is well defined and that it is a G-invariant mean on
X normalised on A.

8. Remark. A famous theorem of E. Hopf can be expressed very much like Tarski’s
alternative.
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Let T : X — X be an ergodic non-singular transformation of a finite probability space
(X, B, m), with m non-atomic. Let [[T']] denote the set of all 1-1 non-singular transforma-
tions ¢ : U — V such that ¢(x) belongs to the T-orbit of = for all z € U (with U,V € B);
this [[T] is the full groupoid of T of Katznelson and Weiss [KaWe, page 324]. For two
measurable subsets A, B of X, say that A is dominated by B, and write A < B, if there
exists a measurable subset B’ of B with m(B \ B’) > 0 and a bijective transformation
¢: A— B'in [[T]].

Hopf alternative. (i) In the situation above, exactly one of the following holds :

- there exists a T-invariant probability measure on (X, B) equivalent to m,
- one has X < X.

(ii) Also, exactly one of the following holds :

- there exists a T-invariant infinite measure on (X, B) equivalent to m,
- one has X < X, and there exists A € B with m(A) > 0 such that A is not dominated
by A.

In other words, (7) says that there is a finite invariant measure in the measure class m if
and only if X itself is not “Hopf-compressible”, and (ii) that there is an infinite invariant
measure in the measure class m if and only if X is Hopf-compressible and some measurable
subset of X of positive measure is not Hopf-compressible [Weis].

If there exists a T-invariant probability measure [respectively infinite measure] on (X, B)
equivalent to m, then T is said to be of type IT; [resp. of Type I1..].

11.3. THE CASE OF GROUPS

For any group GG, we consider first the pseudogroup Gg which is associated with the
action of GG on itself on the left, as in Example 2.i.

Let now G be a group generated by a finite set S. Let g : G — N denote the corre-
sponding word length function; thus ¢g associates to g € G' the smallest integer n > 0 for
which there exist s1,...,5, € SUS™! with g = s1...s,. Let d;, and dr denote respectively
the left and right invariant metrics on G defined by

dr(z,y) = ls (z7'y)
dr(z,y) = s (xy_l)

for all z,y € G.

Besides G, we consider also the pseudogroup PiZs(G) of piecewise isometries of the
metric space (G,dr), as in Example 2.ii, as well as the pseudogroup W(G) of bounded
perturbations of the identity of the metric space (G, dg), as in Example 2.iii. It is easy to
check that the pseudogroup W(G) does not depend on the choice of S.

9. Observation. With the notations above, one has Go = W(GQG) for any finitely generated
group G.
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Proof. 1t is obvious that G C W(G). Conversely, let v : U — V be in W(G). Set

k = supd(vy(z),z)
zeU

B ={geGlls(g) <k}
and observe that B is a finite subset of GG. For each g € B, set
Ug = {zeUlr(z) =gz}

One has U = UgyepU, and y(x) = gz for all x € U,. Hence v € G¢. O

It is clear that G C PiZs(G). It is also clear that Go # PiZs(G) in general (example :
for G = 7Z generated by {1}, the isometry n — —n is not in Gz).

10. Definition. A group G is amenable if the pseudogroup G is amenable.
If G is finitely generated, the previous observation shows that one may equivalently
define G to be amenable if the pseudogroup W(G) is amenable.

11. On the class of amenable groups. Amenability may be viewed as a finiteness
condition. One of the main problems is to understand various classes of amenable groups,
for example those which are finitely generated or finitely presented. (Recall that a group
is amenable if and only if all its finitely generated subgroups are amenable; see Theorem
1.2.7 in [Grel] and Observation 19 below.)

The following question, implicit in [NeulJ], was formulated explicitely by Day, at the end
of § 4 in [Dayl] : does every non-amenable group contain a free group on 2 generators 7 As
much as we know and despite several misleading allusions in the literature to some “von
Neumann conjecture”, von Neumann himself has never conjectured that a non-amenable
group should contain a non-abelian free subgroup !

Day’s question was answered negatively by A. Yu. Ol'shanskii [Ol1], Adyan [Ady2]
and Gromov [Gro2, Corollary 5.6.D]; the first two use cogrowth criteria (see Item 52
below) and Gromov uses Property (T). For infinite groups, this Property (T) of Kazhdan
[Kaz| is (among other things) a strong form of non-amenability : see [Sch] and [CoWe].
However, when restricted to the class of linear groups (i.e. of groups which have faithful
finite-dimensional linear representations), Day’s question can be answered positively : this
follows from an important result due to Tits [Tit].

M. Day has defined the class EG of “elementary amenable groups”, which is the small-
est class of groups which contains finite groups and abelian groups, and which is closed
under the four operations of (i) taking subgroups, (ii) forming factor groups, (iii) group
extensions and (iv) upwards directed unions. He has asked (again in [Dayl]) whether the
class EG coincides with the class AG of all amenable groups (see also [Cho]).

Today, we know that there are finitely generated groups in AG which are not in EG;
this has first been shown using growth estimates ([Gri2], [Gri3]), and more recently by an
elegant argument of Stepin (see [Ste], based on [Gri2]).
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One knows also finitely presented groups in AG which are not in EG; more precisely,
the finite presentation

tTlat =aca t't=d ttct=b tldt=c

a? =% = = d? = bed = (ad)* = (adacac)? =1
G = ( a,b,c,d,t ‘

defines an amenable group which is not elementary amenable ([Gri6], [Gri7]).

12. Bartholdi’s presentation. It has later been shown that the group G of [Gri6] has a
presentation with two generators only (namely a and ¢) and four relations of total length
109 = 2 + 19 + 32 + 56. Here are Bartholdi’s computations, where T' stands for ¢~ 1.

The relations ¢ = aTata, d = tcT and b = Tct show first that the relations ¢ = d? =
b?> = 1 may be deleted in the presentation above, and second that the generators b,c,d
may also be deleted. Thus

G:<a,t

where ¢ holds for aTata. The relation TctctcT = 1 implies T?ctctc = 1 = tcT?cte (by
conjugation), hence also (using ¢! = ¢)

a® = TeteteT = (ateT)* = (atcTacac) =1
T?ct? = tcT

1 = (T?ctetc) (1ch20tc)_1 = T?ct? (teT) "

using free simplifications, so that the relation T?ct?> = tcT may also be deleted. Finally,
one observes that atcT is conjugate to Tatc = (Tata)? so that (atcT)* = 1 may be written
(Tata)® = 1, and one observes also that atcTacac is equal to ataTataTaaT ataaaTata, so
is conjugate to T?ataTat?aTata. One obtains finally Bartholdi’s presentation

G:<a,t

13. Categorical considerations. For a given integer k, let F} be the free group on k
generators {si,..., sk} and let X}, denote the space of all marked groups on k generators,
namely of all data Fy — I', where — indicates a homomorphism onto. There is an
appropriate topology on X}, for which two quotients 7 : F, — I' and 7’ : F}, — I are
“near” each other if the corresponding Cayley graphs have balls of “large” radius around
the unit element which are isomorphic. This makes X a compact space; one shows for
example that the closure of the subset of X} corresponding to finite groups contains the
subset of X corresponding to residually finite finitely presented groups. For details, see
[Gri2], [Cha] and [Ste].
It would be interesting to find pairs (Y, Z) where
e Y is a compact subspace of Xy,
e 7 is a “small” (e.g. countable) subset of Y, consisting of amenable groups,

a® = TaTatataTatataTataT = (Tata)® = (T?ataTat*aTata)* =1 > :
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e Y\ Z consists of non-elementary amenable groups, or more generally
the set of elementary amenable groups in Y \ Z is of first category.
The point is that the space Y contains a dense G5 consisting of amenable groups which are
not elementary amenable. (As usual a G5 in Y is a countable intersection of open subsets
of Y7)

One such pair has been constructed in [Gri2] and analized in [Ste|, with Z a countable
set of virtually 2-step solvable groups and with Y \ Z consisting of infinite torsion groups.
Understanding other such pairs would probably help us understanding the closures of AGy
and of EGy, in X}, where AG), [respectively EGj| denotes the subspace of X}, containing
marked groups 7 : Fj, — I" with I" amenable [resp. elementary amenable].

14. Variation on one question of Day. Let us denote by BG the smallest class of
groups containing finitely generated groups of subexponential growth (see Definition 64)
and closed with respect to the four operations of Day listed in 11 above, namely with
respect to (i) taking subgroups, (ii) forming factor groups, (iii) group extensions and (iv)
upwards directed unions.

Question: does one have BG=AG ?

15. Other definitions of amenability for groups; topological groups. The natural
setting for amenability of groups is that of topological groups, mainly locally compact
groups. A substancial part of the theory consists in showing the equivalence of a large
number of definitions.

Let G be a Hausdorff topological group. Denote by C®(G) the Banach space of bounded
continuous functions from G to C, with the supremum norm. For ¢ € C*(G) and g € G,
let ,& € C°(G) be the function x — f(g~'z). Denote by UC’(G) the closed subspace of
Cb(G) of functions ¢ for which the mapping g +— ,¢ from G to C®(G) is continuous. The
following are known to be equivalent (see Theorem 3 in [Day2] and Theorem 4.2 in [Ric2])

e there exists a left-invariant mean on UC®(G),
e any continuous action G x () — @ of GG by affine transformations of a non-empty compact
convex

subset ) of a Hausdorff locally convex topological vector space has a fixed point.

