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Abstract. Let q be a prime and K = Q(
√
−D) be an imaginary quadratic field such that

q is inert in K. If q is a prime above q in the Hilbert class field of K, there is a reduction
map

rq : E``(OK) −→ E``ss(Fq2)

from the set of elliptic curves over Q with complex multiplication by the ring of integers OK
to the set of supersingular elliptic curves over Fq2 . We prove a uniform asymptotic formula
for the number of CM elliptic curves which reduce to a given supersingular elliptic curve
and use this result to deduce that the reduction map is surjective for D �ε q

18+ε. This can
be viewed as an analog of Linnik’s theorem on the least prime in an arithmetic progression.

We also use related ideas to prove a uniform asymptotic formula for the average∑
χ

L(f ×Θχ, 1/2)

of central values of the Rankin-Selberg L–functions L(f ×Θχ, s) where f is a fixed weight
2, level q arithmetically normalized Hecke cusp form and Θχ varies over the weight 1, level
D theta series associated to an ideal class group character χ of K. We apply this result
to study the arithmetic of abelian varieties, subconvexity, and L4 norms of autormorphic
forms.

1. Introduction and statement of results

A problem of great importance in number theory concerns the distribution of primes in
primitive residue classes. Given a modulus q and a primitive residue class a (mod q), let

π(x; a, q) = #{p ≤ x : p ≡ a (mod q)}

be the number of primes p ≤ x in this residue class. Dirichlet’s theorem on primes in
arithmetic progressions shows that π(x; a, q) > 0 for x sufficiently large (in terms of q). It is
then natural to ask how large x must be to ensure the existence of such a prime p ≤ x. A
remarkable theorem of Linnik asserts that there exists an absolute constant L ≥ 2 such that
π(x; a, q) > 0 for x� qL. Here L is the famous Linnik “constant.” A great amount of effort
has been devoted to producing successively smaller numerical values of L. For an extensive
discussion of Linnik’s theorem, see Chapter 18 of [IK]. Analogs of Linnik’s theorem for other
arithmetic structures have captured the attention of many mathematicians.

2010 Mathematics Subject Classification. 11M41.
Key words and phrases. supersingular elliptic curves, equidistribution, Gross points, Heegner points, mean

values of L-functions, L4 norm.
R. M. and M. Y. were supported by the National Science Foundation under agreement Nos. DMS-1162535

(R. M.) and DMS-1101261 (M. Y.). Any opinions, findings and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the National Science
Foundation.

1



2 SHENG-CHI LIU, RIAD MASRI, AND MATTHEW P. YOUNG

In this paper we will study an analog of Linnik’s theorem for the reduction of CM elliptic
curves. Let E``(OK) be the set of isomorphism classes of elliptic curves over Q with complex
multiplication by the ring of integers OK of an imaginary quadratic field K = Q(

√
−D). By

the theory of complex multiplication, these curves are defined over the Hilbert class field HK

of K and the Galois group GK = Gal(HK/K) acts simply transitively on E``(OK). Therefore
given a curve E ∈ E``(OK), we have E``(OK) = {Eσ}σ∈GK where Eσ denotes the Galois
action on E, and there are |GK | = h(−D) such curves where h(−D) is the class number of
K. Let q be a prime number and q be a prime above q in HK . If q is inert or ramified in
K, the curve E has supersingular reduction modulo q. Let E``ss(Fq2) = {E1, . . . , En} be the
set of isomorphism classes of supersingular elliptic curves defined over Fq2 . Then one has a
reduction map

rq : E``(OK) −→ E``ss(Fq2).
There is a probability measure on E``ss(Fq2) defined by

µq(Ei) =
w−1
i∑n

j=1w
−1
j

(1.1)

where wi ∈ {1, 2, 3} is the number of units modulo {±1} of the endomorphism ring of Ei.
Gross [G, Table 1.3] notes that

∏n
i=1 wi divides 6 for q odd, so all but at most two wi equal

1. Eichler’s mass formula states that

(1.2)
n∑
j=1

w−1
j =

q − 1

12
,

and thus µq(Ei) � q−1.
Results of Gross [G], Iwaniec [I1], and Duke [D1] imply that for fixed q, the points

rq(E``(OK)) become equidistributed among the isomorphism classes E``ss(Fq2) with respect
to the measure µq as D → ∞. In fact, this equidistribution holds in the following strong
quantitative form: if q is inert in K, then given a curve Ei ∈ E``ss(Fq2) one has

#{σ ∈ GK : rq(E
σ) = Ei}

h(−D)
= µq(Ei) +Oq(D

−δ)(1.3)

for some absolute δ > 0, where the implied constant is uniform in Ei and ineffective. See
also the work of Elkies, Ono and Yang [EOY], which is discussed in more detail below.
Michel [Mi, Theorem 3] proved a “sparse” equidistribution version of (1.3), where GK can
be replaced by any subgroup G < GK of index ≤ D1/2115. Related equidistribution problems
were studied in [Co], [JeK], [V].

The equidistribution result (1.3) implies that for D sufficiently large (in terms of q), the
reduction map rq is surjective. In analogy with Linnik’s theorem, it is then natural to ask
how large D must be to ensure the surjectivity. We will answer this question by proving the
following (stronger) result concerning the asymptotic distribution of the integers

ND,q,Ei := #{σ ∈ GK : rq(E
σ) = Ei}(1.4)

as q,D →∞.

Theorem 1.1. Let q be an odd prime and −D < 0 be a fundamental discriminant such that
q is inert in K. Then

ND,q,Ei = h(−D)µq(Ei) +O(q1/8+εD7/16+ε),(1.5)
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where the implied constant is uniform in Ei and ineffective. Furthermore, we have

(1.6) ND,q,Ei � D1/4+ε +
D1/2+ε

q1/2
.

Assuming the generalized Lindelöf hypothesis for quadratic twists of modular L-functions, we
have

(1.7) ND,q,Ei = h(−D)µq(Ei) +O(qεD1/4+ε).

The implied constants in (1.6) and (1.7) are effective.

Remark 1.2. Combining (1.5) with Siegel’s (ineffective) bound h(−D)�ε D
1/2−ε immedi-

ately yields that

ND,q,Ei ∼ µq(Ei)h(−D)(1.8)

as q,D → ∞ with the restriction D �ε q
18+ε. For D smaller, with q10 � D � q18+ε, then

(1.5) becomes

(1.9) ND,q,Ei � q1/8D7/16+ε.

In the range D � q10, the bound (1.6) is strongest.

Theorem 1.1 implies the following

Corollary 1.3. The reduction map

rq : E``(OK) −→ E``ss(Fq2)
is surjective for D �ε q

18+ε. Assuming the generalized Lindelöf hypothesis for quadratic
twists of modular L-functions, the reduction map is surjective for D �ε q

4+ε.

