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LECTURE 1. INTRODUCTION. 1

LECTURE 1

Introduction.

Preliminaries.

Contact info.

Syllabus. Homework 40%, First exam 30%, Final 30%.

Grading scheme: 90-100 A; 75-89.99 B; 60-74.99 C; 50-59.99 D; 0-49.99 F. Grades
may be curved a bit.

Attendance policy.

Lecture, feedback. Going too fast, etc.

Office hours (Mondays 10:30-11:30 am on Zoom or in-person)

Canvas.

Homework submissions through Canvas. PDF SINGLE FILE.

Homeworks are due by the start of Wednesday’s lectures. (Except the first one.) No
late submissions!

takes, procrastination, etc. Help from the internet.

e Honors problems. Indicate if you are an Honors student on top of your homework.
e Grading. Every assignment is 100 pt. The points split equally between the problems

in a given assignment.
Exams.
— The same point system as in homework assignments.
— First exam is take home. Most of the problems are taken from the problem
bank.
— The bank is on the web http://people.tamu.edu/~abanov/QE/.
Book. Lecture notes. Lectures and lecture notes. Problems, problems, and prob-
lems!!!!
Language.
Course content and philosophy.
Questions: profound vs. stupid.
Lecture is a conversation.


http://people.tamu.edu/~abanov/QE/




LECTURE 2
Coordinates. Scalars. Vectors. Einstein notations.

2.1. Coordinates.

e Coordinate systems. You chose a coordinate system to describe a process (positions,
motion, fields, etc)

e The physical process does not depend on the system of coordinates you use to describe
it!

e This obvious statement leads to the requirement, that all physics laws were formu-
lated in a system-of-coordinate independent way.

e We need to define mathematical objects which allow the formulation of the laws in
a coordinate independent way.

e Such objects are: scalars, vectors, tensors, etc.

Let me repeat: there are objects: scalars, vectors, tensors, etc. They are independent of
the coordinate system you use. And there are representation of these objects in the chosen
coordinate system. Representations do depend on which coordinate system you have chosen.

2.2. Scalars

e Scalars do not depend on the coordinate system.
e Representation of the scalar does not depend on the coordinate system.
e Examples are:
— Energy, charge, mass, etc.
— Example of not a scalar: a component of a vector.
e You operate with scalars as with normal numbers.

2.3. Vectors

Vectors have DIRECTION. The magnitude and the direction of a vector are EQUALLY
important!

e Vectors do not depend on the coordinate system.
e Representation of a vector through components does depend on the coordinate sys-
tems!
e Examples are:
— Forces, velocity, acceleration, etc.

3
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e If you or I say that something is a vector, it is NOT an empty statement.

— This statement demands, requires, and allows certain operations with them.
The same way as if something is a number, then we know that we can add,
subtract, multiply, and divide (unless the number is zero).

— With vectors the operations are different than with numbers/scalars! For ex-
ample, one cannot divide by a vector! Such operation does not exist. The
expression % makes no sense and MUST never appear.

e Vector components: Given a coordinate system one can express/represent a vector
by its components in this particular coordinate system.

e In order to operate with vector components you MUST establish the coordinate
system first!

e If one changes the coordinate system the vector DOES NOT change, but its compo-
nents in the new coordinate system will be different from the components in the old
one.

e All operations with vector can be formulated in the coordinate independent way.
They also can be formulated through components in a GIVEN coordinate system.

e What can be done with vectors? What kind of operations can we define that will
not depend on the coordinate system?

e Linearity

— One can multiply a vector by a number.

— One can add two vectors.

— Using these properties, in a coordinate system given by three orthonormal vec-
tors &, é,, €., we can represent a vector @ through its components in THE
SAME coordinate system

a = ayE; + ayéy + a.eé,.

x Notice, that x, y, and z are just labels which label the axes. We can use
1, 2, and 3 instead, or red, green, and blue, or tomato, cucumber, and
horseradish. We simply need to label our axes.

Again, vector @ is independent of the coordinate system. The unit orthogonal

vectors é,, é,, €, define/describe the coordinate system. In that coordinate sys-

tem the vector @ has components a,, a,, and a,. The vector @ can be represented
in the coordinate system given by vectors é,, €,, €, by the above expression.

— If we change the coordinate system é,,¢é,,é, — €,,¢é,,¢é,, the components of a

) 2

vector @ will also change a,,ay,a, — ay,a,,a,. The REPRESENTATION of
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the vector @ through components will change
a= az/é; + ay/é; + az/é;.

but the vector @ is the same!
e Scalar (dot) product.
— Coordinate independent definition.

G- b= |l[b| cos(g)

« Two non-zero vectors @ and b are orthogonal if (and only if) @- b = 0.
* In particular, for the orthonormal bases vectors é,, é,, and €, the following
is true
€y by =2€y-6y=2¢6,-6,=1, €y Cy=6€y-6,=¢6,-6,=0

— Definition through components in a given coordinate system:

a-b= Z a'b' = a'b’ — Einstein notations.
i=1
I denoted the vector’s components by a', a?, and @*, instead of a,, a,, and a,.
You should check, that the two definitions are the same. It means that for ANY
two vectors @ and b and any coordinate system || |b| cos(¢) = a'b'.
— Bilinear.
— Symmetric.
— The magnitude of a vector a is given by

— Using these properties, in a coordinate system given by three orthonormal vec-
tors é,, é,, €., we can find the components of a vector @ by

ay = €, - d, ay = €, - a, a, =€, -d.

All you need to do is to take the vector representation (2.1) and take the dot
product of this expression with é,, é,, and ¢,
— In particular any vector can be written as

a=é,(6, @) +é,(é, @) +eé.e,-a)

e Vector (cross) product.
— Coordinate independent definition.

g=axb, 1@ = |@]||b| sin(¢), Direction — right hand rule.

— In a coordinate system given by three orthonormal vectors é,, é,, €., we have

ér €, &,
axb=|a, a, a,
b, b, b,

— Bilinear.
— Antisymmetric — RHR, this is why it is sin(¢) and not cos(¢). Determinant.
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2.4. Kronecker symbol. Symbol Levi-Chivita. Einstein notations.

e Kronecker symbol: 4, ;. (In Euclidean space there is no need to distinguish between
upper and lower indexes. In non-Euclidean space they are different!)

— Definition
P 1, ifi=7
)0, ifi#£7
— Einstein notations
ai(Si,j = Clj, Ei . g: Clibi = aiéi,jbj
e Symbol Levi-Chivita.
— Definition

€% =0, if any of the indexes equal each other.

(23 _ 231 _ 312 _
(132 213 _ 321 _ 4
— Usetul formulas:
6ijkeijl — 25kl’ 6ijkeilm — 5jl5km - 5jm5kl'

Notice the use of Einstein notations: In the first formula we sum over all values of

two indexes ¢ and j; In the second we sum over all the values of only one index .
e Fxamples:

-

— Vector product ¢ = a x b:

¢ = [a@x b = éFalbh
¢ =lax l;]x = "% ab" + €"*Ya”b¥ = a¥b" — a®b?, etc.
Importance of the order of indexes.
— Scalar product of two vector products:

@ x 0] - [@x d = [@ x B[e x d] = ™ abyerd,, = (676" — 7™M a;breidy, =
a;cibpdy — a;dbpey = (@ - &)(b-d) — (@- d)(b- 7)
— Triple vector product:

[d@ x [Z; x ]t = eijkeklmajblcm = ekijeklmajblcm =

<(5il5jm — 5im(5ﬂ) ajblcm = biCLjCj — cibjaj = {5(6 . Ej — E(CI_: . b)r

SO

-,

[@x [bxd]=b(d-&—eaa-b)
e Bilinearity.
e Differentiation of scalar and vector products.
— Example: Consider a unit vector 7i(t) which depends on time ¢ (or any other
parameter). As 71 Is a unit vector we have 7i-7i = 1. Differentiating with respect

to time gives 7 - m = 0 — the derivative is orthogonal to the vector n at all
times.

— Notations:

.
I
S
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e Differentiation of |r]. We start with |F] = v/#- 7, then using the chain rule

d B d = d . de (9\/7‘1'7“,; . dff’j 0Ti Ty de Ty T
ﬁm_dt A T or; — dt ory |l dt | |7







LECTURE 3
Newton’s laws.

e Notations:
- df
=

We want to be able to describe a motion (time evolution) of objects. Typically objects
are complicated. So we want to start with the simplest possible object. This object is a point
like particle. This particle has mass, but has no size and no internal structure (for example it
cannot rotate, or change shape). So the only thing that we can measure about this particle
is its position. We want to find/formulate the laws that allow us to predict the position of
this particle at any moment of time.

If we manage to formulate such laws, then to describe the motion of the more complicated
object we can simply split the object into infinitely many infinitesimal parts. Each part is
then a point like object. So we find how each of these particles move and thus find how the
complicated object is moving.

After all, this is how all the laws are formulated. For example the Newtonian gravity
force

—

r

3
(a vector can only be equal to a vector!) is formulated for two point like particles with
masses m and M and the vector 7 between them. If we want to find the gravitational force
between two extended object we must split both objects into infinitesimally small pieces with
infinitesimal masses, use the above formula to find the infinitesimal forces between every
pair of the infinitesimal pieces and them sum up all the forces (remember that the force is a
VECTOR) acting on all the pieces belonging to one of the objects.
So we concentrate on a point like objects.

3.1. Frames of reference.

An observer observes a particle. He/she notices, that at time ¢ the particle is at the position
that is described by the position vector 7(t). He/she measures the position of the same
particle after the time interval At. The new position is 7(t + At). The observer then says
that the particle has a velocity o(t, At) = F(t%ti—r*(t)_ However, the observer recognizes,
that during the time interval At the velocity might have changed. So the observer takes the

time interval to be shorter and shorter and repeats the procedure of finding v for each try.
9
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Eventually the observer finds

(t + At) — r(t ar .
3(t) = Jim (UHAD =) _dr_
At—0 At dt
Notations:
If 7 is a position vector of a point like particle, then
F=v— velocity, the rate of change of the position,
U =r = a — acceleration, the rate of change of the velocity.

All three: the position 7, the velocity ¢, and the acceleration @ are vectors!!! ALL three
vectors generally depend on time!

Last lecture we discussed the concept that the physical processes do not depend on the
system of coordinate one uses to describe them. Another observation is that the physical
processes do not depend on observer.

If we have two observers observing the SAME process, their description of the process
will be different. So in order to formulate the laws of physics we must find the formulation
which does not depend on observer!

Moving frame of reference:

e Let’s consider a process/object (red dot on the figure). This object is observed by two
observers: observer #1 and observer #2. The object is moving with some velocity,
but at this particular moment of time ¢ it is observed by the observer #1 to be at the
position 7. Observer #2 observes the object at the position 7' at the SAME moment
of time t.

e The observer #1 also observes the observer #2. At the SAME moment of time the
observer #1 sees the observer #2 at the position R.