The group G is amenable if these properties hold. In case G is assumed to be locally
compact, here is a short list of other equivalent properties :

e there exists a left-invariant mean on C*(G),
e there exists a left-invariant mean on L>°(G),
e the unit representation of GG is weakly contained in the left regular representation of G
on L3(G),
e for any continuous action G x X — X of G by homeomorphisms of a non-empty compact
space X,
there exists a G-invariant probability measure on X.
The last point, on G-invariant measures, goes back to a paper by Bogolyubov, see [Bogl],

quoted by Anosov [Ano]. This paper, published in Ukrainian in 1939, has remained un-
noticed; the paper does not quote von Neumann [Neul], and it is conceivable that Bo-
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golyubov has introduced independently the notion of amenability. About relations be-

tween amenability, growth and existence of invariant measures, we would also like to quote
[Bekl].

The list above is very far from being complete ! (See 16; other items could be : several
formulations of the Fglner property for locally compact groups, the Reiter-Glicksberg
property, the existence of approximate units in the Fourier algebra, ... .) See, e.g., the
books [Grel], [Pat] and [Wag], as well as [Rei, Chapter 8], [Eym2], [Zim, Chapter 4], [Wag,
in particular Theorem 10.11] and [Lub, Chapter 2]. In case of a countable group (with the
discrete topology), here is the most recent characterization of amenability with which one
of the authors has been involved : a countable group G is amenable if and only if, for any
action of G' by homeomorphisms on the Cantor discontinuum K, there exists a probability
measure on K which is invariant by G [GiH2].

We would like to point out that some attention has been given to topological groups
which are not locally compact (in [Ric2, § 4] among other places). For example, let U(H)s:
be the group of unitary operators on a separable infinite dimensional Hilbert space H, with
the strong topology; then U(H)s; is amenable, namely there exists a left invariant mean on
UC® U(H)st) , but there does not exist any left invariant mean on C® (U(H)s;) . Moreover,
this group does have closed subgroups which are not amenable; indeed, if H = ¢2(F,,) for a
free group F,, of rank n > 2, then U(H)s; has clearly a discrete subgroup isomorphic to F;,,
as observed in [Har3]. Here is another example involving non locally compact topologies;
let G be the group of real points of an R-algebraic group and let I' be a subgroup of G
which is dense for the Zariski topology; if I' is amenable, so is G (see [Moo|, and Theorem
4.1.15 in [Zim]).

Let us mention the following : for a locally compact group G which is almost connected
(this means that the quotient of G by the connected component of 1 is compact), the three
properties

G is amenable,

G does not contain a discrete subgroup which is free on 2 generators,

G/r(G) is compact,
are equivalent. This is due to Rickert : Theorem 5.5 in [Ric2], building on [Ricl]; see also
Theorem 3.8 in [Pat]. Recall that the solvable radical r(G) of a locally compact group
G is the largest connected closed normal solvable subgroup of G [Iwa]. (One may define
similarly the amenable radical of G as the largest amenable closed normal subgroup of G;
see Lemma 1 of § 4 in [Dayl]| and Proposition 4.1.12 in [Zim].)

This result of Rickert reduces in some sense the problem of understanding the class
of amenable locally compact groups to totally disconnected groups; we believe moreover
that the most important (and difficult) part of the problem is that which concerns finitely
generated groups.

16. Cohomological definitions of amenability. There are various (co)homological
characterizations of amenability.

One is that of Johnson : a group G is amenable if and only if H!(¢*(G), M*) is reduced
to {0} whenever M* is a G-module dual to some Banach G-module M [Joh]. It follows
that the bounded cohomology of an amenable group is always reduced to {0}; this is given
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by Gromov (Section 3.0 in [Grol]) together with a reference to an unpublished explanation
of Philip Trauber - hence the name “Trauber theorem”.

Another one is in terms of “uniformly finite homology”; it applies to finitely generated
groups, and indeed to metric spaces in a much broader class. Such a space X is not
amenable if and only if the group Hy 7(X) is reduced to {0} (in this statement, one may
take R as coefficients, or equivalently Z); this is one way to express that Fglner condition
does not hold in X [BIW1].

It seems also appropriate to quote here a theorem of Brooks : let GG be the covering group
of a normal covering M of a compact manifold X; then G is amenable if and only if 0 is
in the spectrum of the Laplace-Beltrami operator acting on the space of square-integrable
functions on M (see [Bro|, or the exposition in [Lot]).

There are other conditions in terms of other “coarse” (co)homology theories of the
groups, or in terms of K-theory of appropriate algebras associated to the group (see various
preprints by G. Elek, including [Ele2]).

Let us mention that there are interesting cohomological consequences of amenability. For
example, let G be a group which has an Eilenberg-MacLane space K (G, 1) which is a finite
complex; if G is amenable, then G has Euler characteristic x(G) = 0 (a particular case of
Corollary 0.6 of Cheeger and Gromov [ChGr], who use #2-cohomology methods, and also
a result of B. Eckmann, who uses other methods [Eck]). Also, let G be the fundamental
group of some closed 4-manifold M; if G is infinite and amenable, then x(M) > 0 [Eck].

17. Variations on amenability of groups. There are standard variations on the
pseudogroup Ga and the notion of amenability.

One is to consider the pseudogroup Ggx ¢ associated as in Example 2.i with the action
of G x G on G defined by (z,y) o g = xzgy~'. It is classical that Ggx¢ is amenable if and
only if G5 is amenable. In other words : G has a left invariant mean if and only if G has
a two-sided invariant mean (Lemmas 1.1.1 and 1.1.3 in [Grel]).

Another variation is to consider the action of G on G\ {1} defined by z 0 g = zgz~
and the notion of inner amenability for a group. It is obvious that an amenable group
is inner amenable. Straightforward examples (such as non-trivial direct products of free
groups and amenable groups) show that there are non-amenable groups which are inner
amenable. More on this in [BeHa|, [Eff], [GiH1] and [HS2].

A third variation is to consider a subgroup H of G and the pseudogroup Gg /g associated
with the natural action of G on G/H. The subgroup H is said to be co-amenable in G
if G m is amenable. There is a comprehensive analysis of this notion in [Eyml]; see
also [Bekk], in particular Theorem 2.3. In case G = F,, is a free group of finite rank, a
criterion for co-amenability of a subgroup in terms of cogrowth is given in [Gril] (see Item
52 below). One may generalize actions of G on G/H to actions of G on locally compact
spaces; co-amenability of H is then a particular case of a notion of amenability for actions
known as amenability in the sense of Greenleaf [Gre2].

The notion of amenability for a group and that of co-amenability for a subgroup may
both be viewed as particular cases of a notion for G-mappings, for which we refer to [AnaR].
In case of a group G with the discrete topology, it can be defined as follows. Let X,Y be
two Borel spaces given with measure classes u, v and with actions of G by non-singular
invertible Borel mappings, and let ¢ : X — Y be a surjective Borel mapping such that

1
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¢«(p) = v; thus there is a canonical linear isometric mapping by which we identify the
Banach space L>(Y,v) to a closed G-invariant subspace of L>°(X, ). Say the mapping
¢ is amenable if there exists a G-equivariant linear mapping F : L>®(X,u) — L>®(Y,v)
which is a conditional expectation, namely which is positive and which restricts to the
indentity on L>°(Y,v). Example 1 : X = G and Y is reduced to one point; then X — Y
is amenable if and only if G is amenable. Example 2 : X = G/H for a subgroup H of G
and Y is reduced to a point; then X — Y is amenable if and only if H is co-amenable in
G. Example 3 : X = G x Z for a G-space Z (with G acting from the left on itself and
diagonally on the product G x Z); then the projection G x Z — Z is amenable if and only
if the action of G on Z is amenable in the sense of Zimmer [Zim, Section 4.3].

There are other notions, including the three following ones : K-amenability [Cun], weak
amenability & la Cowling-Haagerup [CowH], and a-T-menability a la Gromov. (See 7.A
and 7.E in [Gro3], and [BekCV]; in fact Gromov rediscovered the class of groups having
“Property 3B” of Akemann and Walter in [AkWa].)

IT.4. TARSKI NUMBER OF PARADOXICAL GROUP ACTIONS

Consider more generally the pseudogroup G¢ x associated with a group action G x X —
X (see again Example 2.i).

18. Definition. For v : § — T in Gg x, define the Tarski number of v as the small-
est “number of pieces” n such that there exists a partition S = U;<;<,5; and elements
gis---,9n in G with v(z) = g;(z) for all z € S;,5 € {1,...,n}.

The Tarski number of a paradoxical G, x-decomposition

X=X|]Xs , m:X1i=>X , »:X—>X

as above is the sum of the Tarski number of ;3 and of that of v5. It is clear that such a
sum is an integer > 4.

When G x is not amenable, we define the Tarski number T (G, X) of the action Gx X —
X as the minimum of the Tarski numbers of the paradoxical Gg, x-decompositions of X;
when G x is amenable, we set 7(G,X) = oo. For a group G acting on itself by left
multiplication, we write 7 (G) rather than 7 (G, G).

19. Observation. Let G be a group given together with a subgroup G’ and a quotient
group G”. It is straightforward that one has

T(G)
T(G").

[VANVAN

For example, for the first of these inequalities, view G as a disjoint union of cosets of G’.
Each group G has a finitely generated subgroup G’ such that 7(G') = 7(G). Indeed,
assuming G to be non-amenable, consider a paradoxical decomposition

G: Xll_]...UXleyl...UYn :ngll_l...l_lngm = lell_l...I_IhnYn
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containing m + n = 7(G) pieces (where Xi,..., X, Y1,...,Y,, are subsets of G and
91y 9m>h1,..., h, are elements of G). Let G’ be the subgroup of G generated by
{91, 9ms b1, ha ). Set X = X; NG for alli € {1,...,m} and Y] = Y; NG’ for all
je{l,...,n}. Then

G =X|U...UX UY]...UY, = X U...UgnX,, = hY{U...Uh,Y,

so that 7(G') < T(G). With the first inequality of the present observation, this shows that
7(G') = T(G). (One may observe a fortiori that X{,...,Y, are non-empty.) It follows
that one has

T(G) = inf (T(G"))

where the infimum is taken over all finitely generated subgroups G’ of G.