Elkies, Ono and Yang [EOY] proved that the reduction map is surjective (for q inert or
ramified) for all sufficiently large D by relating the integers ND,q,Ei to Fourier coefficients of
a weight 3/2 theta series of level 4q studied by Gross [G] and employing results of Iwaniec
[I1] and Duke [D1] to give a lower bound for these coefficients. Under the assumption of the
generalized Riemann hypothesis, Kane [K1] [K2] effectivized the results of [EOY] and proved
that the reduction map is surjective for D �ε q

14+ε. A careful reader may wonder why,
assuming Lindelöf, our exponent improves on that of Kane, even though both approaches
use essentially optimal bounds on L-functions. The difference lies in the first steps of the
proof. Kane uses the theta function framework mentioned above. He decomposes the theta
function into a Hecke basis and uses the Kohnen-Zagier [KZ] formula to bound the Fourier
coefficients of the weight 3/2 Hecke eigenforms in the basis. The basis coefficients in this
decomposition are then difficult to bound optimally. In contrast, we use a period formula of
Gross to directly relate the integers ND,q,Ei to central values of L-functions summed over a
weight 2, level q Hecke eigenbasis (see (4.4), (3.1) and (4.7) below). Here the L-values are
of degree 4, factoring as the product of two degree 2 L-functions, in contrast to the degree
2 L-function appearing in the Kohnen-Zagier formula. It is straightforward to bound the
basis coefficients in this decomposition (see the sentence following (4.7)).

A somewhat complementary question concerning “minimal” CM lifts was studied by Yang
in [Y].

The problems studied in Theorem 1.1 are closely related to certain Rankin-Selberg L–
functions of arithmetic significance. Let f be an arithmetically normalized Hecke cusp form



4 SHENG-CHI LIU, RIAD MASRI, AND MATTHEW P. YOUNG

of weight 2 and level q. Let Θχ be the weight 1 theta series of level D associated to a
character χ of the ideal class group Cl(K). We will prove the following uniform asymptotic
formula for averages of central values of the Rankin-Selberg L–functions L(f × Θχ, s) as χ
varies over the ideal class group characters.

Theorem 1.4. Let q 6= 2 be a prime and −D < 0 be a fundamental discriminant such that
q is inert in K. Then

(1.10)
∑

χ∈Ĉl(K)

L(f ×Θχ,
1
2
) =

3

2π3u2

h(−D)2

√
D

q

q − 1
L(Sym2f, 1)

+Oε((qD)ε min(q7/8D7/16, q3/4D1/4 + q1/4D1/2)).

Theorem 1.4 implies the following quantitative nonvanishing result.

Corollary 1.5. For each ε > 0 there is an ineffective constant c = c(ε) > 0 such that

whenever D ≥ cq14+ε, we have L(f ×Θχ, 1/2) 6= 0 for some χ ∈ Ĉl(K).

Remark 1.6. Corollary 1.5 can be used to study the arithmetic of abelian varieties. For
example, if Af denotes the abelian variety associated to f by the Eichler-Shimura construc-
tion, a result of Bertolini and Darmon [BD, Theorem B] implies that if L(f ×Θχ, 1/2) 6= 0,
the χ-isotypical component Af (HK)χ of the Mordell-Weil group Af (HK) is finite.

Since the conductor of L(f × Θχ, s) at s = 1/2 is Q = (qD)2, the convexity bound is
L(f ×Θχ,

1
2
)�ε Q

1/4+ε. These central values are nonnegative, so dropping all but one term
in Theorem 1.4 implies the following hybrid subconvexity bound.

Corollary 1.7. We have

(1.11) L(f ×Θχ,
1
2
)�ε (qD)ε(q3/4D1/4 + q1/4D1/2).

A short computation shows this bound is subconvex when q � Dη for 0 < η < 1. Michel
and Ramakrishnan [MR] were the first to study hybrid subconvexity of the L–functions L(f×
Θχ, s). By establishing an exact formula for the average of L(f ×Θχ, 1/2) over holomorphic
forms f (the opposite average from Theorem 1.4), they also deduced subconvexity for 0 <
η < 1. Hyrbid subconvexity bounds for more general families of Rankin-Selberg L–functions
have been obtained by various methods (see e.g. [FW1], [HoMu], [N], [HoTe]).

For D � q14+ε, Theorem 1.4 gives

(1.12) L(f ×Θχ,
1
2
)� q7/8D7/16+ε,

which is o(D1/2) in this range of uniformity. For applications to equidistribution and non-
vanishing, it is crucial to have a bound that is subconvex in D alone with q fixed. On the
other hand, the estimate (1.9) (which is clearly of an arithmetical nature) uses much of
the same technology used to prove the hybrid subconvexity bound, so these problems are
closely related. A powerful input into the estimate (1.12) is a uniform subconvexity bound
of Blomer and Harcos [BH] for L(f × χ−D, 1/2), an L-function on GL2 ×GL1.

We next give a brief outline of the proof of Theorem 1.4 (see Section 2 for more details).
In [G, Section 3], Gross used the arithmetic of definite quaternion algebras to define a certain
curve Xq which is the disjoint union of n curves Yi of genus 0 over Q. Then the Picard group
of the curve Xq is given by

Pic(Xq) = Ze1 ⊕ · · · ⊕ Zen
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where ei denotes the class of degree 1 in Pic(Xq) corresponding to a point on Yi. Gross [G,
Proposition 11.3] established a formula relating the central value L(f ×Θχ, 1/2) to a certain
height pairing of two divisors in Pic(Xq)⊗Z C. We will use Gross’s formula to establish an
identity of the form ∑

χ∈Ĉl(K)

L(f ×Θχ,
1
2
) = c

∑
σ∈GK

w2
σf̃(ξσ)2,

where c is an explicit constant (depending on D, q and f), the wσ are explicit positive integers

(see the sentence following (2.2) for the definition), f̃ is a certain real-valued function on
Pic(Xq) ⊗Z R in Jacquet-Langlands correspondence with f , and {ξσ}σ∈GK is the GK-orbit
of a fixed Gross point ξ of discriminant −D. After decomposing the sum on the right hand
side into a Hecke basis, we are led to estimating an expression of the form∑

g∈F2(q)

(f̃ , f̃ , g̃)WD,g̃,

where F2(q) is an orthogonal basis of arithmetically normalized Hecke cusp forms of weight
2 and level q, (·, ·, ·) is a certain trilinear form, and WD,g̃ is the Weyl sum

WD,g̃ :=
∑
σ∈GK

wσg̃(ξσ).(1.13)

A formula of Gross and Kudla [GK] formula relates (f̃ , f̃ , g̃)2 to the triple product L-function
L(f × f × g, 1/2) = L(Sym2f × g, 1/2)L(g, 1/2), while Gross’s formula relates |WD,g̃|2 to
L(g, 1/2)L(g×χ−D, 1/2). After an application of Hölder’s inequality, we are led to estimating
the averages ∑

g∈F2(q)

L(g × χ−D, 1
2
)

L(Sym2g, 1)
,

∑
g∈F2(q)

L(g, 1
2
)4

L(Sym2g, 1)
,

∑
g∈F2(q)

L(Sym2f × g, 1
2
)2

L(Sym2g, 1)
.