)

2
o

o
b
o

] >

observer #1

e From the figure we see
F=R+7
(3.1)

e Differentiating this relation with respect to time we get

- T R
=R+ 7, =V +7
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e A note on the assumptions. Different meaning of dt and dr. It is not guaranteed,
that dt is the same in all frames of reference, but it is in classical (non-relativistic)
mechanics.

e So the velocity of the object as measured by the observer #1 equals the velocity of
the SAME object measured at the SAME time by the observer #2 plus the velocity
of the observer #2 measured by the observer #1 at the SAME time.

e Velocity of the same object is different in the different frames of references! So the

fundamental laws cannot be formulated in terms of the velocities!

If V' is constant, then 7 = 7.

Galileo: The laws of physics must be the same in all inertial frames of reference.

The laws then must be formulated in terms of acceleration.

Initial conditions: initial position and initial velocity — we need to set up the motion.

First Newton’s law. If there is no force a body will move with constant velocity.

— What is force? Interaction. Is there a way to exclude the interaction?
— The existence of a special class of frames of reference — the inertial frames of
reference.

e Force, as a vector measure of interaction.

e Point particle and mass.

e The requirement that the laws of physics be the same in all inertial frames of refer-
ences. The second Newton’s law: F = ma.

3.2. Second Newton’s law.

The second Newton’s law:
In order to apply it you must:

e [dentify the object!!!!l Object is whatever! you! want! it to be! The only thing is
that it must have a finite mass.

e Identify ALL the forces acting on THAT object. Remember, the forces are vectors.
Remember forces may and in most cases will depend on the object’s position, velocity
etc. They may also depend on time. They may also depend on the positions and
velocities of other objects that interact with a given one.

e Compute the net force. Superposition. The net force is simply the vector sum of all
forces acting on the object. As a result you will have the net force F which depends
on time as well as on the object’s position, velocity, etc: ﬁ(t, Fr .. ).

e Write the equation of motion

mr = F(t,77,...).

This is a system of three second order non-linear coupled differential
equations!!!!

e In order to find a solution 7(¢) this system must be supplied with six initial conditions!
(two conditions (second order=two conditions) for each of the three equations.)

Another (more general) form of the second law p'= m¢ — the momentum.

p=F.
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3.3. Third Newton’s law.

A force is the result of INTERACTION!

Interaction involves TWO objects.

If obJect 1 interacts with the object 2, then this interaction results in TWO forces:
one FOn 1 from 2 acts on the object 1 and the other Fon 2 from 1 acts on the object 2.
The third Newton’s law states that:

— —

FonlfromQI_ on 2 from 1-

3.4. Examples.

In the following I give very simple examples of the use of the Newton’s Laws.
F' = ma works both ways.

e Given the motion we can find the total force.
— An object of mass m is sitting on a table. The coefficient of friction is u. We
apply a force F' to the object parallel to the table. The object is not moving.
What is the friction force?
— An object of mass m is going around a circle of radius R with constant angular
velocity w. The position of the object at time ¢ is given by 7(t) = é, R cos(wt) +
&, R sin(wt) — this is our motion. We find the acceleration @ = ¥ = —w?7. There
must be a force acting on the particle: F = md = —mw?F.
— Archimedes law.
e Given the force we can find the motion. )
— Vertical motion. F' = —mgé,. So if 7" = xé, + yé,, then mr" = mié, + mije, =
—mgé,. Or in components

Two second order differential equations: four initial conditions
z(t=0)==xz9, @(t=0)= vy, y(t =0) =yo, Yt =0)=uvy

The solution
2

x(t) = 20 + Vaot, y(t) = yo + vyot — —

— Wedge. Using F = md both ways.
— Wedge with friction.
— Pulley.



LECTURE 4
Air resistance.

4.1. Another formulation.

4.2.

The formulation
F=ma

is good for point-like particles. However, for the extended objects (an object does
not have to consist of one piece) it can be challenging to apply.
Many laws of physics are formulated for point-like objects. For example the Newton’s
gravity F = G”;””Qr can only be applied for point-like masses m; and mo, as
otherwise, for an extended object, it is impossible to define what 7 is. The same
holds for Coulomb’s law: F = kqlq?r which is also valid only for point-like charges ¢;
and ¢o, for the same reason.
The second Newton’s law formulated as F' = ma is not very convenient is the mass
of the object is changing in time. However, starting from the the constant mass, we
can reformulate it in the following way

F=ma= md—v _ dmv) _ dp

dt dt  dt’
where p'is the vector of momentum. In short

F=yp
Another benefit of this formulation is that momentum is additive! the momentum of
the object is just the sum (vector sum) of the momenta of all the pieces of the object.

In this case in the above equation the force F must be understood as the total force
acting on the object (the vector sum of all the forces acting on all the pieces of the
object) and momentum p as the total momentum of the object.

Examples: snake problem; conveyor belt problem. ..

Air resistance.

Water hose. Water stream hits a wall perpendicular to the wall. After hitting the
wall the water stops.
— The force acting on the wall is obviously proportional to the cross-section area
S of the water stream. So we want to find the force per unit area (pressure) of
the stream on the wall.

13
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vdt YA (% Y Vo

—_—
L.....

N
Ly~ S F:E S0, Oy

vely+dy) Py 4+ dy)

— At time t consider a piece of the stream between the wall and the stream’s cross-
section the distance vdt from the wall, where dt is small interval of time and v
is the velocity of the water in the stream, see left panel of the figure.

— The volume of this piece is Svdt, its mass is dm = Swvdtp, where p is the mass
density of the water.

— The momentum of this piece at time ¢ is dp = vdm = Sv?pdt.

— The momentum of this piece at time t 4 dt is zero, as water stops after hitting
the wall.

— So the change of the momentum of the stream during time dt is dp = Sv?pdt.

— So the magnitude of the force acting on the stream from wall is

_dp  SvPpdt
Tdt dt
— The force acting on the wall must have the same magnitude. So the force per
unit area acting on the wall is

= Spv?.

F
f=5= pv’
— Force is proportional to the velocity squared.
e Force of viscous flow.

— Setup: Two infinite parallel plates at distance L from each other. The top plate
is moving with velocity vy in the direction parallel to the plates, which we will
take as Z direction. The bottom plate is at rest. There is a viscous liquid in
between the plates. What force is acting on the plates?

— The force per area of a viscous flow is proportional to the velocity difference,
or derivative F'/S = f ~ —0uv,/0dy. This follows simply from the fact, that if
the velocity of liquid is the same for all y, then there is no force. And if the
area doubles, the force obviously also doubles. The coefficient of proportionality
depends on the liquid, we will call it n, so

F(y)=-nS

oy
See the middle panel on the figure.

— This is the force that acts from the lower part on the upper part. The force that
acts from the upper part on the lower part is, by Newton’s third law, the same,
but opposite in direction.

— It is not enough, as we do not know how v, depends on y in our setup. We need
to find it.
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— In order to find v,(y) we must use the equations of motion. In order to use
these equations we MUST first define what the object is for which we apply the

equations of motion.
— Consider a slab of liquid of thickness dy, the total force which acts on a liquid

of area S of this slab is nS <— 9vz Ovg ) = 77de82“’“‘. See right panel on

W ly 0 lytdy dy*
the figure.
— The mass of the slab of the area S is pSdy. So if the slab has acceleration a,

then we must have

0%v, 0%v,
nSdy 3y = apSdy, nS 3y = apS
— In the steady state the acceleration a = 0, so
0,
8;2 =0, v.(y =0) =0, v.(y = L) = vp.

This is a differential equation with boundary conditions. The boundary con-
ditions tell us that the water close to walls has the same velocity as the walls.
(This is not the only possibility. The boundary conditions depend on what the
liquid/gas is and what material the walls are made of. The real physics is, in
fact, in these boundary conditions.)

— The solution of this equation which satisfies the boundary conditions is

.
U:v(y) - UOL-

— The force per area then is proportional to

o0v,
~ —aiy = —UO/L.

— So the force is linear in velocity.

4.3. General picture.

A

Force of resistance
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We found two model cases: the air resistance is proportional to v, or to v? — linear, or
quadratic. These forms of the air resistance should not be taken literary. These two cases
are just models we will use next lecture to learn how the motion depends on the forms of the
air resistance.

In reality one can think of the two regimes: for small velocity the resistance is mainly
proportional to v, for large velocity it is mainly proportional to v?. And for even larger
velocities the air flow will become turbulent and the resistance force will become a lot more
complicated (not even a function of velocity).

In fact one will have both cases. If we start with large velocity and resistance proportional
to v? and the velocity is decreasing, then it will eventually become small enough to switch
to the regime where the resistance is proportional to v.

What is the boundary, or more precisely what does it mean small or large velocity (small
or large in comparison to what?) depends on the body, air, etc.



LECTURE 5
Air resistance.

5.1. Air resistance.

A

Force of resistance

We found two model cases: the air resistance is proportional to v, or to v? — linear, or
quadratic. These forms of the air resistance should not be taken literary. These two cases
are just models we will use this lecture to learn how the motion depends on the forms of the
air resistance.

In reality one can think of the two regimes:

e For small velocity the resistance is mainly proportional to v.

e For large velocity it is mainly proportional to v2.

e And for even larger velocities the air flow will become turbulent and the resistance
force will become a lot more complicated (not even a function of velocity).

What is the boundary, or more precisely what does it mean small or large velocity (small or
large in comparison to what?) and at what velocity the turbulence starts depends on the
body, air, etc.

In the previous lecture we considered only 1D motion. In our 3D space the forces and
velocities are vectors. The resistance force is opposite to the direction of the velocity so we
need to write the resistance force in the following forms

17
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e For small velocities F' = —1U.
e For larger velocity F' = —0|0].
The coefficients v; and v, depend on the shape and material of the body and the properties
of the media/air. They are different from one another. Even their units/dimensions are
different
[F] _ kg-m/s? [F] _ kg-m/s®
= — = = = ]{/‘ 87 = — = - k m
[71] [U] m/s g/ h/?] [’U2] m2/52 g/
The main point of this lecture is to show that the motion is very different for these two
cases. And the difference comes exactly from different powers of v, not from the prefactors.
In this lecture I will only consider 1D cases. The particle moves along a straight line.

5.2. No gravity.
5.2.1. Linear in v case

F=—-ymv

The direction of the force is opposite to the direction of velocity.
The main result is that the linear in v resistance force is strong enough that the body
will travel only a finite distance.

We denote the coordinate of the body by z. The velocity is v =

2 at’
a:dl—dl’

7 = Gz~ As the force in our case depends only on the velocity, the equation of motion
ma = F' takes the form:

dz the acceleration

mo = —yv, v(t =0) = vy, z(t=10)=0,

where I placed the origin of the coordinate at the initial point of the motion and the initial
velocity of the motion is vy.
The differential equation is the standard one, so the solution is

v(t) = voe .
(Check that the initial condition v(t = 0) = vy is satisfied!!)

In order to find the coordinate of the particle as the function of time z(t) we use the

definition v(t) = % rewrite it in the form dz = v(¢)dt and integrate JEO gt = Jyv()dt!

t -
z(t) :/ o(t)dt = T (1 e R,
0 M

(Check, that the initial condition z(f = 0) = 0 is automatically satisfied.)

e CHECK THE UNITS!!!
The first thing to check is that units match. Anything which is under the exponent
(or under sin or cos or log) MUST be unitless/dimensionless. We have y;t/m in the

exponent. The units for this expression are [y3t/m| = %s% = 1, so it is indeed

unitless/dimensionless.