It should be interesting to study how the Tarski number behaves with respect to other
group theoretical constructions such as extensions and HNN-constructions. In particular,
for the latter, we have in mind some presentations of the Richard Thompson’s F' group
[CaFP]; recall that F' is a group which does not have non-abelian free subgroups, which is
a HNN-extension of itself [BrGe|, that F' is inner-amenable [Jol], that F' has non-abelian
free subsemigroups so that it is not supermanenable (see Chapter V below), and that one
does not know whether F' is amenable or not.

20. Proposition (Jonsson, Dekker). For a group G, one has T(G) = 4 if and only if
G contains a non-abelian free subgroup.

Proof. For the free group Fy on 2 generators g and h, it is classical that 7 (Fy) = 4; see,
e.g., Figure 4.1 in [Wag]. We recall this as follows. Set

A = W(g)

Ay = W(g™)

By = W(h)U{L,h" ,h2, ...}
By = W(h )\ {r",h2..}

where W (x) denotes the subset of F» consisting of reduced words on {g, h} with = as first
letter on the left, for = € {g,g~ ', h,h~'}. Then

FQ = A1|_|A2|_|Bl|_|B2 = A1|_|gA2 = Bll_lhBQ

It follows that 7 (F3) = 4.
Observation 19 shows that 7 (G) = 4 for any group G containing a subgroup isomorphic
to F: 2.

Conversely, let G be a group with 7 (G) = 4, so that there exist subsets X1, X5,Y7,Y5
and elements g1, g2, h1, ho in G such that

G = Xi| | X% I |Y2 = g X | |g2X2 = mYi| |hoYa.
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Set g =gy lgo and h = hl_lhg. Then, one has successively

X1 = G\ gXs = gXi| |g¥1| |oYa
X; D gX; D ... D ¢"'X; DY (k>1 and j=1,2)
Xy =G\g'X1 =g 'X| Jg'| |o Y2
X2 D9 'Xe D ... D¢ "Xy, D 7MY (k>1 and j=1,2)
so that
"YV; cXyUXy,  forall  kK€Z,k#0 and j=1,2.

One has similarly
WX, CY/UYy forall k€Z,k#0 and j=1,2.

Hence g and h generate in G a free subgroup of rank 2, by a classical lemma going back
essentially to F. Klein, and sometimes known as the “table-tennis lemma” (see, e.g., [Har4]).
The argument above is our rephrasing of the proof of Theorem 4.8 in [Wag]. O

Proposition 20 is an unpublished work from the 40’s by B. Jonsson (a student of Tarski)
and is a particular case of results of Dekker published in the 50’s. For precise references,
see the Notes of Chapter 4 in [Wag].

Let us also mention that, for a group G containing a non abelian free group and for an
action G x X — X with stabilizers {g € G| gx = z} which are abelian for all z € X, the
corresponding Tarski number is also given by 7 (G, X) = 4 (Theorem 4.5 in [Wag]).

21. Proposition. For a non-amenable torsion group G, one has T (G) > 6.

Proof. By Proposition 20 we know that 7 (G) > 5. We assume that 7 (G) = 5, and we will
reach a contradiction.

The hypothesis implies that there exist subsets X1, Xs, Y7, Y5, Y3 and elements g1, g2, h1, ha, hsli
in G such that

G =X |_|X2UY1 |_|Y2|_|Y3 = 1X1 |_|92X2 = h1Y1|_|h2Y2|_|h3Y3-

Let n denote the order of g = g; 'g2. As in the proof of Proposition 11, one has

X1 DgX1D...0¢" "X O g <Y1|_|Y2|_|Y3>.

But now ¢" = 1 and this is absurd. Hence 7(G) > 5. O

22. Question. Does there exist a group G with Tarski number 7 (G) equal to 5 ? to 6 7
More generally, what are the possible values of 7 (G) ?
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I1.5. FOLNER CONDITION FOR PSEUDOGROUPS

Let (G, X) be a pseudogroup of transformations. For a subset R of G and a subset A
of X, we define the R-boundary of A as

ORA = e X\A
® {:1: \ r€alp) and p(z)eA

there exists p € RUR ™! such that}

23. Definition. The pseudogroup (G, X) satisfies the Folner condition if

for any finite subset R of G and for any real number € > 0
there exists a finite non-empty subset F' = F(R,€) of X
such that |OrF| < €|F)|

where |F| denotes the cardinality of the set F.

24. Ahlfors and Fglner. Ideas underlying the Fglner condition go back at least to
Ahlfors. (Fglner does not refer to this work.) Ahlfors defines an open Riemann surface S
to be reqularly exhaustible if, for some complete metric g in the conformal class defined by
the complex structure of .S, there exists a nested sequence €2; C 25 C ... of domains with
smooth boundaries such that | J,~, €2, is the whole surface and such that

Q,
lim 082 =0
n—oo Qg

where (2|, denotes the area of a domain © and where |0€|, denotes the length of its
boundary, both with respect to g. (A lemma of Ahlfors shows that this does not depend
on the choice of g.) These sequences may be used to define averaging processes, as Ahlfors
did first and as Fglner did later.

Using this notion, Ahlfors has developped a geometric approach to the Nevanlinna
theory of distribution of values of meromorphic functions, known as Ahlfors theory of
covering surfaces. In particular, he gave a generalization of the second main theorem of
Nevanlinna on defect. (See Section 25 in Chapter III of [Ahl]; see also Chapter XIII in
[Nev], Chapter 5 in [Hay|, Theorem 6.5 on page 1223 of [Oss], [Sto] and [ZoKe].)

Amenability of coverings of Riemann surfaces can also be expressed in terms of Te-
ichmiiller spaces [McM2].

25. Theorem. A pseudogroup of transformations is amenable if and only if it satisfes
the Folner condition.

Fglner’s original proof (for a group acting on itself by left multiplications) goes back
to 1955 [Fol]. The proof has been simplified by Namioka [Nam| (who generalized Fglner’s
result to one-sided cancellative semi-groups), and extended to group actions by Rosenblatt
[Rosl]; the best place to read it is probably Section 2.1 of [Col]. In case of a group G
acting by conjugation on G \ {1}, the proof can also be found in [BeHa], and it applies
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verbatim to an action of G on any set X. All these references use essentially techniques
of functional analysis. (See also Wagon’s comment about the implication (6) = (1) in
Theorem 10.11 of [Wag].)

The proof below, in Items 26 and 36, uses completely different techniques.

26. Beginning of the proof of Theorem 25. We prove here the implication “Fglner
condition = existence of an invariant mean”.

Let M(X) denote the set of all means on X, namely of all finitely additive probability
measures on X (see Conditions (fa) and (no) in Definition 4). Let ¢°°(X) denote the
Banach space of all bounded functions on X, with the norm of uniform convergence; it is
standard! that M(X) can be identified with a subset of the unit ball in the dual space of
¢>(X). It is also standard that the weak*-topology makes M (X) into a compact space.

For each finite non-empty subset F' of X, we consider the mean

PX) — [0,1]
HF |ANF|
A
|F]

in M(X). Consider also the set

N ={(R,e)eGxR|R isfiniteand €>0}
ordered by

(R,e) < (R, ¢€) if RCR' and e>¢€.

Notations being as in the definition of the Fglner condition (which is now assumed to
hold),

(*) (1r(R.0) (R en

becomes a net. By compacity of M(X), this net has a cluster point, say p (we use the
terminology of [Kel, Chapter 2]). The proof consists in showing that p is G-invariant; in
other words, given a subset A of X and a transformation v in G with A C «a(v), one has
to show that p(v(A4)) = p(A).

We choose a number § > 0. As p is a cluster point of the family (%), there exists
(R,€) € N such that

(1) (R,e) > ({v},9), ide, R>y and €<,
(i) |prm.eo(A) —p(A)] <6,
(i) |urr.e(1(4) = (y(4)] < 6.
From now on, we write F' instead of F'(R,€). Define

A ={acAlacF and ~(a) € F}
Ao ={acAlacF and ~(a) € OrF}
Aoi = {acAlac OrF and ~(a)e F}
Apo ={acAla¢ F and ~(a) ¢ F}

1See footnote 37 in [NeuJ], where von Neumann refers in turn to Lebesgue’s “Legons sur I'intégration” (1905)..
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(think of “inside” for “i” and of “outside” for “0”). Observe that A = A; ;UA; ;UA, ;UA, .,
with the first three sets being finite. Observe also that

(i)  ANF = Aj;| |Ao  sothat  [ANF| = |A; ]+ |A;l
(v) v induces a bijection A;; |_|7_1(Ao’i) —y(A)NF

so that V(A) N F| = |Aii| + | Ao
(vi) ORE D Opy 413 F D 7y(Aio) U Ay,

so that |Ai o] + 140, < 210rF| < 2¢|F|.

It follows from (iv) to (vi) that
(wii)  |[W(A)NF|—|ANF|| < 2¢|F|.