We estimate the latter two averages using the large sieve inequality for holomorphic cusp
forms, along with some deep results from the automorphy of Rankin-Selberg convolutions.
To estimate the average with L(g × χ−D, 1/2), if q is very small compared to D we apply a
hybrid subconvexity bound of Blomer and Harcos [BH], while if q is somewhat large we use
the following result which is of independent interest.

Theorem 1.8. Let q be an odd prime and D be a fundamental discriminant with (D, q) = 1.
Then

(1.14)
∑

f∈F2(q)

ωfL(f × χD, 1
2
) = 1 +Oε((q|D|)εq−1|D|1/2),

where ωf = q−1+o(1) are the weights occurring in the Petersson trace formula.

Theorem 1.8 is the analog of [LMY, Theorem 1.5] (which considered Maass forms instead of
holomorphic forms). Duke [D2] was the first to study first and second moments of this type,
though he did not consider the dependence on D. The case of even weight k, k ≥ 4, could
probably be derived with some more refined estimates from work of Jackson and Knightly
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[JK] or Kohnen and Sengupta [KoSe], but there are convergence problems in both of their
approaches for k = 2.

Corollary 1.9. If q � |D|1/2+δ, there exists f ∈ F2(q) with L(f × χD, 1
2
) 6= 0.

The opposite problem of first choosing f and then finding D such that L(1/2, f ×χD) 6= 0
was studied by Hoffstein and Kontorovich [HK], who showed that this holds with some
|D| � q1+ε. Such a result can also be derived from Waldspurger’s formula and Riemann-
Roch, though this latter method does not give a lower bound on the central value while
the moment method of [HK] does (as does Corollary 1.9). In relation to Corollaries 1.5 and
1.9, Michel and Ramakrishnan [MR, Theorem 2] showed that if q � D1/2+δ, then there
exists an f such that L(f × Θχ, 1/2) 6= 0. When χ is chosen to be the trivial class group
character, then L(f × Θχ, s) = L(f, s)L(f × χ−D, s) so Michel and Ramakrishnan’s result
implies simultaneous nonvanishing.

Corollary 1.10. We have

(1.15) L(f × χD, 1
2
)� (q + |D|1/2)(q|D|)ε.

Remark 1.11. The bound (1.15) is subconvex for q3/2+δ ≤ |D| ≤ qA with fixed δ, A > 0.

The following result is a bound on the L4 norm of the real-valued function f̃ on Pic(Xq)⊗Z
R in Jacquet-Langlands correspondence with f described above (see Section 2 below for a
more thorough explanation). This is an analog of [LMY, Proposition 1.7] which is a bound
on the L4 norm of a Maass form in the level aspect.

Proposition 1.12. Suppose f̃ is in Jacquet-Langlands correspondence with f ∈ F2(q), nor-

malized so 〈f̃ , f̃〉 = 1 (equivalently,
∑n

i=1wi|f̃(ei)|2 = 1). Then we have

(1.16) ‖f̃‖4
4 :=

n∑
i=1

w3
i |f̃(ei)|4 � q−1/2+ε.

The normalization is such that the Lindelöf Hypothesis for triple product L-functions in
the level aspect would give O(q−1+ε) as the bound in (1.16). Blomer and Michel [BM] have

shown ‖f̃‖∞ � q−
1
60

+ε, which is the λ = 0 case in their Theorem 1; see their Remark 1.1.
We conclude the introduction by discussing how our results relate to some existing work.

Our analysis is influenced by the beautiful paper of Michel and Venkatesh [MV], where they
emphasize the “period formula” approach to asymptotics for families of Rankin-Selberg L–
functions. In particular, for fixed q, they give an asymptotic formula for the average in
Theorem 1.4 as D → ∞ using the equidistribution of Gross points. They also discuss the
possibility of a more refined analysis which would yield some range of uniformity in q (see
[MV, Remark 3.1]).

We proved the analog of Theorem 1.4 for Hecke-Maass newforms in [LMY, Theorem 1.1]
and studied level-aspect versions of equidistribution of Heegner points. Although the basic
idea of using period formulas to pass to averages of families of L–functions is common to
both papers, the methods used here differ in significant ways. For example, we mentioned
that Theorem 1.8 is the holomorphic analog of [LMY, Theorem 1.5]. We emphasize that the
holomorphic case (with weight 2) has a new analytic difficulty because of slow convergence
of the sum of Kloosterman sums in the Petersson formula.
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Lastly, we take this opportunity to make a correction and improvement to [LMY]. In
[LMY, Corollary 1.3] the word “effective” should be replaced with “ineffective.” Further-
more, in the same corollary, the range of q can be extended to q ≤ cD1/14−ε, matching the
exponent in Corollary 1.5 here. This improved exponent arises from applying [BH, Theorem
2] in place of [BH, (1.3)] in [LMY, (6.9)] (and subsequent bounds relying on (6.9)). We
thank Jack Buttcane for this observation.

2. A formula of Gross

In this section we review a period formula of Gross [G], following closely the discussion in
[G, Section 3] and [Mi, Section 6]. Let −D < 0 be a fundamental discriminant and q be a
prime which is inert in K = Q(

√
−D). Let Cl(K) be the ideal class group, h(−D) be the

class number, Ĉl(K) be the group of ideal class group characters, and OK be the ring of
integers of K, respectively. Let B be the quaternion algebra over Q which is ramified at q
and ∞. Fix a maximal order R in B, and let {I1, . . . , In} be a set of representatives for the
equivalence classes of left R-ideals in B. To each Ii, one associates the maximal right order

Ri = {x ∈ B : Iix ⊂ Ii}.

An optimal embedding of OK into Ri is an embedding ξ : K ↪→ B for which ξ(K) ∩Ri =
ξ(OK). Two optimal embeddings ξ1 and ξ2 are conjugate modulo R×i if there is a unit
u ∈ R×i such that ξ1(x) = uξ2(x)u−1 for all x ∈ OK . A Gross point of discriminant −D is
an optimal embedding ξ of OK into some Ri, modulo conjugation by R×i . Let h(OK , Ri)
denote the number of R×i -conjugacy classes of optimal embeddings of OK into Ri. Then a
result of Eichler states that (see [G, eq. (1.12)])

n∑
i=1

h(OK , Ri) = 2h(−D).