The expression for the distance z(t) has the units of Tt Its units are {%} =
m s

kg™ = = m. So indeed we have the units of length.
s kg

e SEE WHAT THE ANSWER TELLS US.
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— The velocity decaying exponentially the typical time of the exponential decay is
7 =m/7y (check units!).

— From the equation for z(¢) one sees, that the total distance traveled by the body
is finite.

z(t = 00) = o,
!
Notice, that the total distance
* increases, if initial velocity is increases.
x decreases, if the resistance coefficient v; increases.
x increases, if the mass increases.
All three statements make sense on the intuitive level!

e CHECK THE LIMITING CASES

5.2.2.

Next, we consider the limiting case which we know: if v, is very small we should
(almost) recover the known result, that the velocity stays constant (almost), and that
the coordinate z(t) is (almost) vgt. The word almost means that there are corrections
which are getting smaller and smaller as ~; decreases.

Taking v1t/m to be small, we use the Taylor expansion to the first non-zero order
on this small parameter.

So, if 21t <1, then

Mt
t) &~ vy — vg—
U( ) Vo — Vo m’

1 ’ylt
x(t) =~ Uot — §’Uotﬁ.

Notice an important lesson, that the expansion parameter is v;¢/m. No matter
how small ~; is this parameter will become large at large enough time. At these
times the Taylor expansion will no longer be valid. So the Taylor expansion is only
valid for times t < m/y; = 7.

Quadratic in v case.

The set up is the same as in the previous case. The motion is along one line. The coordinate
of the body is x. The motion starts from x = 0 with the initial velocity vy in the positive
direction.

The resistance force is now quadratic in velocity v

F = —ypv|v.

The main result is that the body will travel infinite distance, no matter how small the
initial velocity is.

mio = —yv?, v(t =0) = vy, z(t=0) =0,

The solution of this equation gives:

m
)

t
Dot D )= e a(t) = [ ()it = Zlog (1 + Wt) .
v 0 m

Vo :1+v2nﬂt’
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e CHECK THE UNITS!!
e SEE WHAT THE ANSWER TELLS US.

— At small times the velocity is almost constant .

— At larger times t > & the velocity decaying as v ~ 7”;% — inversely proportional
to time with coefficient which is independent(!!!!) of the initial velocity.

— Because of the 1/t decay, the total traveled distance is logarithmic in time.
So the total distance traveled by the body is infinite — the distance diverges
logarithmically with time.

— This may not be intuitively obvious, but this is correct if the resistance force
stays proportional to v? for all velocities.

— However, the velocity is decreasing. Eventually it will decrease enough for the
resistance force to become linear in v. Then the total traveled distance will be
finite.

e CHECK THE LIMITING CASES
Consider the limiting case of small ;. If ¢ < 1 (again, notice what plays the
role of the expansion parameter!), then

v(t) & vy — vowt,
m
1

ﬁC(t) Vo2

~ Uot — U0t§ﬁt

5.3. Air resistance and gravity. Linear case.
The gravity points down. The x axis points up. We start the motion at x = 0 with the
positive velocity vg. The equation of motion is

my = —mg — Y0, v(t =0) = vy, z(t=0)=0.

so rewriting the equation as

m dv
— = —dt
T v+mg/m
and integrating this equation
d
Ly
7/ v+mg/m

we find the general solution
Zlog(v +mg/m)=—-t+C.
Using the initial condition v(t = 0) = vy we find from above
Zjlog(vo +mg/m) =C.

So

@log% _

Yo v +mg/n
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and
v(t) = voe w4 g (e_%t - 1) :
"1
¢ m m mg (m , _m
x(t :/vt’dt’:v— 1—e mt —( e~ mt—1 —i—t)
() 0 <) 071( ) ga! 71( )

5.3.0.1. Analyze the result!!!!!I!l Always!!!!!.
e CHECK THE UNITS!!!
e SEE WHAT THE ANSWER TELLS US, AND CHECK THE LIMITING CASES.
— If g = 0 we recover the case of no gravity considered before.

— Limit of y1t/m < 1:

Uzvo—<g+w)t:vo—§t, g=9g+—
m
~ g’

x(t) = vot 5
Notice, that the motion is as if the acceleration of free fall is a bit different than
g. It is g, and it does depend on mass!!! Although, one must be careful. This
is correct only for small times t < m/7;. At these times the particle is still
going up. If we set up the motion such, that the particle is thrown down the
acceleration would be g = g — “21-

e What else can we learn from the solution?
— Time to the top. At the top the velocity is zero, so we need to find such 7" that

v(t="T)=0,
T:mlog(1+m>,
o mg

for % <1

T~ ——— — ——
mmg  2m

— Height. Computing z(T") we find

2
z(T) = % M9 [1 9 log (1 + W)]
g 7o v

2
m 71Vo I'm [ ~yivg _ Vo 1 vg 1109
mg ’

for 7#1;0 <1

1 1
2(T) ~ =20 - 1%
29 3mg?
However, for % > 1 we can neglect % log (1 + %) in comparison to 1 and
obtain —_—"
(1) ~ —,
@) 71

the same result as for the case of no gravity.
— Terminal velocity.

mg
t — 00, Voo = ———, mg = —UsV1
4!






LECTURE 6
Harmonic oscillations.

6.1. Harmonic oscillations.

—\9999%—
&

e Equation:
mi = —kx, mld = —mgsind ~ —mgo, —LQ = g,
All of these equation have the same form
k/m
&= —wi, wi=14 g/l z(t =0)=z9, v(t=0)=nuyp.
1/LC

— Second order differential equation — two initial conditions.

— Units of wy are [wo] = s~

— Notice the minus sign! This is a very important minus sign!!! It quarantines
that the oscillator returns back — oscillates, instead of running away:.

— Notice the simple structure of the equation — the second derivative of a func-
tion is LINEARLY proportional to the function itself.

e The general solution is

z(t) = Asin(wot) + B cos(wgt) = C cos(wot + ¢) = RN (Ceiwot) ’

where A and B, or C and ¢ are arbitrary constants, which must be found from the
initial conditions.

e Notice, that you can read the frequency of the oscillations directly from the equation
— the frequency of oscillation is simply a square root of the proportionality coeffi-
cient (without the minus sign). This is a unique property of the harmonic oscillator.
The frequency (and hence the period T = 27 /wy) does NOT depend on initial con-
ditions! For any other oscillations (non-harmonic) the frequency DOES depend on
the initial conditions!

23
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e The pairs of the arbitrary constants A and B, and C' and ¢ are related by

A=Ccos¢p, B=—-Csing, C = Ce”.

o C'=+/A2 + B? — amplitude; ¢ = —tan"'(B/A) — phase.
e Second order differential equation — two arbitrary constants A and B, or C' and
° ?lhe velocity as a function of time is
v(t) = & = wyA cos(wot) — woB sin(wot).
e Our initial conditions give
z(t =0) = B = xy, v(t =0) = Awy = o,
so the arbitrary constants are given by
B = xy, A=—.
Wo

(check units)
e The solution for the given initial conditions is

z(t) = o sin(wot) + xo cos(wot)
Wo

e Oscillates forever. The frequency of oscillations wg does not depend on the initial
conditions and can be read straight from the equation of motion. This is the property
of harmonic oscillations. It also means, that the frequency wy is the property of the
system itself, not of the way we set up the motion.

6.1.1. Energy conservation.

2
mwa

. 2
Energy. Conserved quantity: E = mez + —3—. It stays constant on a trajectory!

‘ig = mi (i +wiz) = 0.

So E is a constant — it does not depend on time during the motion. So the value of this
constant during the motion is the same as at the initial moment of time. So the value of this
constant can be obtained from the initial conditions F = m%’g + mng‘Tg

6.1.2. Limiting case wy — 0.

Let’s consider what happens to the oscillations in the limit wy — 0.
In this case the equation is
i = —wir — 0

Se we expect to have & = 0, or x(t) = vt + ro — the motion with the constant velocity.

Intuition: we know that for the “spring an mass” wy = \/k/m, so the limit wy — 0 means
k — 0, this means that there is no spring. Then we indeed expect the mass to be moving
forever with the initial velocity.

However, we have an exact solution for the oscillator

x(t) = Asin(wot) + B cos(wot).

We want to take the limit wy — 0 in this solution. We must recover the motion with constant
velocity.
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If we naively take wy — 0 in the solution, we will get x(¢) = B, which is incorrect. The
fact that it is incorrect, can be seen from mathematics. The Newton’s equation is a second
order differential equation. So it requires TWO initial conditions and a solution MUST
depend on TWO arbitrary constants. The limit which we obtained depends on only ONE
constant B. So we will not be able to accommodate TWO initial conditions.

What we need to do is to first impose the initial conditions: z(t = 0) = zo and v(t =
0) = vg. Then we get

x(t) = % sin(wot) + o cos(wot).
0

Now the limit wy — 0 is not so trivial, as in the first term zero is divided by zero. So we
need to use the Taylor expansion sin(wgt) ~ wot. Then we get
x(t) = vot + .
A lesson to remember.

e Oscillations with zero frequency is just a linear motion with constant velocity.
e Such oscillations are called zero modes.
e In an interacting system, such modes are a consequence of a symmetry.






LECTURE 7
Oscillations with dissipation.

Real systems are not ideal. It is virtually impossible to completely avoid dissipation. In
this lecture we will consider how dissipation changes the behavior of a harmonic oscillator.
In order to do that we will consider the simplest (and the most relevant) type of dissipation.
Namely, we consider the harmonic oscillator with a resistive force proportional to velocity.

e Equation of motion.

mi = —kx — Bi, —LQ = g + RO,
e Dissipation. We want to see how the mechanical energy F = m2”2 + % changes with

time.
dE B d (m:i:2 Lﬂ

L B _ . _ _Ri2
el ) & (mi + kx) pi* < 0.

2 + 2
If 3 > 0, the energy is decreasing! — dissipation!
e Time reversal and dissipation. Where dissipation comes from?
e We simplify the equation a bit introducing wi = k/m and 2y = §/m
i = —wir — 2vi, z(t=0)==xz9, v(t=0)=n01.

e Units of v are s~! — the same as for wy.

e Solution: This is a linear equation with constant real coefficients. We look for the
solution in the form x = RCe™ ™! where w and C are complex constants.

w? + 2iyw — w2 =0, w= —iy+/wd -2

e Two solutions, two independent constants.
e Two cases: 7 < wp and v > wy.
7.0.1. The case 7 < wy (underdamping):
e For v < wy we may write
w=—1y£Q, Q= /wg —~2
e The solution in this case is
r=e "R |Cre + Cge_mt} = |Cle " cos (Ot + ¢) .

e Second order differential equation — two arbitrary constants |C| and ¢. The two
constants are to be obtained from the initial conditions.

27
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Y

Figure 1. Evolution of the complex w as v increases.

e Decaying oscillations. Shifted frequency.
e The rate of decay of oscillations is v. The “life-time” of the oscillations ~ 1/7.

e Notice, that « is the negative of the imaginary part of the complex w.
e For v < wy we can use the Taylor expansion
2

Q= w)— -—.
2(,00

The frequency shift with respect to the undamped case (v = 0) is proportional to
2
4.