Using the definition of the mean pur and the conclusion of the Fglner condition, one may
rewrite (vii) as

(wiii)  |ur((4)) - pr(4)] < 2

so that one obtains finally
1(7(A)) — n(A)| < 2642 < 46

using (ii), (i74) and (viii). As the choice of ¢ is arbitrary, this ends the proof of one
implication of Theorem 25. [

27. Remark. In case of a locally finite graph X with finitely many orbits of vertices under
the full automorphism group (for example in case of a Cayley graph), Fglner condition
is equivalent to the existence of a nested sequence Fy C Fy C ... of finite subsets of the
vertex set X such that U, >1 F,, = X? and lim,,_, o, |0F,|/|F,| = 0; see our Section IIIL.2 for
amenable graphs and for the notation 0F,,, and Theorem 4.39 in [Soa] for the equivalence.

In the case of a group G acting on a set X, the Fglner condition is most often expressed
in a way involving the symmetric difference between a finite subset F' of X and its image
gF by some g € Gj for the equivalence of this with the analogue of our Definition 23, see
Proposition 4.3 in [Rosl].

For groups, Fglner condition implies the existence of Fglner sets with extra tiling prop-
erties, and this is useful for showing extensions to amenable groups of the Rohlin theorem
from ergodic theory [OrWe].

ITI. Amenability and paradoxical decompositions for metric spaces
II1.1. GROMOV CONDITION AND DOUBLING CONDITION

Let X be a metric space and let d denote the distance on X.
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For S,T C X, a mapping ¢ : S — T (not necessarily a bijection) is a bounded perturba-
tion of the identity if sup,cg d(¢(z),z) < co. We will denote by

B(X)

the collection of all these maps. (This would be an example of a “pseudo-semi-group”, but
we will not use this term again below.)

As in Example 2.iii, we denote by W(X) the pseudogroup of all bijections, between
subsets of X, which are bounded perturbations of the identity.

For a subset A of X and a real number k > 0, we denote by

Ni(A) = {z € X |d(x, A) < k}

the k-neighbourhood of A in X.
Recall that a metric space is discrete if its subsets of finite diameter are finite.

28. Definitions. A discrete metric space X is said to be amenable [respectively paradoz-
ical] if the pseudogroup W(X) is amenable [resp. paradoxicall.

Caution. This definition is not convenient for non-discrete metric spaces, because the
pseudogroup W(R) is paradoxical. Indeed, the bijections

Yeven : U 2n,2n +1[— R and Yodd : U[2n+1,2n+2[—> R
ne” nez

defined by Yeyen(t) = % and Yoq4(t) = % are in W(R) and define a paradoxical decomposi-
tion of R.
A notion of amenability for some non-discrete metric spaces is suggested in Remark 42.

29. Definition. A discrete metric space X is said to satisfy the Gromov condition if there
exists a mapping ¢ : X — X in B(X) such that

67 (@) = 2

for all x € X.

This terminology refers in particular to the “lemme 6.17” in [GrLP], introduced there
as “le meilleur moyen de montrer qu'un groupe est non-moyennable”; see also Item 0.5.CY
in [Gro3].

30. Definition. The discrete metric space X satisfies the doubling condition if there
exists a constant K > 0 such that

(Nw(F)| = 2|F]

for any non-empty finite subset F' of X.
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It is of course equivalent to ask that there exists a constant k& > 0 and a number € > 0
such that
N(E)| > (14 )|F

for any non-empty finite subset F' of X; indeed, this implies |Ng(F)| > 2|F| for any
non-empty finite subset F' of X, with K = nk and n an integer such that (1 + €)™ > 2.

31. Bipartite graphs and matchings. Let B = Bip(Y,Z; E) be a bipartite graph
with two classes Y, Z of vertices and with edge set E; by definition of “bipartite”, any edge
e € F is incident with one vertex in Y and one vertex in Z; we consider here simple graphs,
namely graphs without loops and without multiple edges. Recall that, for integers k,l > 1,
a perfect (k,l)-matching of B is a subset M of E such that any y € Y [respectively any
z € Z] is incident to exactly k edges in M [resp. [ edges in M].

For a set F of vertices of B, we denote by O F' the set of vertices in B which are not in
F, and are connected to some vertex of F' by some e € F.

Let again X be a metric space, as earlier in the present section. With two subsets
S,T C X and a real number K > 0, one associates the bipartite graph By (S,T) with
vertex classes S and T', and with an edge connecting = € S and y € T whenever d(z,y) < K.
Observe that X is discrete if and only if B (X, X) is locally finite for all K > 0.

32. Theorem. For a discrete metric space X, the following conditions are equivalent
(with B(X) as before Definition 28).

(1) The space X is paradozical.

(it) There exists a mapping ¢ : X — X in B(X) such that |¢~'(z)| =2 for all x € X.

(iii) There exists a mapping ¢ : X — X in B(X) such that |¢~'(z)| > 2 for all z € X
(namely X satisfies the Gromov condition).

(iv) The space X satisfies the doubling condition.

(v) There exists a real number K > 0 for which the bipartite graph Br(X,X) has a
perfect (2,1)-matching.

(vi) The pseudogroup W(X) does not satisfy the Folner condition.

33. Observations. As there are amenable groups of exponential growth, for example
finitely generated solvable groups which are not virtually nilpotent, Conditions (ii) and
(#91) are not connected to growth, as suggested in [DeSS], but indeed to amenability, as
already observed in our Introduction.

For a recent survey on growth and related matters, see [GriH].

Some of the implications of Ttheorem 32 may be made more precise. See for example
Proposition 54 below.

34. Proof of Theorem 32.

(1) <= (ii). If X is paradoxical, there exists a partition X = X; L X5 and two bijections
v+ X; — X in W(X). The mapping ¢ : X — X defined by ¢(x) = v;(z) for z € X; (j =
1,2) satisfies (i7).

Conversely, given a mapping ¢ : X — X as in (i7), one uses the axiom of choice to order
the two points of ¢~ (z) for each z € X, say as ¢~ 1(z) = ('yl_l(x), 72_1(1‘)) . This provides
a paradoxical decomposition involving the mappings v; and ~s.
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The implications (ii) = (iii) = (iv) are straightforward. Condition (v) is nothing
but a rephrasing of Condition (7).

(vi) = (iv). If W(X) does not satisfy the Fglner condition, there exists ¢ > 0 and a
non-empty finite subset R of W(X) such that, for any non-empty finite subset F' of X,
one has |[FUORF| > (1 + ¢€)|F|. Setting

C = max sup d(p(x),x
s | s d(p(e), )

(see Definition 1 for the notation a(p)), one has a fortiori
No(B)] = (1+olF|

for any non-empty finite subset F' of X.

(i) = (vi). The contraposition not(vi) = not(i) may be checked as follows : if the
pseudogroup W(X) satisfies Fglner condition, it is amenable by Proof 26, so that W(X)
is not paradoxical by the straightforward part of the Tarski alternative (Remark 6.1).

We have now shown all but the right lowest || in the following diagram:

For the last implication (iv) = (v), we follow [DeSS| and call upon a form of the Hall-
Rado Theorem. More precisely, with the notation of Theorem 35 below and with k = K,
(iv) implies that |0 F| > 2|F| for any subset F of Y or of Z, so that (v) follows. O

All what we will need about the Hall-Rado theorem can be found in [Mir| but, as a first
background, we recommend also the discussion in §II1.2 of [Bol]. (Recall that “Hall” refers
to Philip Hall.)

35. Theorem (Hall-Rado). Let B = Bip(Y, Z; E) be a locally finite bipartite graph and
let k > 1 be an integer. Assume that one has

‘GEF’ > k|F| for all finite subsets F' of Y
‘QEF‘ > |F| for all finite subsets F' of Z.

Then there exists a perfect (k,1)-matching of B.
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On the proof. Consider the bipartite graph By = B (Ui<j<kY;, Z; Ex) where Uj<;<iY;
denotes a disjoint union of k copies of Y, and where, for each edge e € F with ends y € Y
and z € Z, there is one edge e; € Ej, with ends the vertex y; € Y; corresponding to y and
the vertex z, this for each j € {1...k}.

One one hand, the hypothesis implies that

0B, F| > |F|

for all finite subset F' of Lj<j<;Y; or of Z. On the other hand, there exists a perfect (k, 1)-
matchings of B if and only if there exists a perfect (1, 1)-matchings of By. It follows that
one may assume k = 1 without loss of generality.

By the most usual form of the Hall-Rado theorem, there are subsets My, M, of E
such that the edges in My [respectively in My] are pairwise disjoint, and such that each
y € Y [resp. each z € Z] is incident with exactly one edge in My [resp. in My]; see, e.g.,
Theorem 4.2.1 in [Mir]. Thus My UMy define a spanning subgraph of B whose connected
components are either edges, or simple polygons with a number of edges which is even and
at least 4, or infinite lines. (This argument is standard : see e.g. the middle of page 317
in [Nas].)

One may color the edges of the latter subgraph in black and white such that each vertex
of B is incident to exactly one black edge. The set of black edges thus obtained is a perfect
(1, 1)-matching of B. O

If £ = 1, observe that the condition of the Theorem is also necessary for the existence of
a perfect (1,1)-matching. If &k > 2, it is not so (consider a complete bipartite graph with
Y| =1 and |Z| = k), despite the statement following Definition 6 of [DSS].

36. End of proof of Theorem 25. We show here the implication “existence of an
invariant mean = Fglner condition”, or rather its contraposition: we assume that (G, X)
does not satisfy the Fglner condition, and we have to prove that X has no G-invariant
mean.

First case: X is a metric space and G is the pseudogroup W(X). Implication (vi) = (i)
of Theorem 32 shows that X is paradoxical, hence that X is not amenable. The proof of
Theorem 25 is complete in this case.