In particular, if ΛD,q denotes the set of Gross points of discriminant −D, we have #ΛD,q =
2h(−D).

The set of left R-ideals {I1, . . . , In} corresponds to the set of connected components
{Y1, . . . , Yn} of a curve Xq which is the disjoint union of n curves Yi of genus 0 over Q.
The Gross points ΛD,q can be described geometrically as certain K-valued points on Xq (see
[G, pp. 131-132]). Let Pic(Xq) denote the Picard group of Xq, and let Pic0(Xq) denote the
subgroup of degree 0 divisors. If ei denotes the class of degree 1 in Pic(Xq) corresponding
to a point on Yi, we have

Pic(Xq) = Ze1 ⊕ · · · ⊕ Zen.

In this way, a Gross point ξ determines a class eiξ in Pic(Xq). By abuse of notation, we also
denote this class by ξ.

There is a height pairing

〈 , 〉 : Pic(Xq)× Pic(Xq)→ Z

defined on generators by 〈ei, ej〉 = wiδij, and extended bi-additively to Pic(Xq). Here wi =
|R×i |/2, which agrees with the definition of wi given in the introduction since the set of left
R-ideals {I1, . . . , In} corresponds to the set of supersingular elliptic curves {E1, . . . , En} in
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such a way that End(Ei) = Ri (see e.g. [Koh, Section 5.3]). We define a probability measure
on the set of divisor classes {e1, . . . , en} by

µq(ei) =
w−1
i∑n

j=1w
−1
j

.

Let S2(q) be the space of cusp forms of weight 2 and level q, and let F2(q) be an orthogonal
basis of arithmetically normalized Hecke cusp forms for S2(q). A special case of the Jacquet-
Langlands correspondence states that for each form f ∈ F2(q), there is a unique ef ∈
Pic0(Xq) ⊗Z R such that 〈ef , ef〉 = 1 and tnef = λf (n)ef , where tn denotes the operator
on Pic(Xq) induced by the n-th Hecke correspondence on Xq and λf (n) is the n-th Hecke
eigenvalue of f . We write

ef =
n∑
i=1

νi(f)ei

with νi(f) ∈ R for i = 1, . . . , n. Define

e∗ =
n∑
i=1

1

wi
ei.

Then an orthonormal basis for Pic(Xq)⊗Z R is given by{ e∗√
〈e∗, e∗〉

}
∪ {ef : f ∈ F2(q)}.

Note that by Eichler’s mass formula, 〈e∗, e∗〉 = (q − 1)/12.
The geometric description of the Gross points allows one to define a free action of Cl(K) ∼=

GK = Gal(HK/K) on ΛD,q, where HK is the Hilbert class field of K (see [G, p. 133]). Given

an ideal class group character χ ∈ Ĉl(K) and a Gross point ξ ∈ ΛD,q, let

cχ =
∑
σ∈GK

χ(σ)ξσ ∈ Pic(Xq)⊗Z C.

Given a form f ∈ F2(q), let L(f × Θχ, s) be the Rankin-Selberg L–function of f and the
weight 1 theta series Θχ of level D associated to χ. Then Gross’s formula states that1 (see
[G, Proposition 11.2])

L(f ×Θχ,
1
2
) =
〈f, f〉q
u2
√
D
|〈cχ, ef〉|2 ,(2.1)

where u is the number of units in K and

〈f, g〉q :=

∫
Γ0(q)\H

y2f(z)g(z)
dxdy

y2

is the Petersson inner product on S2(q).

1Gross’s formula is actually stated as

L(f ×Θχ,
1
2 ) =

〈f, f〉q
u2
√
D
〈cf,χ, cf,χ〉,

where cχ,f := 〈cχ, ef 〉ef is the projection of cχ onto the f -isotypical component in Pic(Xq)⊗Z C. With our
normalization of ef this is easily seen to be equivalent to (2.1).
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We now give an alternative description of Gross’s formula which will be useful for calcula-
tions. Let MC

B(q) be the vector space of C-valued functions on Pic(Xq)⊗Z C with the inner
product

〈φ, ψ〉 :=
n∑
i=1

wiφ(ei)ψ(ei).

Then the map which sends a generator ei to its characteristic function 1ei induces an iso-
morphism Pic(Xq)⊗Z C ∼= MC

B(q) defined by

e =
n∑
i=1

ciei 7−→ ẽ :=
n∑
i=1

ci1ei .

Moreover, this map is an isometry of inner-product spaces, i.e. 〈ẽ, ẽ′〉 = 〈e, e′〉 for any

e, e′ ∈ Pic(Xq) ⊗Z C. Let f̃ = ẽf denote the image of ef under this isomorphism. Then an
orthonormal basis for MR

B(q) is given by{ ẽ∗√
〈ẽ∗, ẽ∗〉

}
∪ {f̃ : f ∈ F2(q)}.

We can now write Gross’s formula as

L(f ×Θχ,
1
2
) =
〈f, f〉q
u2
√
D

∣∣∣ ∑
σ∈GK

χ(σ)wσf̃(ξσ)
∣∣∣2,(2.2)

where by abuse of notation we write wσ for wi = |R×i |/2 where ξσ is an optimal embedding
of OK into Ri.

By [ILS, Lemma 2.5 and (3.14)], we have

〈f, f〉q =
1

8π3
qL(Sym2f, 1),(2.3)

and so we may write (2.2) as

L(f ×Θχ,
1
2
) =

qL(Sym2f, 1)

8π3u2
√
D

∣∣∣ ∑
σ∈GK

χ(σ)wσf̃(ξσ)
∣∣∣2.(2.4)

3. Period integral formulas and bounds on L-functions

In this section we evaluate the magnitude of the Weyl sums WD,g̃ (defined in the intro-

duction by (1.13)) and the trilinear forms (f̃ , f̃ , g̃) in terms of L-functions. Applying (2.4)
with χ = χ0 the trivial ideal class group character, we have∣∣WD,g̃

∣∣2 =
8π3u2

√
DL(g × χ−D, 1

2
)L(g, 1

2
)

qL(Sym2g, 1)
.(3.1)

Using the nonnegativity of L(g × χ−D, 1/2), L(g, 1/2) and L(Sym2g, 1), we deduce the fol-
lowing

Lemma 3.1. For g ∈ F2(q) we have

WD,g̃ = ±
√

8π3uD1/4

q1/2

L(g × χ−D, 1
2
)1/2L(g, 1

2
)1/2

L(Sym2g, 1)1/2
.(3.2)
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The key fact here is that subconvexity for the twisted L-function gives a nontrivial bound
on WD,g̃. The current best subconvexity bound which is uniform in q and D is the following
result of Blomer and Harcos [BH]:

(3.3) L(g × χ−D, 1/2)� (q1/4D3/8 + q1/2D1/4)(qD)ε.