Q=2 roe 7t

Figure 2. z(t) for underdamped oscillations for the initial condition z(t = 0) = xo,
v(t =0) = vg.

7.0.2. The case v > w; (overdamping):

e In this case the solution is

r=A_e 4 Ae Iy =v44/92—wi>0, ry>r_>ao.

e NO OSCILLATIONS!!
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e For the initial conditions z(t = 0) = z and v(t = 0) = 0 we find
I r
_— AL =—x
LI’ * T, -
For ¢t — oo the A, term can be dropped as Iy > I', then z(t) = zg

A_:ZL‘()

-1t

A
LI ¢

Figure 3. x(t) for overdamped oscillations for the initial condition z(t = 0) = 1, v(t = 0) = vo.

7.1. The case of very strong damping.

This case corresponds to v > wy.
We found before that in the overdamped case:

r=A_e "t AeTH =744/ —wi>0

Consider a limit v — oo. Then we have
2

'y ~2v, - large, I'. =~ @, — small
2y
w2
vy (t) ~ Ae ™1, r_(t) ~ A_e 7!,

The first solution decays over time ~ 1/2y — 0 — almost immediately. The secons one almost
does not decay!
Let’s see where these solutions came from. In the equation

.o 2 .
T = —woxr — 2T

in the limit v — oo the last term is huge. It must be compensated by one of the others terms.
Let’s see what will happen if we drop the w2z term. Then we get the equation & = —2vi.

Its solution is & = Be 2. After one more integration we see, that we will get the z (¢)
solution. ,
Now let’s see what will happen if we drop the & term. We get the equation & = —;—Ox.
B

w2
Its solution is © = Ae” 27! — this is our x_(t) solution.






8.1.

8.2.

LECTURE 8
External force. Resonance. Response.

e Why complex w is always in the lower half plane?

Why harmonic oscillators are so important?

The potential energy of the spring is kzﬁ — a parabola as function of z.

This parabolic potential energy is what defines the harmonic oscillator. Any system

with such dependence of the potential energy will behave as a harmonic oscillator.

e Typically, the starting point to study a system is the system in equilibrium.

e In equilibrium a system is at a minimum of its potential energy.

e Any function close to its minimum can be well approximated by a parabola.

e A small disturbance of a system will leave the system close to its the minimum of
the potential energy, where the potential energy can be approximated by a parabola.

e So any system close to equilibrium will behave as a collection of harmonic oscillators.

Response.

e In order to observe a system in equilibrium one must disturb it.

e Say you shine light on an object. The light interacts with the electrons, they start
to “vibrate” and emit the light back.

e You observe that back emitted light and analyze its properties: brightness, color,
etc.

e In more abstract terms: You have a system in equilibrium, you disturb/perturb it,
you observe the response.

e So a property (say, color) of an object is a property of its response function!

The two points mean that we need to study how an oscillator responses to an external

force.

8.3.

External force.

In equilibrium everything is at the minimum of the potential energy, so we have the harmonic
oscillator with dissipation. All we measure are the response functions, so we need to know
how the harmonic oscillator behaves under external force.

e Let’s add an external force:

B4 2y +wir = f(t),  a(t=0)=x, v(t=0)=uw.
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The full solution is the sum of the solution of the homogeneous equation with any
solution of the inhomogeneous one. This full solution will depend on two arbitrary
constants. These constants are determined by the initial conditions.

Let’s assume, that f(t) is not decaying with time. Any solution of the homogeneous
equation will decay in time. There is, however, a solution of the inhomogeneous
equation which will not decay in time. So in a long time ¢ > 1/v the solution
of the homogeneous equation can be neglected. In particular this means that the
asymptotic of the solution does not depend on the initial conditions.

We can say, that the system “forgets” about the initial conditions after about the
time 1/7. Notice, that this forgetfulness is the consequence of dissipation.

Let’s now assume that the force f(t) is periodic with some period. It then can be
represented by a Fourier series.

flt) = Zfi sin($2t + ¢;).
As the equation is linear the solution will also be a series,
x(t) = Z z;(t)
where each term corresponds to a force with a single frequency.

Gy + 2yi; + wim = fisin(Qut + ¢;).

So we can consider just one of these equations and shift time to compensate for the
phase. So we need to solve

i+ 2vi + wiz = fsin(Qyt),

where f is the force’s amplitude, and €2¢ is the force’s frequency.

8.4. Resonance.

— Resonance:

e Let’s look at the solution in the form x = — fSCle
e Substituting this guess into the equation we get

e We need to solve:

i+ 2vi + wix = fsin(Qt),
where f is the force’s amplitude, and )¢ is the force’s frequency.
~1%t and use sin(Qt) = —Je L,
1

C = :
wh — Q3 — 217y

So (' is a complex number and as any such number can be represented as
C = |C|e”,

where
1 2’79 f

tan g = ———
1/2° 2 _ ()2’
(93 — w2 + 49203 wp — £2
so the solution x(t) is

£(t) = —JSICle 4% = f1C]sin (4t — 6)

Cl =
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e Resonance frequency — the frequency 2y at which the amplitude of the response
is at maximum for fixed amplitude of the force. For the position z measurement it
means the frequency at which |C/| is at maximum.

Qf = \Jwg — 272

e Phase changes sign at Q? = wp.

e Role of the phase: delay in response. The force is zero at ¢t = 0, the response z(t)
is zero at t = ¢/Q; > 0, so if ¢ > 0 the response is “delayed” in comparison to the
force.

— Resonance in velocity measurement

e The velocity is given by
v(t) = (t) = fIiQpCe 1,
e The velocity amplitude is given by

Q; 1

fylC = f =/
“ (922 — w2 +4202]"" T — /) + 4972

e The maximum is when Qf — w3/ = 0, so the resonance frequency for the velocity
is wy — without the damping shift.
e Current is velocity.

8.5. Experiment.

We want to study an oscillator. We apply a “force” with some amplitude f and some
frequency Q. Without changing the amplitude f of the force slowly change the frequency
2y and we measure the amplitude of oscillation, either in “position” or in “velocity”. (What
the words “force”, “position”, and “velocity” mean depends on the oscillator.)

The measured amplitude will depend on the force’s frequency and in case v < wy it will
have a very sharp peak. The position and the width of this peak tells you everything about

the oscillator.

8.5.1. Analysis for small .

We know that if v becomes comparable to wy the oscillator starts to “lose” its oscillator
properties. The oscillations decay too fast. So one of the most important case is an oscillator
with very small dissipation or v < wp. Also, in many experiments we do not observe x(t)
or v(t) directly. Instead we observe a quantity which is proportional to the square of x or v
(such as energy).
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e To analyze resonant response we analyze |C/?.

e The most interesting case v < wy, then the response

|C|* has a very sharp peak at Q¢ ~ wp: " 3000 —————

1 1 1

(QF —wi)? +4920F 4w (U —wo)® +9%
so that the peak is very symmetric.
e The value of |C|* at the maximum is
1

IC2hax = —-
max 472(*)%

CJ* =

e to find HWHM we need to solve (Qf — wp)? +~* =
2792, 50

HWHM =~, FWHM = 2.
e () factor (quality factor). The good measure of the

quality of an oscillator is 0 I > s
Q = wy/FWHM = wy/27. Figure: Resgnant
(decay time) = 1/, period = 2 /wq, 50 responcsge.:]?;og insert
decay time
Q = n L TN
period

e Quality factor @) is the property of the resonator.
e Typical () factors:
— A grandfather’s clock @ = 100.
— A quartz watch Q ~ 10*.
— An atomic clocks Q ~ 10!t — 1016,
— The insert in the Fig. shows the resonance for @ = 50.

8.6. Useful points.

e The complex response function

C(Qy) = !

wi — Q% — 2iy)¢

as a function of complex frequency €y has simple poles at Q} = —iy + /wi — 2.
Both poles are in the lower half plane of the complex 2; plane. This is always so for
any linear response function. It is the consequence of causality!

e The resonator with a high @ is a filter. One can tune this filter by changing the
parameters of the resonator.

e By measuring the response function and its HWHM we can measure 7. By changing
the parameters such as temperature, fields, etc. we can measure the dependence of ~
on these parameters. 7 comes from the coupling of the resonator to other degrees of
freedom (which are typically not directly observable) so this way we learn something
about those other degrees of freedom.



LECTURE 9

Momentum Conservation. Rocket motion. Charged
particle in magnetic field.

9.1. Momentum Conservation.

It turns out that the mechanics formulated by Newton implies certain conservation laws.
These laws allows us to find answers to many problems/questions without solving equations
of motion. Moreover, they are very useful even when it is impossible to solve the equations
of motion, as happens, for example, in Stat. Mech. But the most important aspect of the
conservation laws is that they are more fundamental than the Newtonian mechanics itself. In
Quantum mechanics or Relativity, or quantum field theory the very same conservation laws
still hold, while the Newtonian mechanics fails.

our object

e Consider a system of many point-like interacting particles.

e We select N of them and call it our object.

e We number the particles in our object with indexes ¢ =1,...N.

e All particles interact with each other and with all other particles outside of our
object.
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e At ANY moment of time ¢ a particle j in the object acts on a particle 7 in the object
with a force ﬁ”

e At the same moment of time the particle i also experiences a force ]35“’ from its
interaction with everything outside of our object.

e Then for a particle ¢+ we can write the equation of motion, the second Newton’s law

b= F=F+ Y Fy.
j
We take Fj; = 0 — no self action.
) Accordlng to the Newton’s third law If a particle j acts on partlcle z with the force
F”, then the particle ¢ acts on the particle ;7 with the force Fﬂ and F,] = Fﬂ
e Consider the total momentum of the whole object P = > D; — this is a simple
vector sum of the momenta of individual particles of our object, then

:ZPZ:ZF6$+ZE]:ZF;ex

% ] 7

because -, ; F;-j = 0 as in this sum for every term F;-j there is a term F’]Z
e So internal forces in an object do not contribute to the change of the total momentum.
e The total external force 3, F’f”” is a simple vector sum of ALL external forces acting
on All the particles of the object.
e The momentum of any closed object/system (when there is no interaction with out-

side F** = 0) is conserved P = 0.
e Important points:
— It is of paramount importance to clearly define what your object/system is and
what the “outside” is
— The statement is only about the total momentum of the object/system.
— The nature of the forces does not matter. They can be dissipative, or non-
dissipative it will still work.
— It is THE SUM of all outside forces that leads to the change of the total mo-
mentum. The points to which the forces are applied do not matter.
— The momentum is a vector! there are three conservation laws — one for each
component.
— If only some components of the total external force are zero, then only the
corresponding components of the total momentum will be conserved.
e Examples of the momentum conservation law.
— A bullet hits a wooden block.