General case. If (G, X) does not satisfy the Fglner condition, there exists a number
€ > 0 and a non-empty finite subset R of G such that

|ORF| > €|F|
for any non-empty finite subset F' of X. Define a metric dg on X by

there exists pi1,...,pn € RUR™Y such that
dr(z,y) = min{ n € N

Pn (pn_l (...pi()... )) is defined and is equal toy

with the understanding that dg (x,y) = oo if there exists no such n. One has a posteriori

INL(E)| = (1+€)|F]|
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for any non-empty finite subset F' of X, where the neighbourhood Ni(F) refers to the
metric dg (for the definition of N7, see before Definition 28). Hence the pseudogroup
W(X,dr) is not amenable by the previous case. As W(X,dr) C G, the pseudogroup G
itself is not amenable either. [

37. Definition. Recall that two metric spaces X,Y are quasi-isometric if there exist
constants A > 1, C' > 0 and a mapping ¢ : X — Y such that

id(m,m) —C < d((21), d(w2)) < Ad(1,32) + C

for all 1,29 € X and
d(y,¢(X)) < C

forall y € Y.
Recall also that X and Y are Lipschitz equivalent if there exists a constant A > 1 and
a bijection ¢ : X — Y such that

1

Xd(ﬂcla@) < d(¥(z1),¥(x2)) < Ad(w1,22)

for all z1,29 € X. (See also Item 0.2.C in [Gro3].)

38. Proposition. Let X and Y be two discrete metric spaces which are quasi-isometric.
Then X is amenable [respectively is paradozical] if and only if Y is so.

Proof. The Gromov condition of Definition 29 is clearly invariant by quasi-isometry. [J

39. Examples. For each prime p, there are uncountably many 2-generated p-groups
which are amenable and pairwise not quasi-isometric; see [Gri2| for p = 2 and [Gri3] for
p = 2.

40. Examples. There are uncountably many 2-generated torsion-free groups which are
paradoxical and pairwise not quasi-isometric [Bow].

41. Remark. It is a result due independently to Volodymyr Nekrashevych [Nekl] and
Kevin Whyte [Why] that two non-amenable discrete metric spaces X and Y are quasi-
isometric if and only if they are Lipschitz equivalent. This answers a question of Gromov
(Item 1.A" in [Gro3]); see also [Pap] and [Bogp] for partial answers.

42. Remark. Let (€2, dg) be a metric space. A subset X of Q is a separated net if there
exists a constant r > 0 for which the two following properties hold : (i) dq(z,y) > r for
all z,y € X, x # y, and (ii) X is a maximal subset of Q for this property (this implies
da(w, X) < 2r for all w € Q). Such nets exist by Zorn’s Lemma.

If the metric space € is “slim and well-behaved” in the sense of [MaMT], for example if
() is a Riemannian manifold with Ricci curvature bounded from below and the injectivity
radius of the exponential map positive, then two nets in {2 are quasi-isometric to each other.
(See Theorems 3.3 and 3.4 in [MaMT], as well as [Kanl], [Kan2] and [Nekl], [Nek2].) For
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such slim and well-behaved spaces, there are natural notions of amenability and paradoxes,
defined via their nets; this has appeared in several places, including [BIWe]. Proposition
38 carries over to these spaces, by definition.

43. Examples. There are uncountably many Riemann surfaces of constant curvature
—1 which are amenable as metric spaces, and which are pairwise not quasi-isometric [Gri5|.

II1.2. GRAPHS AS METRIC SPACES, ISOPERIMETRIC CONSTANTS

Let X = (X X1) be a graph with vertex set X" and with edge set X! (say X has no
loops and no multiple edges, for simplicity). If X is connected, X" is naturally a metric
space, the distance d(z,y) between two vertices =,y € X° being the minimal number of
edges in a path between them.

The metric space X is then discrete if and only if the graph X is locally finite.

For a disconnected graph X, there are also notions of combinatorial distances. For
example, if X is a subgraph of a connected graph Y which is clear from the context, one
may restrict to X the distance defined on Y as above. One may also set d(z,z’) = oo
for z, 2" in different connected components of X.

44. Definition. A locally finite graph X is said to be amenable or paradozical if the
metric space X? is so in the sense of Definition 28.

For a subset F' of XY, the boundary dgF defined in graph theoretical terms in Item
31 (here E = X1) coincides with A7 (F) \ F, where N1 F is the neighbourhood defined in
metrical terms before Definition 28. We will write

OF = N1(F)\ F
below.

45. Definition. The isoperimetric constant of the graph X is

F
u(X) = inf{ |’8F—|| ‘ F C X" is finite and non-empty } .

For example, (X ) = 0 as soon as X has a finite connected component.

46. Variations. There are several variations on the definition of the isoperimetric con-
stant in the literature, because a boundary dF could be defined using

either vertices outside F' as here (before Definition 45) or in [BeSc] and [McM1],
or vertices inside F' as in [Dod] or [CoSal,

or vertices both inside and outside F' as in [OrWe, page 24],

or edges connecting vertices inside F' to those outside F' as in [BiMS] or [Kail].
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For example, denoting by O0.F the set of edges connecting a vertex of F' to a vertex
outside F) there is another isoperimetric constant

O F
(X)) = inf{ | 7] | ‘F c X% is finite and non-empty }

for the graph X. One has ¢, (X) > ¢(X); if X has maximal degree k, one has also ¢,(X) <
ku(X).

47. Example. Let d be an integer, d > 3. For a tree T' in which every vertex is of degree
at least d, the isoperimetric constant satisfies the inequality

u(T) > d-—2.
If T is regular of degree d, then (T) = d — 2.

Proof. As we have not found a convenient published reference for this very standard fact,
we indicate now a proof.

Let F be a finite subset of the vertex set of T'(d), let X denote the subgraph of T'(d)
induced by F| let Xq,..., Xy denote its connected components, and let F; denote the
vertex set of X;, for i € {1,..., N}. We claim that

0F| > (d—2)|F| + 2.

Assume first that X is connected. We proceed by induction on |F|. If |F| = 1, then
|OF| > d = (d — 2)|F| + 2 and the claim is obvious. Assume now that |F| = k > 2; let
y € F be a vertex of X-degree 1, and let Y be the subgraph of X induced by F'\ {y}. One
has

OF| > [0(F\ {y})| +d—2 > (d—2)(|F| - 1) +2+d—2 = (d—2)|F| +2

where § holds because of the induction hypothesis. (It is easy to check that |[0F| =
(d—2)|F|+ 2 in case X is a reqular tree of degree d.)

Assume now that X has NV > 2 connected components, and proceed by induction on N.
As T is a tree, one may assume the numerotation of the F; ’s such that OF; has at most

one vertex in common with 0 (U2<1<N FZ> . Then

N
oF| > |aF1|+}a< U FZ->}—1 > (d-2)|F1|+2+(d-2) Y |F|+2-1 > (d—2)[F|+2
2<i<N i=2

where *Z* holds because of the induction hypothesis.
It follows that «(T") > d — 2, with equality for a d-regular tree. OJ

Recall that a hanging chain of length k in a graph X is a path of length k (with & + 1
vertices, k — 1 so-called inner ones and the two end-vertices) with all inner vertices of
degree 2 in X. It is obvious that, if X has hanging chains of arbitrarily large lengths, then
t(X) = 0. The following is a kind of converse, for trees.
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48. Example. Let T be a connected infinite locally finite tree without end-vertices and
let k be an integer, k > 2. If T' has no hanging chain of length > k, then

Also o(T) = 0 if and only if T has arbitrary long hanging chains.
Proof : see the proof of Corollary 4.2 in [DeSS]. O

Other interesting estimates of isoperimetric constants appear, for example, in § 4 of
[McM1].

49. Definitions. On a locally finite graph X, there is a natural simple random walk
with corresponding Markov operator T. Suppose for simplicity that X is connected and of
bounded degree. Consider the Hilbert space £2(X°, deg) of functions h from XY to C such
that > vo deg(z)|h(x)]* < oo, and the bounded self-adjoint operator 7' defined on this
Hilbert space by

(Th)(z) deg Z h(y

for h € £?2(X°, deg), x € X, where y ~ z indicates a summation over the neighbours y of
the vertex x. The spectral radius of X is

p(X) = sup { (h|Th) |h € 2(X), [, <1}
=sup{[A| | A isin the spectrum of T }.

Observe that 1 — 7" is a natural analogue on X of a Laplacian, so that 1 — p(X) is often
referred to as the first eigenvalue of the Laplacian or (more appropriately) as the bottom
of its spectrum.

It is also known that, for a real number A, the following are equivalent :

1
(7) there exists F : X° —]0,00[ such that deg(@) Z F(y) = A\F(z),
1
deg(x)

y~z

> F(y) < AF(x),

y~x

(i)  there exists F : X% —]0,00[ such that

(7i7)  one has X\ > p(X),

so that (i) and (ii) indicate alternative definitions of the spectral radius. In terms of
the Laplace operator, (i) and (ii) are respectively conditions about (1 — A)-harmonic and
(1 — A)-superharmonic functions. (For a proof in terms of graphs, see Proposition 1.5 in
[DoKal]. But there are earlier proofs in the literature on irreducible stationary discrete
Markov chains. The equivalence of (ii) and (iii) is standard; the equivalence with (i) is
more delicate : [Harr] and [Pru].)
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For z,y € X° and for an integer n > 0, denote by p(")(:c,y) the probability that
a simple random walk starting at x is at y after n steps. Then one has also p(X) =
limsup,, ., v/p(™(x,y); in particular, the value of this limsup is independent on z and
y. From this probabilistic interpretation of p(X), one deduces easily that, for a connected
graph X which is regular of degree d > 2, one has p(X) > 2v/d — 1/d; equality holds if
and only if X is a tree.