The large sieve inequality for holomorphic cusp forms allows one to deduce Lindelöf on
average in the following sense.

Lemma 3.2. [IK, Theorem 7.35] We have

(3.4)
∑

g∈F2(q)

L(g, 1
2
)4

L(Sym2g, 1)
� q1+ε

We now review a period formula of Gross and Kudla [GK] for triple product L–functions.
Write the Fourier expansion for f ∈ F2(q) in the form

f(z) =
∞∑
n=1

λf (n)n1/2e(nz),

where λf (n) is the n-th Hecke eigenvalue of f . For a prime p 6= q, write

λf (p) = αf,1(p) + αf,2(p)

where Deligne’s bound amounts to |αf,i(p)| ≤ 1, and the Hecke relation means

αf,1(p)αf,2(p) = 1.

For p = q, λf (q) = ±q−1/2.
Define the triple product L–function

L(f × g × h, s) =
∏
p

Lp(f × g × h, s),

where for p 6= q,

Lp(f × g × h, s) =
∏

i,j,k∈{1,2}

(1− αf,i(p)αg,j(p)αh,k(p)p−s)−1,

and for p = q,

Lp(f × g × h, s) = (1− λf (q)λg(q)λh(q)q−s)−1(1− λf (q)λg(q)λh(q)q1−s)−2.

Then the completed triple product L–function is defined by

Λ(f × g × h, s) = q5s/2L∞(f × g × h, s)L(f × g × h, s),
where

L∞(f × g × h, s) = (2π)−(3+4s)Γ(s+ 3
2
)Γ(s+ 1

2
)3.

This L–function satisfies the functional equation

Λ(f × g × h, s) = εf,g,hΛ(f × g × h, 1− s),
where

εf,g,h = sgn(λf (q)λg(q)λh(q)) = ±1.
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The Gross-Kudla formula for the central value of the triple product L–function of f, g, h
is (see [FW2, Theorem 3.1] and [GK, Corollary 11.3])

L(f × g × h, 1
2
) = 128π5 〈f, f〉q〈g, g〉q〈h, h〉q

q
(f̃ , g̃, h̃)2,(3.5)

where the trilinear form is defined by

(3.6) (f̃ , g̃, h̃) =
n∑
i=1

w2
i νi(f)νi(g)νi(h).

Note that our Petersson inner product is (8π2)−1 times the Petersson inner product in [FW2,
Theorem 3.1]. Using (2.3) we may write (3.5) as

(f̃ , g̃, h̃)2 =
4π4

q2

L(f × g × h, 1
2
)

L(Sym2f, 1)L(Sym2g, 1)L(Sym2h, 1)
.(3.7)

Using the factorization L(f × f × g, s) = L(Sym2f × g, s)L(g, s), we deduce

Lemma 3.3. We have

(3.8) (f̃ , f̃ , g̃) = ±2π2

q

L(Sym2f × g, 1
2
)1/2L(g, 1

2
)1/2

L(Sym2f, 1)L(Sym2g, 1)1/2
.

4. Proof of Theorem 1.1

To prove Theorem 1.1 we combine the following result with the argument in the first
paragraph of [Mi, p. 226].

Theorem 4.1. Let q be an odd prime and −D < 0 be a fundamental discriminant such that
q is inert in K = Q(

√
−D). Given a Gross point ξ ∈ ΛD,q and a class ei ∈ Pic(Xq), define

Nq,D,ei = #{σ ∈ GK : ξσ = ei}.
Then

Nq,D,ei = h(−D)µq(ei) +O(q1/8+εD7/16+ε),(4.1)

where the implied constant is uniform in ei. We also have

(4.2) Nq,D,ei � (Dq)ε(D1/4 +
D1/2

q1/2
).

Assuming the generalized Lindelöf hypothesis for quadratic twists of modular L-functions, we
have

(4.3) ND,q,Ei = h(−D)µq(Ei) +O(qεD1/4+ε).

Proof. We begin by showing

(4.4) Nq,D,ei = h(−D)µq(ei) +
1

wi

∑
g∈F2(q)

〈ẽi, g̃〉WD,g̃,

which is equivalent to [Mi, (6.3)]. We have

(4.5) wiNq,D,ei = wi#{σ ∈ GK : ξσ = ei} =
∑
σ∈GK

wσẽi(ξ
σ).
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By decomposing the function ẽi into a Hecke basis in MR
B(q), we have

ẽi(z) =
〈ẽi, ẽ∗〉
〈ẽ∗, ẽ∗〉

ẽ∗(z) +
∑

g∈F2(q)

〈ẽi, g̃〉g̃(z).

Therefore,

wiNq,D,ei =
〈ẽi, ẽ∗〉
〈ẽ∗, ẽ∗〉

∑
σ∈GK

wσẽ
∗(ξσ) +

∑
g∈F2(q)

〈ẽi, g̃〉WD,g̃.

We calculate ∑
σ∈GK

wσẽ
∗(ξσ) =

∑
σ∈GK

wσ

n∑
i=1

1

wi
ẽi(ξ

σ) = h(−D).

Then using 〈ẽi, ẽ∗〉 = 1 for all i and the Eichler mass formula 〈ẽ∗, ẽ∗〉 = (q − 1)/12, identity
(4.4) follows.

Now we turn to the proof of Theorem 4.1. We may assume q � D1/2 as otherwise the
conclusions are trivial. By Cauchy’s inequality we have

|Nq,D,ei − h(−D)µq(ei)| ≤
1

wi
M

1/2
1 M

1/2
2 ,(4.6)

where

M1 =
∑

g∈F2(q)

〈ẽi, g̃〉2, M2 =
∑

g∈F2(q)

|WD,g̃|2.(4.7)

We recall here that wi = 1, 2 or 3. By Bessel’s inequality, M1 ≤ 〈ẽi, ẽi〉 = wi. To finish the
proof of Theorem 4.1, we now show

M
1/2
2 � q1/8D7/16(qD)ε.

This follows from (3.1), the bound of Blomer-Harcos [BH, Theorem 2] L(g × χ−D, 1/2) �
q1/4D3/8(qD)ε (which uses q � D1/2, as otherwise a different term is dominant, and also
that (q,D) = 1) and the bound

∑
g∈F2(q)

L(g, 1
2
)

L(Sym2g, 1)
� q1+ε,

which is implied by Lemma 3.2. This shows (4.1).
To show (4.2), we simply quote a result of Michel and Ramakrishnan [MR, Corollary 2],

which in our notation states

(4.8) M2 =
∑

g∈F2(q)

|WD,g̃|2 �
√
D

q

∑
g∈F2(q)

L(g × χ−D, 1
2
)L(g, 1

2
)

L(Sym2g, 1)
� (qD)ε(

√
D +

D

q
).