2. Rocket motion.

t t+dt
m(t) m + dm

U_(t)) dm ¢ l:. O>U+dv




LECTURE 9. MOMENTUM CONSERVATION. ROCKET MOTION. CHARGED PARTICLE IN MAGNETIC FIELB7
9.2.1. Statement of the problem:
e A rocket is a shell with the engine and the fuel.
e A rocket/engine burns fuel. The spent fuel is ejected with velocity V' in the frame
of reference of the rocket. The velocity V' is the property of the engine.
e Both the mass of the rocket m(t) (this is the total mass: the shell, the engine and
the fuel) and its velocity v(t) are functions of time ¢. The function m(t) is in our
hands — this is how we burn the fuel — how hard we press on the gas pedal.
e We want to find the function v(t) — the rocket velocity as a function of time.
e The initial mass of the rocket is myui.1- The initial velocity of the rocket is viyitial-

9.2.2. Solution.

An important point is: when engine fires the rocket accelerates. So the rocket itself is NOT
an inertial frame of reference. We need to work in some external inertial frame of reference.
If a rocket has velocity v the velocity of the ejected/burnt fuel is v — V.

e At some time ¢ the velocity of the rocket is v(¢) and its mass is m(t).

e From this moment on our object is the rocket and the fuel which is on the rocket at
time t. We discard all the fuel which was burnt before the moment t.

e The momentum of the system rocket+fuel at time ¢ is

P ¢(t) = mo.

(I dropped the argument ¢ in m(t) and v(t) for clarity, but it is still there.)
e Let’s compute the total momentum of the system rocket+fuel at time t+dt, P, y¢(t+
dt).
— The engine fires constantly. At time ¢ 4 dt the mass of the rocket changes and
becomes m + dm (where dm is negative), its velocity becomes v + dv. The
momentum of the rocket is

P.(t+dt) = (m +dm)(v+ dv) = mv 4+ mdv + vdm

As dt is infinitesimally small, so are dm and dv, so keeping only the no more
than linear in infinitesimal increments terms, we have

P,(t + dt) ~ mv + mdv + vdm
— The spent fuel has a mass dmy and has velocity v — V, so its momentum is
Pf == (U - V)dTTLf

— As the total mass of a rocket with the fuel does not change dm + dm; = 0. So
the momentum of the burned fuel is

Pr=—(v—V)dm.
e Thus the momentum of the system rocket+fuel at time ¢t + dt is
P, 5(t + dt) = mv + mdv + vdm — (v — V)dm
e So the change of the total momentum of the system rocket+fuel during time dt is

APt = Poys(t + dt) — Poys(t) = mdv + vdm — (v — V)dm = mdv + Vdm.
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e As there is no external forces acting on the system rocket+fuel the total momentum
of this system must be conserved — must not change — so dP,;+ =0

mdv = —Vdm,
L
m

Vfinal = Vinitial + V' 10g Minitial

Mfinal

e Notice, that the answer does not depend on the exact form of the function m(t). It
depends only on the ratio of the initial mass to the final mass.

e As final moment of time is arbitrary we can write

Minitial

m(t)

e Consider now that there is an external force F,, acting on the rocket. Then we must
have

V(t) = Vinitial + V log

dPr+f
= F,.
dt

or

d d
APyt = Foodt,  mdv = —Vdm + Fl.dt, md—: £, - v%.
e This equation looks like the second Newton law if we say that there is a new force
“thrust”= —V 2 which acts on the rocket. Notice, that 92 < 0, so this force is

. dt’ dt
positive.

Charged particle in magnetic field.

e Lorentz force: F = qu X B+ qﬁ.

e No electric field — F L U, so there is no component of the force F along the vector
of velocity 0, so |0/ = const.. Trajectories. quB = mw?R = mwv, I used wR = v.
Cyclotron frequency w. = 2. Cyclotron radius R, = %.

m
e Boundary effect.



LECTURE 10
Kinematics in cylindrical /polar coordinates.

>

€

We used to think of a space as a flat space. However, in many cases this is not correct.
It is certainly not correct in general relativity, but also if restrict our motion to the Earth
surface, then the motion happens on a (almost) sphere, which is not flat.

In a flat space we have a luxury to define the vectors globally. What it means is that the
points of the space can be defined as position vectors of these points. It works because the
sum of any two such vectors will also be a position vector of some point of our space. It is
not so in a not flat, curved, space.

In a curved space we still can defined the coordinates, say latitude and longitude on the
surface of Earth. But we cannot operate with these numbers as with vectors. However, at
each (non-singular) point of a curved space we can consider an infinitesimally small neigh-
borhood which is flat. So at any point we can define “its own” flat space, introduce the
system of coordinates in each neighborhood and operate with the infinitesimal vectors in
that neighborhood.

To restore the whole motion we will need the infinitesimal displacement vector at each
point and a way to translate the coordinates from one point to the next.

This is a general idea. Here we will consider how it works for a flat space. The trick is to
watch that we never operate with global position vectors.

39
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In this lecture we will consider different coordinate systems in flat 2D space.

10.1.

e The Cartesian coordinates are given by the origin and two unit vectors é, and é,.
e These vectors have the following properties.

10.2.

e In 2D we can use r and ¢ as coordinates.
e The polar coordinates are given by the origin and two vectors €, and és.
e Both é, and é4 are different in different points of space. These vectors are not defined

(10.1)

Cartesian coordinates.

e, = ¢, ,

€y - €y = 0.
These two vectors é, and é, are the same in any point of space. (It is possible to
define such vectors only because the space is flat.)

Any vector can be represented as
T = 2, + Yé,.

We used to describing a position vector this way. However, the position vector is
only possible in flat space.

Instead of using the position vector, we will be using an infenitesimal vector of
displacement: Say a particle moves from point (z,y) to point (z + dx,y + dy), then
the vector of displacement dr’ is

dr’ = dxé, + dyé,

If we know the displacement vector dr’ at every moment of time AND we know how
to translate the unit vectors é, and é, from one point to the next, then we will be
able to restore the whole path! So to describe motion we do NOT need to define
vectors globally!

For a moving particle dividing dr° by dt we find its vector of velocity

U= 2€; + Yéy, Vp =T vy =1.
Differentiating the vector of the velocity we find the vector of acceleration

ﬁzﬁziéz—ﬂgéy, g =% ay =7.

Notice that we did not differentiate é, and é,. This is because the vectors €, and é,
are the same in each point of space, so they do not change as the particles moves.
A trajectory is given by x(t) and y(t), where ¢ is a parameter — usually time. If
we are not interested on the time dependence, then we can give the trajectory as a
function y(z).

Polar coordinates

at the origin, they are defined in every point of space and are different from point to

point: &,(r, @), éx(r, @).
These vectors have the following properties at every point of space

A2

e =¢e;3=1, &, 64 =0.
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Our unit vectors é, and é, can be represented through the Cartesian vectors é, and
é, at every point.

6 = €;c080 + €ysing €y = €,COS ) — €45In @

€y = —€,8In¢g + €, cos¢ ’ €y = €,sin ¢ + €4 cos @
Notice, that the transformation rules (é,,é,) <> (é,,é,) do not depend on distance r
— this is a peculiarity of this particular system, it is not a general property.

Let’s move from one point of space (¢,r) to another nearby (¢ + do,r + dr). As
(és,€,) are the same in every point of space we have

dé, = —dpé, sin ¢ + dpé, cos p = dp (—é, sin ¢ + &, cos ¢) = dpéy
déy = —dpé, cos ¢ — dpé, sin ¢ = —d¢ (é, cos ¢ + é,sin @) = —deé,
Notice the following properties of this result
é,-dé, =0, €y - déy =0, ér-déy+éy-dé, = 0.

From it is easy to see, that first two of these relations are the consequence of
ér- €, = €4+ €4 = 1 and the last one the consequence of €, - €4 = 0. In this sense these
relations are more general than the particular form of dé, and dé,.

The first two relations show that an infinitesimal increment of a unit vector must
be orthogonal to that vector (its length must not change) The second relation shows
how the orthogonal unit vectors must change in order to keep their orthogonality.
If a point is moving as a function of a parameter, say time ¢, then dividing the above
expression for dé, and dés by dt we get:

Er = dy, b5 =—0b,
If we simply differentiate the relationships ((10.1)), then we get

brobr=04-05=0, & -bs=—C4-6
Motion in polar coordinates.

If a particle moves from point (r,¢) to point (r + dr,¢ + d¢), then the vector of
displacement is

dr' = dré, + rdpéy

Notice, that the vectors é, and é, are taken at point (7, ¢).

e . Y
The vector of velocity is simply ¢ = 4.
Lodr +rde
U= — =71é + rpéy.
e " ¢

We can get the same result differently, simply writing, that 7 = ré, (this is only
possible in a flat space!), and using é, = ¢é,

T=17=1é +1é, =1é, +1dey
We see that the components of the velocity in the polar coordinates are given by
Up =T

U¢:7’§‘b
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e Acceleration — we must differentiate the wvector of the velocity! NOT ITS COMPO-
NENTS!!

Q@ =V =i, + 7ér + 7hly + 10y +1déy = (F = 10%) & + (rd + 200) &,
from where we can read the components of the acceleration vector a
ar =1 — rq.bz
ag = ré + 27’*@
e In the case r = const, ¢ = w, we have @ = —rw?é, + TWeg.
e Notice, if ¢ = w = const, then a, = 27w — this is the origin of the Coriolis force.
e The Newton’s law F' = ma is written in the vector form. So it is the same for any
choice of coordinate system. It means that is F' and @ are expressed in the SAME

coordinate system, the components of F and ma will be equal. In our particular
case, in any point of space

F. =ma,, Fy = may.

In the polar coordinates we use r and ¢ to describe the position. As our space is flat we
can write the position vector 7 as

7 =ré.(r, )
Notice, that differentiating this relation with respect to time we will recover all previous
formulas. But such construction is possible only in flat space, and is not needed!

10.4. Free motion.

Free motion means that there are no forces, so @ = 0.

10.4.1. Cartesian coordinates.
e In Cartesian coordinates a = 0 gives
=0, y=0, w(t) = veot + w0, Y(t) = vyot + Yo

where constants v, ¢, vy,0, Zo, and yy are obtained from the initial conditions.
e Or the trajectory

Uy .0
y=1yo+ —=(z — x0).
Vz,0
This is the equation for a straight line in the Cartesian coordinates.

10.4.2. Polar coordinates.

e In the polar coordinates: @ = 0, so both components of @ must be zero

iy =0 = 16+2rp=0 — d(t;t@:() — r2¢=const=A — éz%

4, =0 = F-rf2=0 = i-4 =0
The constant A must be obtained from the initial conditions.
e Notation

9
ox

O
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e Now I will do the following trick. Instead of two functions r(t) and ¢(¢) T will
consider a function r(¢) — the trajectory. If I know r(¢) and ¢(¢), then I can
recover 7(t) = r(¢(t)). This can be done with any function of time ¢. For any such
a function we can think of it as a function of ¢, where ¢ depends on t. Keeping this
in mind we can rewrite the operation of differentiation of time using the chain rule:

0 _90 _,0 _4

— = —— = = —0yp..
ot 0tos 9o 12 ¢
Applying this procedure to 7 we have

. A 1
7= ﬁa¢r = —A8¢;.
Applying it again we find
. A% )1
r= 2%
then 7 — f—; = 0 becomes
A? 1 A? 51 1 1
2 ¢;—F=0, 3¢;:—;7 ;:BCOS@—%)

e This is the equation of the straight line in the polar coordinates. Why? Can you
plot it?






LECTURE 11
Angular momentum. Angular velocity.

11.1. Angular momentum.

For a particle at position 7 which has a momentum p we can define a vector of angular
momentum .J:

J=rxp.
Notice, that this definition requires you to chose the coordinate origin. If you shift the origin
the angular momentum in the new coordinate system will be different.