(More generally, for any transition kernel p : X? x X% — [0, co[ with reversible measure
o X0 —]0,00[, so that -, vop(, 2) =1 and p(z)p(z,y) = p(y, )p(y) for all z,y € X°,
one introduces the Hilbert space £2(XY, 1), and the self-adjoint operator T defined by the
kernel p on £2(X° ;). Then the norm of T is again equal to limsup,, .. v/p™ (z,y).)

50. Lemma (an isoperimetric inequality). For a graph X which is reqular of degree
d > 2, one has

1 —p(X)
u(X) > 4W.

Proof. Let X! denote the set of oriented edges of X. (If X is finite, the cardinal of X! is
twice the number of geometric edges of X.) Each e € X! has a head ey € X° and a tail
e_ € XY For a function h € £2(X°, deg) with real values, one has

(BTH) = 37 b)Y hw) = 3 hehte) = 1P -3 3 (hes) ~hen))
re X0 Yy~ ecX! eeX!

Let now F be a finite non-empty subset of X, with boundary OF. Consider the function
h € ?(X°, deg) defined by

1
— if zeF
Vid

hz) = L i Lcor

2V/d

0  otherwise

One has clearly
1 (X
% 01 = 171+ 1lor] = 17| (14 452)

One has also

23 (he) —he)) = X 3 (hty) b)) < joFld o
eex? YyeEOF x~y
Together with (*), this implies that
B |OF|
alF| (14 42)
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Taking the infimum over % one obtains

and the lemma follows. OJ

The previous lemma appears in several places (see N° 51 below). It is related to Theorem
3.1 of [BiMS], which is stated in terms of the constant ¢.(X) of our Item 46, and which
shows that ¢, (X) > 4(1—p(X)). Recently, T. Smirnova-Nagnibeda has improved the latter
to

(the improvement comes from choosing a test-function, playing the role of the function h
in the proof above, which is more efficient than the one chosen in [BiMS)).

For a majoration of +(X) in terms of 1 — p(X) and d (namely for an analogue of the
“Cheeger’s inequality”), see Theorem 2.3 in [Dod] or Theorem 3.2 in [BiMS] (in each case
with normalizations different from ours).

51. Theorem. Let X be a connected graph which is of bounded degree. The following are
equivalent :

(1) X is paradoxical (see Definition 44),
(i1) u(X)>0 (see Definition 45),
(#i7) p(X) <1 (see Definition 49),
(

iv) p™(z,y) = o(c™) for some o €]0,1] and for all z,y € X°

and they imply that
(v) the simple random walk on X is transient.

On the proof. The equivalence (i) <= (i7) is a reformulation of Theorem 25 on the Fglner
condition.

The equivalence (ii) <= (i7i) may be viewed as a discrete analogue of the Cheeger-
Buser inequalities for Riemannian manifolds [Che], [Bus]. For graphs as in the present
theorem, it can be found in [Dod], [Var], [DoKe], [DoKa|, [Ger|, [Anc|, [Kail]; there are
also similar arguments showing appropriate estimates for finite graphs in several papers
by Alon et alii, quoted in [Lub] (in particular near Propositions 4.2.4 and 4.2.5).

For (iii) <= (iv) and for equivalence with other conditions, see Theorem 4.27 in Soardi’s
notes on Networks [Soa].

The implication (iii) = (v) is obvious.

For groups, the equivalence

amenability = p(X)=1
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goes back to the pioneering papers of Kesten [Kesl]|, [Kes2]. See also [Day3] and the review
in [Woe]. O

There are other conditions equivalent to (i) to (iv) above, for example in terms of norms
of Markov operators on ¢P-spaces; see [Kail].

For locally finite graphs which are not necessarily of bounded degree, one has to modify
some of the definitions above. Thus, for a finite set F of vertices of a graph X, one considers
the sum || F'|| of the degrees of the vertices in F, the number ||0F|| of edges with one end in
F and the other end outside F), and the infimum 7( X)) of the quotients ||0F|| / || F|| (compare
with Definition 45). For graphs of bounded degree, one has i(X) = 0 <= «(X) = 0, but
in general on may have 7(X) = 0 and «(X) > 02. By a particular case of a result of
Kaimanovich (Theorem 5.1 in [Kail]), one has i(X) > 0 <= p(X) < 1.

Graphs of unbounded degree are also covered by the arguments in [DoKa| and [DoKe].

Graphs give rise to several kinds of algebras, and it is a natural question in each case to
ask how the properties of Theorem 51 translate. For Gromov’s translation algebras (see the
end of 8.Cy in [Gro3]), there is a hint in [Elel]. For other algebras associated with graphs
(and more generally with oriented graphs), see [KPRR| and [KPR]. Amenable properties
of certain kind of graphs (more precisely of bipartite graphs with appropriate weights) are
also important in the study of subfactors; see various works by S. Popa, including [Popl]
and [Pop2].

Amenability has of course been one of the most important notions in the theory of
operator algebras since the works of von Neumann. We will not discuss more of this here,
but only refer to [Co2] and [Hel].

IV. Estimates of Tarski numbers

IV.1. FROM RELATIVE GROWTH TO TARSKI
NUMBER OF PARADOXICAL DECOMPOSITIONS

Let G be a finitely generated group, given as a quotient

m: F, — G

2Here is an example shown to us by Vadim Kaimanovich. Let (hj)j>1 be a sequence of integers, all at
least 2, and consider first a rooted tree Y in which a vertex at distance n of the root is of degree

k
k+2 if n:Zhj for some k> 1,
=1
3 otherwise.
Consider then the graph X obtained from Y by adding, for each vertex x of Y at distance n = Z;?:l h;
from the root (for some k), the %(k 4+ 1)(k 4+ 2) edges between the successors of  in Y. Then one has

t(X) > 0 (because Y is a spanning tree for X) and 7(X) = 0 (because X contains induced subgraphs which
are complete graphs on k + 2 vertices for k arbitrarily large). One has also p(X) = 1.
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of the free group F,, on m generators si,..., Sy, for some m > 1. The purpose of the
present section is to review notions which will be used in IV.2.

52. Recall: relative growth, spectral radius and isoperimetric constant. Let
¢ : F,, — N denote the word length on F,, with respect to s1,...,s,. For each integer
k > 0, let o(Ker(m),k) denote the cardinality of the set {w € Ker(w)|¢(w) =k }. The
relative growth of Ker(m) (some authors say “the cogrowth of G”!) is, by definition,

Ufer(x) = limsup /o (Ker(m), k).

k—oo

It is easy to check that v/2m — 1 < ager(r) < 2m — 1. Still for Ker(m) # {1}, one shows
more precisely that v2m — 1 < ager(r) [Gril].

The corresponding Cayley graph (with vertex set G and with an edge between two
vertices x,y if and only if £(zy~1) = 1) has a spectral radius given by the formula

vZm =l < am T

p:
v2m 1<\/2m 1+ a 1) if V2m—-1<a<2m-—1

2m Q 2m —
[Gril]. It follows that the three conditions
oa=2m—1
p=1
G is amenable

are equivalent; the equivalence of the last two is due to Kesten, as already recalled in the
proof of Theorem 51. (In the present setting for the formula giving p as a function of «,
one has 1 < a < /2m — 1 if and only if @ = 1, if and only if Ker(r) = {1}; but the
formula makes sense and is correct for subgroups of F),, which need not be normal, and
then the range 1 < a < v/2m — 1 is meaningful.)

53. Isoperimetric constant and doubling characteristic distance. Let X be a
graph, with its set X of vertices viewed as a metric space for the combinatorial distance
d as in Section II1.2. A doubling characteristic distance for X is (if it exists) an integer K
for which the doubling condition of Definition 30 holds, namely an integer K such that

Nk (F)| = 2|F|

for any non-empty finite subset F' of X°. If the isoperimetric constant ¢(X) of Definition
45 is strictly positive, the integer

log 2
o = [t

log(1 + ¢(X))

is clearly a doubling characteristic distance, where [t]| indicates the least integer larger
than or equal to .
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54. Proposition. Let X be a graph with isoperimetric constant v(X) > 0; define Kx as
i the previous number. Then there exists a paradoxical decomposition involving a partition
X9 = XY U XY and two bounded perturbations of the identity ¢; : X? — X% in W(XO)
such that

Supwexgd((éj(x),x) < Kx (j=1,2).

Proof : this is a quantitative phrasing of the implication (iv) = (i) of Theorem 32, and
follows from our Proof 34. [J

55. Four functions. Let m be an integer, m > 2.
For a €]v/2m —1,2m — 1], set p = \/2mi—1<\/2727—1+ o )E} 2m—1,11|‘

2m V2m—1
For p €]0,1], set «(p) = 41—;3 € [0, ocol.

For 1 € [0, o0f, set K (1) = hlg‘)(gliﬂ € {1,2,3,...,00} (with [...] as in 53).

For K € {1,2,3,...,00}, set b, (K) = W”;_—f_l
Observe that a — p,,(«) and K +— b, (K) are increasing, while p — ¢(p) and ¢ — K(¢) are
decreasing. Observe also that, in the Cayley graph of a group G with respect to a set of m
generators, a ball of radius K has at most b,,(K) elements, and precisely b, (K) elements

in case G is free on m generators.

56. Theorem. Let G = F,,/N be a group given as a quotient of the free group on m
generators by a normal subgroup N # {1}. Let o denote the corresponding relative growth
and let 1(X) denote the isoperimetric constant of the corresponding Cayley graph X (see
Definition 45 and Item 52). Using the notations of the previous number, one has :

(i) if ag < a for some a < 2m — 1, the Tarski number of G satisfies

7(6) < 20 (K (1 (pule)) ) ).