Finally, the bound (4.3) comes from using M2 � D1/2(qD)ε which follows from Lindelöf. �
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5. Proof of Theorem 1.4

Using the orthogonality relations for the characters Ĉl(K), we obtain from (2.4) the
identity

Mf (D) :=
∑

χ∈Ĉl(K)

L(f ×Θχ,
1
2
) =

1

8π3u2

h(−D)√
D

qL(Sym2f, 1)
∑
σ∈GK

w2
σf̃(ξσ)2.(5.1)

We claim that

(5.2)
∑
σ∈GK

w2
σf̃(ξσ)2 =

h(−D)
q−1
12

+
∑

g∈F2(q)

(f̃ , f̃ , g̃)WD,g̃.

Since f̃ =
∑n

i=1 νi(f)ẽi, then f̃ 2 =
∑n

i=1 νi(f)2ẽi, and so∑
σ∈GK

w2
σf̃(ξσ)2 =

n∑
i=1

νi(f)2w2
iNq,D,ei .

Therefore, from (4.4)∑
σ∈GK

w2
σf̃(ξσ)2 =

n∑
i=1

νi(f)2wi

(h(−D)
q−1
12

+
∑

g∈F2(q)

〈ẽi, g̃〉WD,g̃

)
where we used 〈ẽ∗, ẽ∗〉 = (q− 1)/12. Now,

∑n
i=1 wiνi(f)2 = 〈f̃ , f̃〉 = 1, and 〈ẽi, g̃〉 = wiνi(g),

so ∑
σ∈GK

w2
σf̃(ξσ)2 =

h(−D)
q−1
12

+
∑

g∈F2(q)

( n∑
i=1

w2
i νi(f)2νi(g)

)
WD,g̃,

which is precisely (5.2).
The first term in (5.2) equals the stated main term in Theorem 1.4. For the sum over g,

we have

Lemma 5.1. We have

(5.3)
∑

g∈F2(q)

(f̃ , f̃ , g̃)WD,g̃ �
(qD)ε

L(Sym2f, 1)
min

(D7/16

q1/8
,
D1/4

q1/4
+
D1/2

q3/4

)
.

The error term in Theorem 1.4 is q times larger than the right hand side of (5.3), as
desired.

Proof. Combining (3.8) and (3.2) we obtain

(5.4)
∑

g∈F2(q)

(f̃ , f̃ , g̃)WD,g̃ =
D1/4

q3/2L(Sym2f, 1)

×
∑

g∈F2(q)

θg,f,D

L(Sym2g, 1)
L(g × χ−D, 1

2
)
1
2L(g, 1

2
)L(Sym2f × g, 1

2
)
1
2 ,

where θg,f,D � 1 uniformly in g, f and D. We apply Hölder’s inequality with exponents
2, 4, 4, respectively, obtaining

(5.5)
∑

g∈F2(q)

(f̃ , f̃ , g̃)WD,g̃ �
D1/4

q3/2L(Sym2f, 1)
M

1/2
3 M

1/4
4 M

1/4
5 ,
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where we have used nonnegativity of central values, and where

(5.6)

M3 =
∑

g∈F2(q)

L(g × χ−D, 1
2
)

L(Sym2g, 1)
, M4 =

∑
g∈F2(q)

L(g, 1
2
)4

L(Sym2g, 1)
,

M5 =
∑

g∈F2(q)

L(Sym2f × g, 1
2
)2

L(Sym2g, 1)
.

Lemma 3.2, a consequence of the large sieve inequality for holomorphic cusp forms, states
M4 � q1+ε. With similar technology combined with some deep inputs on the automorphy
of Rankin-Selberg convolutions, we will show in Section 6 the following

Proposition 5.2. We have

(5.7) M5 � q2+ε.

For M3, we have two different approaches. For q small compared to D we simply apply
the best known progress towards Lindelöf for L(g× χ−D, 1/2), which is (3.3) due to Blomer
and Harcos, and multiply by the number of forms which is � q. For q larger we appeal to
Theorem 1.8. In all, we obtain

(5.8) M3 � (qD)ε min(q5/4D3/8 + q3/2D1/4, q +D1/2).

Notice that if q � D1/2, then Theorem 1.8 is an asymptotic formula so the latter term in
the min is the optimal choice, while if q � D1/2 then the first term inside the min in (5.8)
may be simplified as O(q5/4D3/8). Taking these estimates for granted, we then obtain (5.3)
after a short calculation. �

Now we discuss an alternate arrangement of Hölder’s inequality which may be of interest.
Applying Hölder’s inequality in (5.4) with exponents 4, 4, 2, respectively, we obtain

(5.9)
∑

g∈F2(q)

(f̃ , f̃ , g̃)WD,g̃ �
D1/4

q3/2L(Sym2f, 1)
M
′1/4
3 M

1/4
4 M

′1/2
5 ,

where M4 is given already by (5.6), and in addition

M ′
3 =

∑
g∈F2(q)

L(g × χ−D, 1
2
)2

L(Sym2g, 1)
, M ′

5 =
∑

g∈F2(q)

L(Sym2f × g, 1
2
)

L(Sym2g, 1)
.

The large sieve inequality for holomorphic cusp forms (see [IK, Theorem 7.24] for example)
easily shows M ′

3 � (q + q1/2D)(qD)ε and it seems likely that improvements are possible
here using current technology. One may hope to show M ′

5 � q1+ε as this is a family with
� q elements with conductors of size approximately q4; Buttcane and Khan [BK, Theorem
1.2] proved an estimate of this form for Fk(q) with k sufficiently large in terms of ε (smaller
weights cause some technical difficulties so it is not straightforward to remove this condition).
Conditional on this bound on M ′

5, one would obtain

Mf (D)� (q1/2D1/4 + q3/8D1/2)(qD)ε,

which would imply a subconvexity bound for q = Dη for any fixed 0 < η (essentially as long
as neither q nor D is fixed).
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6. Proof of Proposition 5.2

In this section we prove Proposition 5.2. The basic idea is to apply the large sieve inequality
for holomorphic cusp forms. We begin by collecting some standard facts.

