SHOW ALL WORK!

Problem 1. Let g(z) = (z + 10)s.
|5 (a) Prove that the fixed point iteration p,y1 = g(pn) for n = 0,1,...,
converges to the fixed point p-of z = g(z) if the starting guess po is in
the interval [—2,17].
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) © (b) Derive an error estimate for [p, —p| and find an upper bound for the
number of iterations needed to achieve accuracy 1074,
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Problem 2. Let f(z) = z3 — 4 — 2016. Show that f has only one
real zero p, f(p) = 0. Write the Newton’s method with a starting guess

po = 20 and show that the sequence {p,} satisfies p < ppy1 < pn for all
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Problem 3. Find an LU factorization of A
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Problem 4. Let a(z,y) be a nonnegative, symmetric bilinear form on
R”. That is, for all z,y,w € R™. and any s € R we have:

a(,7) > 0, a(z,y) = a(y, ), and a(z + sy, w) = a(z,w) + sa(y, w).

Prove that for all z,y € R™ we have a(z,y) < v/a(z,z)v/a(y,y) even if
a(z,y) is degenerate, i.e., a(z, z) = 0 for some x # 0.
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