(i) if L(X) > ¢ for some v > 0, then

T(G) < 2b (K(1)).

Proof. For (i), one has ¢(X) > ¢ (pm(«)) by the formula of Item 52 and by the isoperimetric
inequality of Lemma 50, and this implies Kx < K (¢ (pm(a))) . If ¢; : X9 — X are as in
Proposition 54, one may write XJQ as a finite disjoint union of the sets

Ajg = {z € X7 | ¢(2) = g}

for g in the ball B¢(Kx) = {g € G
j=1and j = 2. As |[B¢(Kx)| <
argument shows also (ii). OJ

| /(9) < Kx} (compare with Observation 9), this for
b (K x), this ends the proof of (i). The end of the

57. Comments and examples. Observe that we have argued with the Cayley graph
of G related to the right-invariant distance d(z,y) = ¢ (acy_l) on G, so that the left-
multiplications z +— gz are bounded perturbations of the identity.
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Let us now test the inequalities of Theorem 56.

(i) Let F» denote the free group of rank 2 and let X denote the Cayley graph of Fs with
respect to some free basis (X is of course a regular tree of degree 4). Kesten [Kesl| has

oo
W

~
~

computed the spectral value of the corresponding simple random walk as p(X) =

0.86603 so that ¢(X) > 42650 ~ 0.6188. Hence Kx = | roz(figs; | = 2 is a doubling

characteristic distance. The resulting estimate
T(F,) < 2[B™(2)| = 2(23°-1) = 34

compares rather badly with the correct value 7 (Fy) = 4.

A similar computation with the Cayley graph Y of F3 with respect to a free basis gives
p(Y) = \/Tg ~ 0.7454, so that «(Y) > 1.366. Hence K = 1 is a doubling characteristic
distance. Consequently 7 (F3) < 2|Bf3(1)] = 14. As F3 is a subgroup of F» one may
improve the previous estimate to

T(Fy) < 14
by Observation 19.
(ii) Consider again the Cayley graph X of Fy. Its isoperimetric constant is precisely

1(X) = deg(X) — 2 =2 by Example 47. Hence Kx = “‘;ﬁﬂ =1 is a doubling character-

istic distance; thus
T(F,) < 2|Bf2(1)| = 10,

which compares better than the previous estimate with 7 (Fy) = 4.

These computations indicate that some effort should be given to sharpen the isoperi-
metric inequality of Lemma 50 used above (see Question 62.a).

IV.2. TARSKI NUMBER FOR OL’SHANSKII GROUPS AND FOR BURNSIDE GROUPS

58. On Ol’shanskii groups. We consider first a family of groups investigated in [Ol1].
(See also [O12] both for this family and for other ones, discovered by the same author, and
relevant for the subject discussed here.) For any € > 0, there exists one of these groups
given as a quotient 7 : Fy — G for which the relative growth ag satisfies

\/§<040§\/§+6

and which is consequently non-amenable. Moreover Ol’shanskii has shown that these
groups do not have any non-abelian free subgroups; thus their Tarski number satisfy
T(G) > 5, and 7(G) > 6 in case of torsion groups (Proposition 21). From the rela-
tive growth extimate above and from Theorem 56 (see also the first computation of Item
57), one obtains the following.
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59. Proposition. There exists a two-generator non-amenable torsion-free group G with-
out non-abelian free subgroup, for which the Tarski number T satisfies

5 < T(G) < 34.

There exist a two-generator non-amenable torsion group G, with all proper subgroups cyclic,
for which
6 < 7(G) < 34.

(The constructions of these groups are due to Ol’shanskii.)

60. On Burnside groups. We consider next the Burnside group B(m,n), given as
the quotient of the free group F,, of rank m > 2 by the normal subgroup generated by
{2"},ep, » for an odd integer n > 665. It is obvious that B(m,n) does not contain any
free group not reduced to {1}. It is known that B(m,n) is infinite, indeed of exponential
growth (see VI.2.16 in [Adyl]), and indeed not amenable [Ady2].

From Theorem 3 and the last but one line in [Ady2]?, one has the relative growth
estimate

a < (2m-— 1)%+11*5+55(;9

where % + %5 + % is strictly smaller than, but near, %
3

For m = 2, Theorem 56 shows that one has successively o < v/9, hence p < ‘/T§ (7 +

SIS

)~

©

0.881, hence +(X) > 41;(’))(())() ~ 0.540, hence K = {%W = 2, hence finally

T(B(2,n)) < 2|B™(2)] = 2(23* - 1) = 34.

For m = 3, the corresponding computations give o < v/25, hence p < % ( {”/\/25*5 + \?7\/2575> ~

0.772, hence ¢+ > 1.181, hence K = 1, hence finally
T(B(3,n)) < 2|Bf(1)| = 14.

Let mq,mo be such that 2 < m; < mg < 0o and let n be as above. It follows from
general principles on relatively free groups in varieties of groups that B(ms,n) has a
subgroup isomorphic to B(mi,n); see [NeuH], Statements 12.62 and 13.41. Tt is also
known that B(m1,n) has a subgroup isomorphic to B(mg, n); see [Sir], and also § 35.2 in
[012]. Thus, it follows from Observation 10 that one has 7 (B(m,n)) = 7 (B(3,n)) for
any m > 2.

This and Proposition 21 show the following.

3There are printing mistakes in the English version of [Ady2]. In Theorem 3 of this paper, first the C
should read G, and second the exponent of (2m — 1) should read

1 8 4 Sk
|:2 + ’YiR + E (lOQQm—l (6(1 + 4’7]—2)> >:|

(with the largest parenthesis () as above). Also, in the last but one line of the paper, % + % should be

5.69

2=, which is indeed a number strictly smaller than % !

replaced by 1—15 +
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61. Theorem. For m > 2 and for n odd and at least 665, the Tarski number of the
Burnside group B(m,n) satisfies

6 < T(B(m,n)) < 14.

Let us mention that it is unknown whether, for n large, B(m,n) has infinite amenable
quotients. (A question of Stepin, which is Problem 9.7 of [Kou].) Similarly one could ask
what are the Tarski numbers of non-amenable quotients of these groups.

62. Questions of continuity.

Question (a) : given € > 0, does there exist § > 0 such that, for any quotient group G
of a free group F' with spectral radius satisfying p(G) < p(F') + §, one has necessarily an
estimate ((G) > (F') — e for the isoperimetric constants ? More generally, can one sharpen

the inequality +(X) > 41;(@8() of Lemma 50 ?

Question (b) : given > 0, does there exist 7 > 0 such that, for any quotient group
G of a free group F' with exponential growth rate satisfying w(G) > w(F') — 7, one has
necessarily an estimate p(G) < p(F) +0 7

(For w(G), see [GriH]. If the free group F' above is of rank m and is considered together
with a free basis, recall that w(F) = 2m — 1, p(F) = v/2m — 1, and «(F') = 2m — 2. The
coefficients w(G), p(G) and ((G) are of course taken with respect to the images in G of
free generators in F.)

Assume the two questions above have affirmative answers; then : (i) for a convenient
group G of Ol'shanskii, «(G) > 2 —¢, and K = 1, and consequently 7 (G) < 10; (ii) for the
Burnside groups B(2,n) of Theorem 61 with n large enough, one would have w(G) > 3 —¢
(VL.2.16 in [Adyl]), and K = 1, and consequently also 7 (B(m,n)) = 7 (B(2,n)) < 10
for any m > 2 and n odd large enough.

V. Superamenability
V.1. SUPERAMENABILITY AND SUBEXPONENTIAL GROWTH

63. Definition. A pseudogroup (G, X) is superamenable if the pseudogroup (Q(A),A)
defined in Example 2.iv is amenable for any nonempty subset A of X.

In case of a pseudogroup W(X), Remark 3.vi shows that one may read this definition in
two ways. More precisely, a discrete metric space X is superamenable if, for any subspace
A of X, one has

(i) the metric space A is amenable, i.e. the pseudogroup W(A) is amenable,
or equivalently

(ii) the restriction W(X)4) of the pseudogroup W(X) to A is amenable.

Observe that superamenability of discrete metric spaces is invariant by quasi-isometry,
because of Proposition 38.
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A finitely generated group is superamenable if it so as a metric space, for the combina-
torial distance on its Cayley graph with respect to a finite generating set (this definition
of superamenability does not depend on the choice of the generating set).

This notion, due to Rosenblatt [Ros2], carries over to not necessarily finitely generated
groups, and indeed to topological groups, but we will not use this below.

64. Definition Let X be a discrete metric space; for a point £ € X and a number
r > 0, we denote by 32X (r) the cardinality of the closed ball of radius r around = in X.
The space X is of

subexponential growth if limsup {/BX(r) =1
r—00

exponential growth if 1 < limsup {/BX(r) < oo
r—00

superexponential growth if limsup (/58X (r) = oc.
T—00

(Observe?! that any of these holds for some z € X if and only if it holds for all x € X, and
also if and only if it holds for any pair (X', z’) with X’ quasi-isometric to X. In particular,
subexponential growth and exponential growth make sense for finitely generated groups,
without any mention of a generating set.)

65. Lemma. Inside a metric space of subexponential growth, any subspace is also of
subexponential growth.

Proof. For a subspace Y of a space X, one may choose in the previous definition the point
x inside Y. Then the lemma follows from the obvious inequality 8Y (r) < BX(r), for all
r>0.0

For historical perspective, let us recall that a simple argument going back to [AdVS]
shows that a finitely generated group which is of subexponential growth is amenable, and
indeed superamenable (Theorem 4.6 in [Ros2]).