Proposition 6.1. Let λf (n) be the n-th Hecke eigenvalue of f ∈ F2(q). Then for any
complex numbers an, we have∑

f∈F2(q)

1

L(Sym2f, 1)

∣∣∣∑
n≤N

anλf (n)
∣∣∣2 � qε (q +N)

∑
n≤N

|an|2.(6.1)

By Gelbart and Jacquet [GJ], the symmetric square lift Sym2f is a self-dual automorphic
form on GL3 with Fourier coefficients A(m, k) satisfying

A(m, 1) =
∑
ab2=m

λf (a
2),

when q - m, and

A(m, k) =
∑
d|(m,k)

µ(d)A
(m
d
, 1
)
A
(

1,
k

d

)
,

when q - mk. Xiannan Li [L] showed the following uniform bound∑
mk2≤N

|A(m, k)|2

mk
� (qN)ε(6.2)

as a consequence of his uniform convexity bound. Technically, convexity would show (6.2)
with mk2 in the denominator, not mk, but one can use the multiplicativity relations of the
Fourier coefficients to derive (6.2). We have

L(Sym2f × g, s) = (1− λg(q)q−s)−1(1− λg(q)q−(s+1))−1L(q)(Sym2f × g, s)(6.3)

=:
∞∑
n=1

λSym2f×g(n)

ns
,

where

L(q)(Sym2f × g, s) =
∑

(mk,q)=1

A(m, k)λg(m)

(mk2)s
.

The conductor of L(Sym2f × g, 1/2) is q4, as we now briefly explain. Gross and Kudla
[GK] showed that the conductor of L(f × f × g, 1/2) is q5, while the conductor of L(g, 1/2)
is q. Therefore, using the factorization L(f × f × g, s) = L(Sym2f × g, s)L(g, s) we make
this deduction. By an approximate functional equation [IK, Theorem 5.3], we have

(6.4) M5 �
∑

g∈F2(q)

1

L(Sym2g, 1)

∣∣∣ ∞∑
n=1

λSym2f×g(n)

n1/2
V (n/q2)

∣∣∣2,
where V (x) is some fixed smooth function with rapid decay for x → ∞. Actually, we
prefer to sum over n coprime to q in order to work with L(q) which has a simpler Dirichlet
series. Towards this end we write V (x) = 1

2πi

∫
(c)
F (s)x−sds where F (s) has rapid decay for
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|Im(s)| → ∞, and is analytic for Re(s) > 0. By inserting this Mellin formula into (6.4) and
factorizing the L-function via (6.3), we have for σ > 1/2

(6.5) M5 �
∑

g∈F2(q)

1

L(Sym2g, 1)

∣∣∣ 1

2πi

∫
(σ)

q2sF (s)

(1− λg(q)

qs
)(1− λg(q)

qs+1 )

∑
(n,q)=1

λSym2f×g(n)

n1/2+s
ds
∣∣∣2.

Now the sum over n may be truncated at � q2+ε with a small error term (say O(q−100)) by
shifting the contour far to the right if necessary. Having imposed this truncation on n, we
may then shift the contour to σ = ε > 0 and apply Cauchy-Schwarz to give

(6.6) M5 �
∫

(ε)

|F (s)|
∑

g∈F2(q)

q2ε

L(Sym2g, 1)

∣∣∣ ∑
(n,q)=1
n�q2+ε

λSym2f×g(n)

n1/2+s

∣∣∣2|ds|+ q−100.

By unraveling the definition of Dirichlet series coefficients, and using Cauchy’s inequality,
we obtain for σ > 1/2

(6.7)
∣∣∣ ∑

(n,q)=1
n�q2+ε

λSym2f×g(n)

nσ+it

∣∣∣2 =
∣∣∣ ∑

(mk,q)=1
mk2�q2+ε

A(m, k)λg(m)

mσ+itk2σ+2it

∣∣∣2

≤ ζ(2σ)
∑

k�q1+ε
k−2σ

∣∣∣ ∑
(m,q)=1

m�q2+ε/k2

A(m, k)λg(m)

mσ+it

∣∣∣2.
Inserting (6.7) into (6.6), and using Proposition 6.1, we obtain

(6.8) M5 � qε
∑

k�q1+ε
k−1
(
q +

q2

k2

) ∑
m≤q2+ε/k2

|A(m, k)|2

m
.

Then using (6.2) completes the proof of Proposition 5.2.

7. Proof of Proposition 1.12

Next we give the proof of Proposition 1.12. Define F via

(7.1) F (z) =
n∑
i=1

w
1/2
i νi(f)ẽi(z),

so that 〈F 2, F 2〉 =
∑n

i=1w
3
i νi(f)4 = ‖f̃‖4

4, and

(7.2) 〈F 2, g̃〉 =
n∑
i=1

w2
i νi(f)2νi(g) = (f̃ , f̃ , g̃).

By Parseval’s formula, we have

〈F 2, F 2〉 =
〈F 2, ẽ∗〉2

〈ẽ∗, ẽ∗〉
+
∑

g∈F2(q)

(f̃ , f̃ , g̃)2.

Note 〈F 2, ẽ∗〉 =
∑n

i=1 wiνi(f)2 = 〈f̃ , f̃〉 = 1. Also recall that 〈ẽ∗, ẽ∗〉 = (q − 1)/12, so

〈F 2, ẽ∗〉2

〈ẽ∗, ẽ∗〉
� q−1.
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By Lemma 3.3 and Cauchy’s inequality, we have

(7.3)
∑

g∈F2(q)

(f̃ , f̃ , g̃)2 � q−2M
1/2
5 M

1/2
6 , where M6 =

∑
g∈F2(q)

L(g, 1
2
)2

L(Sym2g, 1)
,

and with M5 as in (5.6). Then by Proposition 5.2 and the bound M6 � q1+ε (implied by
Lemma 3.2), we obtain the bound O(q−1/2+ε). Assuming Lindelöf for triple products, we
would have M5 � q1+ε, explaining the remark following Proposition 5.2. This completes the
proof.

8. Proof of Theorem 1.8

Let q be an odd prime and D be a fundamental discriminant with (D, q) = 1 and associated
quadratic character χD. Let ωf be the Petersson weights which occur in the Petersson trace
formula, which for weight 2 reads

(8.1)
∑

f∈F2(q)

ωfλf (m)λf (n) = δm=n − 2π
∑

c≡0 (mod q)

S(m,n; c)

c
J1

(4π
√
mn

c

)
.

The Petersson weights satisfy ωf = q−1+o(1).
By say Propositions 14.19 and 14.20 of [IK], f × χD is a Hecke newform of level qD2, so

the conductor of L(1/2, f×χD) is also qD2. We use a long one-piece approximate functional
equation for L(1/2, f × χD) (as did Duke [D2]), namely

(8.2) L(1/2, f × χD) =
∞∑
n=1

λf (n)χD(n)√
n

V (n/X) +OA((X/qD2)−A),

where V (x) is a fixed (independent of q and D) smooth function with rapid decay, that is,
V (x) �A (1 + x)−A for any A > 0. We take X = (qD2)2; surprisingly, the method is not
particularly sensitive to the length of X. Then

(8.3)
∑

f∈F2(q)

ωfL(1/2, f × χD) = V (1/X)− 2πS +O((qD)−100),

where

(8.4) S =
∑

c≡0 (mod q)

c−1Sc, Sc =
∞∑
n=1

n−1/2S(n, 1; c)χD(n)V (n/X)J1

(4π
√
n

c

)
.