If there is a force acting on the particle, then we can define the torque of that force

F=7xF.
Torque is a VECTOR. The fact that there is 7 in the definition implies that we MUST have
chosen the coordinate origin. This origin MUST be the same as in the definition of J.
Consider the time evolution of the vector J.
J=FXp+7xp
The vector of velocity 7 is parallel to the vector of momentum p' = mf”, so the first term in
the RHS of the above equation is zero. In the second term we use the second Newton’s law
p = F and arrive at
J=7.

The above definitions and the resulting equation J =7 are given for a single particle. If
we have many particles we simply sum up their angular momenta (as vectors!) to get the
total angular momentum of the system of particles.

Let’s see how the total angular momentum of a bunch of particles behaves under the
action of internal and external forces.

e Out of all available particles we mentally separate an arbitrary collection and call
this collection our object. Now we can distinguish between the inside and outside.
These words ( inside/outside) refer to our object.

e Consider a bunch of particles of the object. We assume that they interact with each
other by central forces. This means that the force with which the particle 7 acts on
particle ¢ is along the vector from the particle ¢ to the particle j

Fy || 7 — 7.

45
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e Also, by the Newton’s third law

By~ —F

ji-

e There is also external forces ]31-6“*’ acting on each particle.
e We now chose a point of space to be our coordinate origin (this MUST be done, or all
the rest makes no sensel). We then can write the vector of total angular momentum

J =Y 7 Xp;
i
It is simply a vector sum of the angular momenta of all the particles of the object

(inside).
e Consider the time evolution of the vector J:

j:ZﬁxﬁﬁrZFixﬁi.

AsT, =0 || 7, each term in the first sum is zero. So we can drop the first sum. In
the second term we use p; = 3, Fi; + F® — the sum of all forces acting on the
particle .
J=3 s p =Y x| S Fy+ B
i i i

= Y FxF;+Y Fx Ee
i.4,(i£) i

e The last term in the equation for J is
Too = D7 X F°
i

e Torque is a vector. You compute the vector of external torque for each particle of
our abject and then sum up all these vectors.
e Consider now the first sum in the RHS. Remember that F;; = —F};

ZﬁXEjZ;ZﬁXFb+;Z@XF}iZQZ@—@)XE‘:O
i i i iZ

It is zero because ]i-j is parallel to 7; — 7.
e So we have
j: 7_—;:1:
Remember: in this equation both J and Tee MUST be defined with respect to the
same origin, which also MUST be defined before the start of any calculations.
e If the torque of external forces is zero, then the angular momentum is conserved.

The equation J = T., 18 similar to P= ﬁex. Notice, however, the following difference:
e In P = F., we sum all of the external forces acting on the object. We do not care to
what points of the object the forces apply.

e InJ =7, wesum the torques of the external forces. Torques do depend on what
point of the object the force is applied to.
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Rigid body.

Consider a rigid body which can rotate around a FIXED axis which goes through its center
of mass. We apply a force F' to some point of the body.

11.3.

Depending on the direction of the force the body may or may not rotate with in-
creasing frequency.

In any case the center of mass of the body will not move, as the axis is fixed.

It means that the axis must apply a force —F to the body.

So the sum of all forces applied to the body is zero.

What then causes the angular velocity to change?

Consider a small piece of the body.

Its velocity is changing! So there must be a net force acting on it.

This is the force of interaction of our small piece with the rest of the body.

Such forces are very difficult to compute, but

If the body is rigid, then me know that the relative position of the points of the body
does not change.

It turns out that this observation is enough to construct the theory of the motion of
a rigid body without any reference to the internal forces.

However, if the body is not absolutely rigid, one has to go back, split the body into
infinitesimally small pieces and consider the motion of each piece.

Angular velocity. Rotation of a rigid body.
AQ) AQ

7
P ‘Moj
ﬁ p 7
7 R
v

0 0 R

Here we DEFINE the angular velocity vector. The length of this vector is the magnitude of
the angular velocity and its direction is along the axis of rotation at the direction determined
by the right hand rule.

Consider a point P rotating around an axis with the angular velocity €2 (see the left
panel of the figure)

This point has velocity. The magnitude of this velocity is v = Qr,, where r, is the
distance from P to the axis of rotation.

Let’s take an arbitrary point O on the axis of rotation as our coordinate origin.
The point P at some moment of time has a position vector 7.

The distance from P to the axis is r| = rsina.

So the magnitude of the point P velocity is v = Qrsin a.

The direction of this velocity is perpendicular to both the axis of rotation and the
vector 7.
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e So if we define the vector of angular velocity Q) as a vector with magnitude 2 directed
along the axis (as shown), then we can write:

I
el

U X T.

e Using the definition of the velocity @ = #* we can write the above as

!

T

7= x
e Consider two arbitrary points of a body 7 and 7. Their velocities are
P =Qx 7 7= x
Let’s see how the distance d between the points changes with time. In order to do
that we differentiate d? = (¥ — 7)? over time

@ =27 =) (F =) = 2(F =) - [Q x (= )] = 0.

So the distance between any two points of the rotating body is not changing with
time! S
e Notice the importance of the formula 7= Q x 7
— It gives not only the magnitude, but also the direction of the velocity vector o'
— For a rigid body it tells us, that the velocity of every infenitesimal part of the
body depends on the very same vector 0. So instead of specifying the velocity
of each part separately, we can completely describe the motion by specifying the
vector € and how it changes with time (both magnitude and direction!).

Now lets consider an arbitrary vector [ which is constant in the rotating frame. We are
interested in how it will change with time as seen from the rest (outside) frame (observer).

e We have a frame rotating with angular velocity & with respect to the rest frame. A
vector [ constant in the rotating frame will change with time in the rest frame and

= x1I.
(this is the same as for the position vector 7.)

o w = %, if w is a vector &, then d¢ must be a vector dgg. Notice, that ¢ is not a
vector! while dgg is! This is the same as in the previous lecture, where we could not
define the position vector, but could define the vector of infenitesimal displacement.

e The direction of the vector dgzg is along the axis of rotation according to the right
hand rule.

e If we rotate one frame with respect to another by a small angle dg;, then a vector [
will change by

dl = do x I.

11.4. Angular velocity IS a VECTOR.

Our definition of the vector Q) is, however, incomplete, unless we show that those vectors can
be summed up and the result makes sense. Let’s do just that:
e Look at the right panel of the Figure.
e Suppose we have a pink body rotating with angular velocity &. Notice, by specifying
the vector & I specify both the magnitude, and the axis of the rotation.
e Suppose the axis of the rotation & rotates with the angular velocity O (see figure).
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e Consider two observers F' — the outside observer, and M — the observer who rotates
with angular velocity €2 (but does not rotate with o).
e Consider the point P of the pink body.
e Let’s take a moment of time ¢ when the positions of the observer M and the position
of the point P of the pink body coincide and is given by the position vector R.
e From the point of view of the observer M the axis & is stationary. For this observer
the point P has velocity
7' =d x R.
e As seen by the observer F', the observer M is rotating with Q0 and has a velocity
UM = Q X é
e According to Galileo the velocity ¢ of the point P of the pink body as measured by
the observer F' is
0=1vy+70"
e Taken ¥y and ¥’ from above we get
T=0xR+@dx K= (0+d) xR
e As it was done for arbitrary point P we conclude, that the outside observer F' sees
the pink body rotating with the angular velocity
Qp =0+ a.

Which is exactly what we wanted — angular velocity is a vector!






LECTURE 12
Mement Tensor of inertia. Kinetic energy.

In the previous lecture we defined the vector of the total angular momentum of any set
of particles
J = Z Ji = Z T3 X Pj.
i i

We also showed that for any a set of particles, if they interact through the central forces, the
rate of change of angular momentum equals to the total torque of external forces only. In

proving this statement the condition of rigidity was not used at all. The statement J = 7o
is very general.
In this lecture we show how to compute the angular momentum and the kinetic energy
for a rigid body. Remember, that the condition of rigidity is very strong. The equation
U= XT.
allows us to compute the velocity of every point of the body by knowing only one vector &.

e So both the angular momentum and the kinetic energy will depend only on the vector
@ and some property of the body itself.

The total angular momentum of a body is linear in the velocities of all the particles. The
velocities of all the particles are linear in the vector of angular velocity & of the body. So the
vector of angular momentum of the body J is linear with the vector of angular velocity &

J ~ @
The most general linear relation between to vectors can be written through a tensor
J* =147,

(Einstein notations are assumed) where 1%° is some tensor (3 x 3 matrix) which does not
depend on & and depends only on the body — it is the property of the body.
e This tensor 1%° is called tensor of inertia.

Let’s now consider the total kinetic energy of a rigid body rotating with the angular
velocity . The total kinetic energy of the body is just a sum of the kinetic energies of all
the particles of the body.

51
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Using v; = & X 7; we get

1 1 1 . L

with the SAME tensor of inertia 1%%.

e Tensor of inertia is the property of the body which we must know in order to write
equations for the rotation of the body (the same as mass m of a body which we must
know in order to write equations for the translation motion of the body.)

e The expression for the kinetic energy tells us that the tensor /%’ must be positive
definite (kinetic energy cannot be negative, as it is a sum of positive numbers.)

e Inverting the relation J* = I*%w? we get w® = (I"1)*#J%. Using this int he kinetic
energy we get

K= (1) e,

N | —

12.1. Angular momentum. Mement Tensor of inertia.

e Consider a rigid set of particles of masses m; — the distances between the particles
are fixed and do not change. The whole system rotates with the angular velocity .
Each particle has a radius vector 7; with respect to the coordinate origin, which is
on the axis of rotation. Let’s calculate the angular momentum of the whole system.

T — — - - — P ) S o
J =) m X U =Y mT; X (@ X ] =) my (wri — 75(d - rl))
or in components (Einstein notations are assumed over Greek indexes)
o _ a2 a BY _ af 2 a,.B _ T
J —Zmi (w T —riwﬁri> —Zmi ((5 ’37“2- —riri)wﬁ = J*PuP,
i i

I8 = Zml (50‘577? — r?r?)
i

e Greek indexes a and (3 label the coordinate components, say z, y, and z, or 1, 2, and
3. For example, if & = x, then r*=* = x, or if & = 1, then r®=! = x if x is the first
coordinate.

e The Latin index ¢ labels the particles: particle number 1, particle number 2, etc.

e The moment of inertia is a positive definite symmetric 3 x 3 tensor!

" Ixm [my [a:z
I=|1l. I, L. |, I=1
Izm Izy Izz

It transforms one vector into another:

J =13,

e Important: As [ is a tensor and not a number the directions of the vectors & and J
do not coincide. These two vectors can have very different directions.

e As for any symmetric tensor:
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— There are special coordinate axes in which the tensor has a diagonal form — only
diagonal elements are nonzero, while all the off diagonal elements are zero. In
this very specific for the body coordinate axes the tensor of inertia has the form:

(L 0 0
i=lo 1, 0
0 0 L

— These diagonal elements I, I,, and I, are called PRINCIPLE MOMENTS OF
INERTTA. The corresponding axes are called PRINCIPAL AXES OF INERTTA.