As a consequence, one has (X)) = 0 for any Cayley graph X of a finitely generated group
of subexponential growth. There are further connections between growth and isoperimetry,
due to Varopoulos and others. More precisely, consider for example a finitely generated
group G generated by a finite set S, the corresponding growth function 3§ defined by

B (n) = |{g € G| the S-word length of g is at most n }
for all n > 0, and the isoperimetric profile Ig defined by

I§ (n) = max min |OF|
m<n FCXO9,|F|=m
for all n > 1, where X° denotes the vertex set of the Cayley graph of G with respect to
S (namely X% = G !); then, for various classes of groups, there are quite precise estimates
relating the growth function 3§ and the isoperimetric profile IS; see in particular [CoSa]
and [PiSa].
In our context, the argument of [AdVS] provides the following result.

4Unlike in some other places of this paper (such as Proof 36), we insist here that the distance between
two points of X is always finite.
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66. Theorem. A discrete metric space of suberponential growth is superamenable.

Proof. Let X be a discrete metric space of subexponential growth. By the previous lemma,
it is enough to show that X is amenable; we will show that X satisfies the Fglner condition.

Consider a finite subset R in the pseudogroup W(X), a point o € X and a number
€ > 0. Set

C = |V max  sup d(x,p(a:))—‘.

PERUR™ zca(p)

limsup {/8x (r) = 1

r—00

As

there exists a strictly increasing sequence of integers (), such that

X C

lim % -1

k—oo Zo (’I"k)
Set

F;. = ball of radius 7, centered at zy in X
for all £ > 1.
As Or Fy, C NoFy \ Fy, for all k > 1, one has
lim [Or Fi| =0

so that (F}),~; is a “Fglner sequence” (see Definition 23), and this ends the proof. O

The following criterium for graphs will be used in Section V.2. Recall that a metric
space X is long-range connected if there is a constant C' > 0 such that every two points x
and y in X can be joined by a finite chain of points

o =T, T1, .-, Tn =Y

such that
d(zi—1,2;) < C

for all i € {1,...,n} (see Item 0.2-As in [Gro3)).

67. Proposition. A connected locally finite graph is superamenable if and only if all its
long-range connected subgraphs are amenable.

Proof of the non-trivial implication. Given a graph X which is not superamenable, we have
to show that there exists a long-range connected subset Z of its vertex set X° which is not
amenable (as a metric space, for the combinatorial distance of X).

By hypothesis, there exists a subset Y of X° and a mapping ¢ : Y — Y such that
sup,cy d(¢(y),y) < C for some constant C' > 0, and such that ¢~ (y)| > 2 for all y € V.
Set Z = N¢(Y), and let (Z;),.; be an enumeration of the connected components of Z.
For alli € I,set Y, =Y NZ;. As ¢ is a C-bounded perturbation of the identity, one has
¢~ Y(Y;) C Z;, and it follows that ¢~ 1(Y;) C Y;, for all i € I. Hence Y; is paradoxical for
each i e [. U
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V.2. EXAMPLES WITH TREES

Let S5 denote the free semi-group on two generators. From the natural word length, one
defines on S; a metric making it a discrete metric space which is of exponential growth,
and indeed paradoxical. Thus, any finitely generated group containing a sub-semi-group
isomorphic to Sz has a paradoxical subspace (the group being viewed as a metric space),
and consequently is not superamenable.

68. Question. Does there exist a finitely generated group which is amenable, not super-
amenable, and without sub-semi-group isomorphic to Sy ?

This question is due to Rosenblatt, who conjectured the answer to be negative (see
[Ros2], just after Theorem 4.6 and after Corollary 4.20); he also observed the following
alternative for a finitely generated solvable group : either the group has a nilpotent sub-
group of finite index, and then the group is superamenable, or the group contains S, as
a sub-semi-group, and then the group is not superamenable (Theorems 4.7 and 4.12 in
[Ros2]).

However, Question 68 has been answered positively by the second author as follows.

69. Examples [Grid]. For each prime p, there exist uncountably many finitely generated
p-groups which are

e of exponential growth,

e without any sub-semi-group isomorphic to So,

e amenable,

e not superamenable.

On the proof. This involves wreath products® G = Cj, ! H, where C, denote a cyclic group
of order p and where H is one of the p-groups of intermediate growth constructed in [Gri2-
3]. To show that G is not superamenable, the method is to construct a paradoxical tree
in an appropriate Cayley graph of G.

As a torsion group, G does not contain Ss.

The two other claims are straightforward. [

70. Question. Does there exist a finitely generated group which is superamenable and
of exponential growth 7

This question, formulated as Item 12.9.a and Problem C.12 of [Wag], is still open.

One way to make the question more precise is recorded as Problem 16.11 in the Kourovka
Notebook [Kou] : does there exist a finitely generated semi-group S with cancellation
having subexponential growth and such that the group of left quotients G = S~ has
exponential growth ? (The group of quotients would exist, because the so-called “Ore
condition” holds; see for example § 1.10 and 12.4 in [CIPr].) The point is that such a

5In the English translation of [Gri4], the Russian word for “wreath product” has been incorrectly
translated as “amalgamated product” !
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semi-group of subexponential growth is superamenable and that a group of quotients of a
superamenable semi-group is a superamenable group.
Here is however a straightforward construction.

71. Example. There exists a discrete metric space which is of superexponential growth
and which is superamenable.

Proof. Consider a sequence (dj),~ of integers > 2 and a sequence (hy),~, of integers > 1.
Let X be a rooted tree in which a vertex at distance n of the root is of degree

d if =) h

j=1
2 otherwise

(given the two sequences, this completely defines the tree up to isomorphism).

If liminfy . hx = 00, a long-range connected subspace Y of the vertex set of X cannot
satisfy the Gromov condition (compare with Proposition 35 above, i.e. with Corollary 4.2
of [DeSS]). It follows from Proposition 67 that X is superamenable.

Now the growth sequence of X with respect to the base point satisfies

k
ﬁX(n—i—l)Zde for n:Zhj,

§=0 j=1
so that, if the sequence (dy),~, is increasing rapidly enough, one has

limsup 1/8%X(m) = o

m—00

and X is of superexponential growth. For example, if d; = (Zgzl hz') I, then

X (n+1) > d, = n!

whenever n = Z?Zl hj, and this implies limsup,, .. %/6X(m) = oo by Stirling’s for-
mula. [J

72. Variation on the previous example. There exists a graph of bounded degree which
18 of exponential growth and which is superamenable.

Proof. Consider a rooted tree X in which a vertex at distance n of the root is of degree
2 if (k — 1)k < n < k? for some k > 1,
3if k2 <n < k(k+ 1) for some k > 1.

The growth function of X with respect to the root satisfies

k(k+1) k(k+1)
2 2

2 < 5 (k(k+1)) <3
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for all £ > 1, so that X is clearly of exponential growth. Example 48 implies that X is
superamenable. []

73. Question. Let G and H be two finitely generated groups which are superamenable;
is the product G x H superamenable ?

This question appears in [Ros2] (just before Proposition 4.21), and the answer is still
unknown. Here is however an example, for which we are grateful to Laurent Bartholdi.

74. Example. There exist two superamenable discrete metric spaces X,Y such that the
direct product X x'Y is not superamenable, for the metric defined by

dxxy ((z1,91), (T2, 92)) = dx (21, %2) + dy (y1,2)-

Proof. Let (hi),~,; be a strictly increasing sequence of integers > 1. Let X be a rooted
tree in which a vertex at distance n of the root is of degree

2k 2k+1
3 if Zhj§n< Zhj for some k >0,
j=0 Jj=1

2 otherwise

(with Z?Zo hj =0 for k =0). And let Y be a rooted tree in which a vertex at distance n
of the root is of degree

2k+1 2k+2
3 if Zhj <n< Zhj for some k >0,
Jj=1 Jj=1

2 otherwise.

Observe that both X and Y are superamenable, because each of their infinite connected
subgraphs has arbitrarily large hanging chains. Observe also that, for each integer n, there
is either in X or in Y a vertex of degree 3 at distance n of the relevant root. It follows that
the product of the two metric spaces defined by X and Y, for the distance dx «y defined
above, contains a paradoxical tree. Consequently, X x Y is not superamenable. []

75. Paradoxical subtrees in paradoxical graphs. It is known that a paradoxical
graph contains a paradoxical tree [BeSc|. It is unknown whether a connected paradoxical
graph necessarily contains a paradoxical tree which is spanning, i.e. which contains all
vertices of the original graph (this is Problem 2 in §4 of [DeSS]).

However, Benjamini and Schramm have shown that, if X is a paradoxical graph with
1(X) > n for some integer n > 2, then X has a spanning forest of which every connected
component is a tree with one vertex of degree n — 1 and all other vertices of degree n + 1.
This implies that X has a paradoxical spanning tree.
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76. A conjecture of V. Trofimov. This appears as Problem 12.87 in the Kourovka
Notebook [Kou]. Let X be a connected undirected graph without loops and multiple edges
and suppose that its automorphism group Aut(X) acts transitively on the vertices. Is it
true that one of the following holds ?

(i)  the stabilizer of a vertex of X is finite,

(ii)  the action of Aut(X) on the vertices of X admits a non-trivial imprimitivity
system o with finite blocks for which the stabilizer of a vertex of the factor-graph X /o in
Aut(X /o) is finite,

(iii) there exists a natural number n such that the graph, obtained from X by adding
edges connecting distinct vertices the distance between which in X is at most n, contains
a tree all of whose vertices have valence 3.

If the answer to this question was positive, this would imply that a graph of subexpo-
nential growth having a transitive group of automorphisms is essentially a Cayley graph
of a group.
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