We will show

(8.5) S � |D|1/2q−1(|D|q)ε.
This will suffice to prove Theorem 1.8, since we can choose V to satisfy V (x) = 1 +O(x) for
x→ 0+.

Since J1(x)� x, we can use Weil’s bound to estimate the terms with c ≥ C ≥ q, giving

(8.6)
∑

c≡0 (mod q)
c≥C

c−1Sc �
∑

c≡0 (mod q)
c≥C

Xc−3/2+ε � Xq−1C−1/2+ε.

If C ≥ X2/|D|, then this trivial bound is satisfactory. Although we do not need a strong
bound on the tail, it is vital that we can truncate the sum at some C which is polynomial
in q and |D|.
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Next we estimate Sc for c not too large by applying Poisson summation to the sum over

n. Note that f(x) = x−1/2V (x/X)J1

(
4π
√
x

c

)
is continuous on x ≥ 0 and has rapid decay for

x large, but f(0) 6= 0 so to simplify the analysis we first apply a dyadic partition of unity to
the sum over n. We then write Sc =

∑
N dyadic Sc(N), where

(8.7) Sc(N) =
∞∑
n=1

n−1/2S(n, 1; c)χD(n)wN(n)J1

(4π
√
n

c

)
,

and wN(x) is a smooth function supported on [N, 2N ], say, satisfying dj

dxj
wN(x) � N−j.

Now that we have a smooth function, we may easily apply Poisson summation to n modulo
c|D|, giving

(8.8) Sc(N) =
∑
m∈Z

1

c|D|
a(m; c,D)r(m; c,D),

where

(8.9) a(m; c,D) =
∑

x (mod c|D|)

χD(x)S(x, 1; c)e
( mx
c|D|

)
,

and

(8.10) r(m; c,D) =

∫ ∞
0

x−1/2wN(x)J1

(4π
√
x

c

)
e
(
− mx

c|D|

)
dx.

By Lemma 10.5 of [LMY], a(0; c,D) = 0 for q|c, a condition which always holds here. By a
tiny strengthening of Lemma 10.5 of [LMY], we have

(8.11) |a(m; c,D)| ≤ 25c|D|1/2(m, c,D)1/2.

Previously we had the bound 4ν+2c, where c = 2νc′, (c′, 2) = 1, in place of 25c, so this requires
a little explanation. We need to more carefully treat the case p = 2 in the proof of Lemma
10.5 of [LMY]. By a factorization argument, it suffices to consider the case where c and ±D
are both powers of 2. We have, for any p,

(8.12) a(m, pc,±pD) =
∑

x (mod pc+D)

∑∗

y (mod pc)

χ±pD(x)e
(xy + y

pc

)
e
( mx
pc+D

)
.

When p = 2 we have D = 0, 2, or 3. If D = 0 then as in (10.34) of [LMY] (which does not
require p odd), we have

(8.13) a(m; pc, 1) = pce
(−m
pc

)
.

If D = 2 or 3 and c < D then we quote a trivial bound for simplicity (leading to the factor
25). Now assume c ≥ D. Changing variables x→ x+ pc multiplies the entire sum by e

(
m
pD

)
,

so the sum vanishes unless pD|m. Accordingly, write m = pDm1. The sum over x is then
periodic modulo pc, so it is the same sum repeated pD times, so

(8.14) a(m, pc,±pD) = pD
∑

x (mod pc)

∑∗

y (mod pc)

χ±pD(x)e
(x(y +m1) + y

pc

)
.

Next write x = x1 + pDx2 where x1 runs modulo pD and x2 runs modulo pc−D. The sum
over x2 vanishes unless y ≡ −m1 (mod pc−D), in which case it equals pc−D. At this point, a
trivial bound shows |a(m, pc,±pD)| ≤ p2D+c. Thus (8.11) holds.
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We need to understand the analytic properties of r(m; c,D) where this calculation is

different from that of [LMY]. We claim that for c�
√
N , we have

(8.15) r(m; c,D)� c−1N
(

1 +
|m|N
c|D|

)−100

,

while for c�
√
N we have

(8.16) r(m; c,D)� c
(

1 +
|m|
√
N

|D|

)−100

.

The J1-Bessel function has two distinct types of behavior. For c ≥
√
x �
√
N , the J1 factor

is not oscillatory, as J1(y) ∼ 1
2
y for y → 0. Hence, in this region, we have that r(m; c,D)

is c−1 times the Fourier transform of a function satisfying the same derivative bounds as
wN(x), so that (8.15) follows.

In the complementary range c �
√
N , we have J1(4πy) = y−1/2

∑
± e(±2iy)g±(4πy),

where dj

djj
g±(y)�j 1. Thus, in this range we have

(8.17) r(m; c,D) =
∑
±

c1/2

∫ ∞
0

x−3/4hc,N,±(x)e
(±2
√
x

c
− mx

c|D|

)
dx,

where

(8.18) hc,N,±(x) = wN(x)g±

(4π
√
x

c

)
.

It is easily checked that

(8.19)
dj

dxj
hc,N,±(x)�j N

−j.

We treat the estimation of r(m; c,D) using the classical theory of exponential integrals. The
basic observation is that unless there is some cancellation in the two phases ±2c−1

√
x and

(c|D|)−1mx for some x � N (which would imply |m| � |D|/
√
N), then repeated integration

by parts (as in say Lemma 8.1 of [BKY]) shows that

(8.20) r(m; c,D)� c1/2N1/4
(√N

c
+
|m|N
c|D|

)−A
,

which is a stronger estimate than (8.16). On the other hand, if |m| � |D|/
√
N (consistent

with a stationary point, but we do not need to assume that such a point actually lies inside
the support of wN), then the van der Corput bound shows r(m; c,D)� c, which agrees with
(8.16).

Now we finish the proof of (8.5). We have

(8.21)
∑

c≡0 (mod q)√
N�c≤C

c−1Sc(N)� N |D|−1/2
∑

c≡0 (mod q)√
N�c≤C

c−2
∑
m6=0

(m, c,D)1/2
(

1 +
|m|N
c|D|

)−100

,

and a short calculation shows

(8.22)
∑

c≡0 (mod q)√
N�c≤C

c−1Sc(N)� |D|1/2+εq−1+εCε.
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Pleasantly, this bound is independent of N , and we only need to sum over O(log q|D|) such
values of N , so the same bound holds on

∑
c c
−1Sc, with c running over the same range.

Similarly, we have

(8.23)
∑

c≡0 (mod q)

c�
√
N

c−1Sc(N)� |D|−1/2
∑

c≡0 (mod q)

c�
√
N

∑
m 6=0

(m, c,D)1/2
(

1 +
|m|
√
N

|D|

)−100

,

and an easy calculation gives a bound of the same form as (8.22). �
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