— If all the principal moments are different, then the principle axes are orthogonal
to each other.

— In a degenerate case these axes can be chosen to be orthogonal.

— These principle axes are “attached” to the body, so if the body is rotating, then
these axes are also rotating with the body.

— Role of symmetry. The tensor I will have the same symmetries as the body
(mass distribution in the body). In particular, it means that if the body has an
axis of symmetry, then this axis will be on of the principle axes.

e The direction of the angular momentum J and direction of the angular velocity &
do not in general coincide!

e It is J which is constant when there are no external torques, not w! Let me repeat
it: If there are no external torques the vector & may change with time — both its
direction and magnitude. But the angular momentum vector J will remain constant.

Contrast this to the usual momentum-velocity relation

p=mvu

where the conservation of momentum means that the velocity is also constant. This
is because the mass m is a scalar, not tensor.

e This last statement makes even the kinematics (motion with no external forces) of a
rigid body very complicated and highly non-trivial.

12.2. Kinetic energy.
e Consider the kinetic energy of the rigid body.

1 1 1 1
K= §Zmiﬁz‘2 - §Zmiw x 7] = §Zmz’[@2fg — (@7 = 52”%[50‘6772 — P ww?.
so we get
I8P

2
(Einstein notations are assumed over Greek indexes)

K =

e This also shows that [ is positive definite, as the kinetic energy MUST be positive
(look at the first equality, it is a sum of non-negative numbers!) for ANY vector .
e In terms of angular momentum:

K= (1) e,

DO | —
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12.3. Tensor of inertia for a continuous body.

Tensor of inertia is a property of the body, it DOES NOT depend on the body’s motion. So
we simply take the body to be stationary.

e First, we chose a system of coordinates.

e We split the body into infinitesimally small pieces. Each piece has its coordinate
vector 7 and its mass dm(r).

e Tensor of inertia of a continuous body.

dm
1P = / (50‘5772 - ro‘rﬁ) dm = / (50‘5772 - ro‘rﬁ) de = / (50‘57‘_2 — 7‘0‘7‘5) p(r)dV,

where p(7) is the mass density of the material at point 7 — it must be know as this
is a characteristic of the body.

e How to compute the moment of inertia of an arbitrary body.

— First you chose a system of coordinates registered with the body.

— You chose which component of the tensor of inertia you want to compute. You
have to compute all of them, but you need to start with something. Let’s say it
is ™.

— Then in the expression [ ((50‘577’2 — r”rﬁ) p(7)dV we have o = z and § = y, or
™ = [ (6772 — rorY) p(r)dV

— The first term under the integral is then zero, as 6*¥ = 0.

— In the second term in Cartesian coordinates r*=* = z, r#=¥ = y, and dV =

dxdydz, (in spherical coordinates, if you chose to use them, r* = rsin 6 cos ¢,
r¥ = rsinfsin ¢, and dV = r? sin 0drdfdg¢) so we have

I = — /// zyp(x,y, z)drdydz.
1%

— Let’s say we want to compute I**. Then o« = z, and § = x, so the first term
5972 = 572 (22 492 + 22) = 2?2 +y? + 22, as 0% = 1, and 7@ = 22 + ¢ + 22. The
second term is just r®r® = 2. So we need to compute

I = /// (y2 + 22) p(x,y, z)dxdydz.

12.3.1. Examples.

e Tensor of inertia for a 2D object. Let o(z,y) be the area mass density. The object
is in zy plane, its z coordinate is zero z = 0 for all small pieces! Then

%% — //(xQ +y*)o(z,y)dxdy, I — // y2o(z, y)dady, v — // 220 (x, y)dwdy.
S g S
So

17 = 1" 4+ %Y.
e A thin ring: I, = mR?, I, = I, = %mR2, all off diagonal elements vanish.
e Adisc: I, = gmR?, I,, = I, = ymR?, all off diagonal elements vanish.
e A sphere: I, =1, =1, = %mRQ, all off diagonal elements vanish.
o A stick at the end: I, = I, = %mLQ, I..=0.
e A stick at the center: I, = I, = -mL? I.. = 0.

e Role of symmetry.



LECTURE 13
Work. Potential energy.

13.1. Mathematical preliminaries.

e Functions of many variables, say U(x,y).

— The most important part is to understand what is a function and what is not a
function: A function of, say two variables x and y is a map from the (z,y) plane
to a number line U. This means that a point on the (z,y) plane has ONLY
ONE image in U under this map.

Why this is important is because only in this case we can think of a map from
the space (z,y) to the number line U. It means that there is a number U(P)
which is attached to a space point P. At each space point there is a number.
In this formulation the coordinate system in the space is just the labels of the
space points: if we use the Cartesian coordinates, then the points have labels

55
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AU

dU| | & />

Y

(z,y); if we use polar coordinates then the very same points will have labels
(r,9), etc.

We all know examples of functions. An example of a “not function” would be
a multi-story building. A person in such building with coordinates x and y on
the ground may have different height, as he/she can be on any floor. Thus we
cannot map a position on the (z,y) plane to the position on the vertical line z.
In case of the multi-story building one may try to have separate functions for
each floor. However, there are stairs, so a person can move from floor to floor.

e Differential of a function of many variables.

ou ou
dU = —dz + —dy.
ar " + dy Y
I remind, that the differential of a function is simply the CHANGE of the value of
the function when we shift the arguments by infinitesimally small values. Consider
a point (z9,y). The value of the function U(x,y) at this point is U(zo, y). We can
also compute the values of the partial derivatives of the function at the same point

g—U and %—U . Now we can ask how the value of the function changes
T lz=z0,y=Yy0 Y lz=w0,y=y0

when we shift from the point (g, o) to the point (zq + dx,yo + dy), where dx and
dy are ARBITRARY infinitesimal numbers. The answer (to the linear accuracy) is

oU oU

T=T0,Y=Yo

dU = U(zo + dz,yo + dy) — U(xo, yo) =
T=10,y=Y0

— The geometrical meaning of this expression is that at any (2D in this case) point

the surface looks like a plane.

— We know that this is correct for any (smooth enough) function.
We can ask the opposite question: if we have an expression of the type as above, will
there be a function which has this expression as a differential.
Consider an expression

0G = A(z,y)dx + B(x,y)dy.

where A(x,y) and B(x,y) are some arbitrary functions. The question is: is this a
differential of some function? The answer is: not necessarily. The proof:
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— Let’s assume that 0G is a differential of some function U, then we must have
AU U
ox oy
— But then
oA _OU _ 0B
oy  0xdy Oz’
— So 6G is a differential of some function if (and only if)
04 _ 0B
oy Oz
— In other words, if the condition above is satisfied, then there exists a function
U(z,y) such that

oU (z,y) oU (z,y)
A(xay) - or ) B(l’,y) - ay :
— Then the statement that the form dG is a differential is a very strong statement,
as it tells you that in order to know two functions A(x,y) and B(z,y) you need
to know only one function U(z,y).
e Examples.
— 0G = xdy + ydx is a differential U = xy.
— 0G = xdy — ydx is not a differential. The function U does not exist.

13.2. Work.

A path 74258

F(z,y)
yl... &L L OW = F(a,y) - dif = Fy(x,y)de + Fy(z,y)dy

4% W"HB:/ F.dr
i ra—B
8 >

T

Suppose we have a force field: F (x,y) — it means that if we place a particle in a point
(x,y) this particle will experience force F'(z,y).

e A work done by a force: 0W = F - d7.
e Notice, that although 6W = F,dx + F,dy + F.dz this is not necessarily a full differ-
ential.
e Superposition. If there are many forces, the total work is the sum of the works done
by each.
e Finite displacement. Line integral.
wass— [ Fedr

TA—B
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e This formula tells us that we need to know the path 4% we split the path into

infinitesimal displacements dr, on each displacement we compute work 0W = F - dr,
then we sum up all §W's for all displacements.

13.3. Conservative forces. Potential energy.

Ay A
y—|—dy.--£@a_y+dy) B

A—B
Ws }/ B
Fy(z,y + dy)dz
Fy(z,y)dy
A /Mﬁ—)B  * Fy(x + dx,y)dy A
1

i > tw + dz,y)

A—B __ A—B
Wy = Wi

T
>

z T+ dx >

e Fundamental forces. Depend on coordinates, do not depend on time.

nothing.

e It means that work is independent of the path! see left panel of the figure.
e Look at the right panel. Consider two paths from point (x,y) to point (x+dx, y+dy):

first dx, then dy (blue path); first dy then dz (red path)
IF,
SWA™E = Fy(2,y)dx + F,(x + dx,y)dy = Fy(z,y)dx + F,(z,y)dy + T;dydx

oF,
oW3P = Fy(z,y)dy + Fy(z,y + dy)de = F,(x,y)dy + Fy(z,y)dz + Ty W

where we used F,(z + dz,y) = F,(z,y) + %dw, and Fy(z,y + dy) = Fy(z,y)dx +
OF;

de.

Jy

e The works must be equal to each other, SW{A78 = §W~5 so we must have

OF,

ory| OF,
ox N
z,y

dy

z,yY

e So small work done by a conservative force:

OF, OF,

is a full differential!

e In other words, FOR A CONSERVATIVE FORCE there exist a function U such

that
oW = —dU

(the minus sign is for further convenience)
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e It means that there is such a function of the coordinates U(x,y), that
Fx = —%, Fy = —a—y, or F'= —gradU = -VU.

e This function U is called “potential energy function”, or just “potential energy”.

13.3.1. Stokes theorem.

dr

I'

One may notice, that what is done above is a part of a proof of Stokes theorem. According
to this theorem the circulation of a vector field F' over a closed path I', §. F' - di” equals to
the flux of the field V x F' through any surface S bounded by I', [(V X F'-ds

fﬁ-dF:/Vxﬁ-dﬁ
T S

(the orientations of di and ds must correspond to each other according to the right hand
rule.)

Notice, that if F is a force field then what is on the left hand side of the above equation
is work done by the force on the closed path I'. If we demand that this work is zero for
ANY path, then we must have V x F=0 everywhere. But this is exactly the necessary and
sufficient condition for the existence of a function U such that

F=-VU
And that work of the force F' on an infinitesimal displacement dr’is a full differential

W= Fodi= U -di = -~ - 8—Udy W
ox dy 0z






14.1.

LECTURE 14
Energy Conservation. One-dimensional motion.

Last lecture we found, that there exists a special class of forces (which depend only
on coordinates) which are called “conservative forces”.

— Not all forces are conservative! Friction!

— All fundamental forces are conservative.

e A conservative force is such a force that its work around any closed loop is zero.
e Last lecture we found that for a conservative (zero work on a closed loop) force there

exists a function U — called “potential energy” such that
ou ou
N Fy = T A
ox dy
Such function is not unique as one can always add an arbitrary constant to the

potential energy.
Under a small displacement dr’a work done by such a force is

SW = F - dF = F,dx + F,dy + F,dz = —dU.

F,=— or F= —gradU = —VU.

If the force F(7) is known, then there is a test for if the force is conservative.

V x F=0.

Change of kinetic energy.

If a body of mass m moves under the force ]3, then.
mﬁzﬁ, mdi = Fdt, mv-dv=F-vdt=F -di = §W.

So we have

mv2

Eatld

mv2

The change of kinetic energy K = "~ equals the total work done by all forces.
In general case this is not very useful, as we need to know the path I'47% from the
initial point A to the final point B in order to compute work.

W = F.dr.

TA—B

In order to know the path T'475 we need to solve the equations of motion.
61
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14.1.1. Conservative forces.

For the conservative forces the situation simplifies considerably.

e On a trajectory we have dK = W = —dU, or
2
d(ngj—i—U):O, K + U = const.

e What this means is that the energy K + U is constant on the trajectory. While the
particles moves its velocity, and hence the kinetic energy, changes, its position, and
hence the potential energy, changes, but the sum of kinetic energy and the potential
energy stays constant!

e As the total energy F = K + U is constant it is the same at any point of time. In
particular at any point of time it is the same as at the very beginning. As we know
the initial conditions 7y and the initial velocity 7y, we can compute this total energy

=2

E = m;O + U(7).

e Potential energy is defined up to a constant. In particular, one can always choose a
point of space and set the potential energy at this point to be zero.

e Examples.

14.2. 1D motion.

For the motion in 1D things become even simpler, as we always know the trajectory — it is

1D!

AU(z) Turning points
I e
i Periodic E . Unbounded
' i Prohibited : T
MR gy
Ty, TR

e In 1D the force that depends only on the coordinate is always conservative.
e In 1D in the case when the force depends only on coordinates the equation of motion

can be solved in quadratures.

e The number of conservation laws is enough to solve the equations.
e If the force depends on the coordinate only F(z), then there exists a function —

potential energy — with the following property
ou x
Fo)=-22  Ul)=— / F(2)da'.
837 arb. point.
Such a function is not unique as one can always add an arbitrary constant to the

potential energy, which means to choose the lower limit of integration to be an
arbitrary point.

We want to solve the following problem: A particle of mass m can move in 1D. There
is force F'(x) which acts on the particle when the particle is at point x. The particle starts
moving at time t = ¢ from the initial position zy with initial velocity vg. We need to find
the function x(t).
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The total energy is then conserved
.2 .2
K + U = const., %%—U(m):E, %:E—U(x).

Energy E can be calculated from the initial conditions: £ = = b 4 U (o).

Let’s plot the function U(x) and draw a horizontal line E on the same plot, see figure.
As mT”Q > () the allowed areas where the particle can be are given by £ — U(zx) > 0.
Picture. Turning points — the solutions of the equation £ = U(x). Prohibited
regions.

Notice, that the equation of motion depends only on the difference £ — U(x) =

mTUg + U(zg) — U(x) of the potential energies in different points, so the zero of the
potential energy (the arbitrary constant that was added to the function) does not
play a role.

From 2 (@)2 = F — U(x) we find

2 \dt
v _ i\/E\/E—U(J?)
dt m

Energy conservation law cannot tell the direction of the velocity, as the kinetic energy
depends only on absolute value of the velocity. In 1D it cannot tell which sign to
use “+7 or “=". You must not forget to figure it out by other means.

We then can solve the equation

m dx it PP \/W /I(t) dx’
L — S o
2 \JE-U(x) 2 Ve JE-U(z)

Notice that

— x(tp) = x¢ initial condition is automatically satisfied.

— the initial conditions enter the equation in two places: in the lower limit of

integration and into the value of F.

As we know E from the initial conditions and we know U(x) we can take the integral
and obtain the function x(¢) implicitly (we obtain #(x) explicitly). To get the explicit
function z(t) we then need to solve an algebraic equation, or simply plot it on a graph.
Examples:

— Motion under a constant force: U(x) = —mgz.

— Oscillator: U(z) = %

— Pendulum: U(x) = lgm(1 — cos ¢).
Only two types of motion are possible in 1D (in potential field): periodic and un-
bounded.
Periodic motion. Period between two turning points x;, and xp (period is time which
it take the particle to go from the point x; to the point zx and back to the point

fL’L.)

m (TR dz’
T:2M—/ W Uz = E.

2 Jer JE-U(z!)
Notice, that the dependence of the period on the energy T'(E) comes from two places:
There is E in the integral explicitly, there is also £ in the upper and lower limits, as
they are the solutions of the equation U(zp r) = E.






LECTURE 15
Spherical coordinates.

15.1. Spherical coordinates.

https://en.wikipedia.org/wiki/Spherical_coordinate_system#Integration_and_differentiation_in_spherical_coordinates

o €z T
€ ™
~ <Y
€ = X
A 7~ - 1
S N 1
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The spherical and Cartesian coordinates are related by

x = rsinfcos ¢

y =rsinfsin¢

z=rcost

re[0,00), 6€[0,7], ¢e€]l0,2m)

These are just the coordinates. The three numbers (r,6,¢) give you any point in space.
But this is not enough, as we need to describe vectors and for that we need unit coordinate
vectors!

15.1.1. Coordinate vectors of spherical coordinates.

The coordinates r, €, and ¢ can be used to specify any point.
There are corresponding unit vectors é,, é, and é, at EACH point (7,6, ¢).

The unit vectors é,, ég, é5 show the DIRECTION of where the point of space (r,6, ¢)
shifts when we infinitesimally change each coordinate:

e The vector &, is the unit vector along the direction where our point shifts if we
infinitesimally change the coordinate r, while keeping # and ¢ constant.

e The vector éy is the unit vector along the direction where our point shifts if we
infinitesimally change the coordinate @, while keeping r» and ¢ constant.

e The vector é4 is the unit vector along the direction where our point shifts if we
infinitesimally change the coordinate ¢, while keeping 6 and r constant.

With this definitions we can now express ANY vector @ at a point P of space with spherical
coordinates (r, 8, ¢) through its components a,, ag, and a,

a= aTéT + (lgég + a¢é¢

where é,, é, and é, are coordinate vectors AT THE SAME POINT P.

15.1.2. Vector dr in spherical coordinates.

In Cartesian coordinates we have coordinate vectors é,, €,, €, defined the same at every point.
If we shift an point-like object from a point of space (z,y, z) to a point (z+dz,y+dy, z+dz),
then this shift is represented by a displacement vector dr’ and we can write

A7 = epdx + eydy + e.dz.

We want to be able to do the same in spherical coordinates.

Namely, if a point-like particle shifts from a point of space (r, 6, ¢) to a point (r + dr, 0 +
df, p+d¢). How do we represent the corresponding displacement vector dr through coordinate
vectors é,, g, €47

With the definitions of é,, &y, and é5 we know the DIRECTIONS of the displacement
when we change the coordinates. In order to express the vector dr we also need to know the
magnitudes of each displacement.

e If we change only coordinate r to r 4 dr, then the point (r,0,¢) is displaced by
dr' = é,dr, or (dr), = dr.

e If we change only coordinate € to 6 4+ df, then the point (7,0, ¢) is displaced by
dr' = égrdf, or (dr), = rdf.

e If we change only coordinate ¢ to ¢ + d¢, then the point (r,6,¢) is displaced by
di’ = éyrsin0de, or (dr), = rsin0dg.
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The vector dr’ then is expressed through the dr, df and d¢ as

dr' = é.dr + égrdf + é4rsin 0d¢.
Notice, that in this formulation we do not need to have the global position vector 7. We
can do everything with the coordinate vectors defined locally.
15.1.3. Connecting Spherical and Cartesian coordinate vectors.

Here I show how to connect é,, é,, €., to é,, €, €, using only local relations.
e Using the definition of the spherical coordinates we have locally
dz = drsin 6 cos ¢ + dfr cos 6 cos ¢ — d¢rsin 0 sin ¢
dy = drsin §sin ¢ 4 dfr cos 0 sin ¢ + dor sin 6 cos ¢
dz = dr cosf — dfrsin 6

e Using these expressions in di” is Cartesian coordinates di’ = é,dx + é,dy + é,dz and
collecting all the terms with dr, d¢ and df we find

dr = (éysinfcos ¢ + é,sinfsin ¢ + €, cos @) dr + (&, cosf cos ¢ + &, cosfsin ¢ — é,rsin ) rdd
+ (—é, sin ¢ + &, cos @) rsin fd¢

e Comparing this to the di in spherical coordinates dir = é,dr + éyrdf + é4r sin Od¢p we

get
ér = ézsinflcos g + é,sinfsin ¢ + €, cost
€p = €5 cosf cos ¢ + €, cosllsing — €, sind
€y = —€z8in ¢ + €, cos ¢

15.1.4. Coordinate independent definition of the gradient.

We will need to deal with the potential energy in 3D space. We will also need to deal with
the force F' = —VU in 3D. Let’s discuss these objects in some detail.

e Let’s denote U a scalar function in our space. This means that in every point P
of space we have a number U which is different in different points, but it changes
smoothly.

e So we think of U as a map from all points of space to the space of numbers.

e Notice, that only this map matters, as a particle moving in the potential energy U
knows nothing about the coordinates, it “knows” only about the point of space where
it is at.

e If we use Cartesian coordinates, then a point P will have coordinates (z,y, z), and
the function can be represented as U(x,y, 2).

e If we use spherical coordinates, then a point P will have coordinates (7,0, ¢), and
the function can be represented as U(r, 0, ¢). But it is the same map.

e The force is —VU. This force is a vector field. At each point of space there is a vector
—VU. Again the particles moving in the space knows nothing about the coordinates,
but “knows” about the vector —VU at the point of space where it is at.

e Imagine now that we work in the spherical coordinates, and we want to find the
components of a vector VU in the spherical coordinates.
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e In order to do that we need to define the gradient vector VU in a coordinate inde-
pendent way. (Remember, it is a vector, vectors are independent of coordinates!)
e Consider a function U as a function of Cartesian coordinates: U(x,y, z). Then
ou ou oU -
dU = —dx + —dy + —dz = VU - dr.
Ox dy 0z
Notice, that we have a coordinate independent definition of the vector gradient. The
vector of gradient VU is such a vector that for ANY vector dr’ we have:

dU = VU -di — definition of VU.

It is coordinate independent as it is a scalar/dot product which does not depend on

coordinates.

e [ want to make a few points about this definition.

— This definition is constructive — it allows one to find the vector of gradient
in any system of coordinates. For this it is important that dr is an arbitrary
infinitesimal vector.

— It connects calculus dU with geometry — the scalar product of two vectors.

— It thus gives the geometrical meaning/picture to calculus. In particular one can
see that if one chooses a vector dr’; which is perpendicular to the vector of the
gradient at some particular point, then the function U will not change along the
direction of dr; (in the infinitesimal neighborhood of that point).

Let’s see how this definition works in Cartesian coordinates.

In particular, we have our (smooth) function U, which gives a number at each point
of space P, and we use Cartesian coordinates to denote the position of all points P
in space.

At each point P of space we have a vector of gradient vU |p-

This vector VU at some point P of space has Cartesian components (ﬁU )as (6U )y
and (VU)..

e Using our definition of the gradient

dU = VU - d7

we want to find those components (VU),, (VU),, and (VU)..
— First we write the vector of gradient as

VU = (VU),, + (VU),é, + (VU).é.,

the components (VU),, (VU )y, and (VU), are the components which we want
to find.

— Using the vector di in Cartesian coordinates di" = é,dx + é,dy + é.dz we find
dU = VU - dif = (VU)dz 4+ (VU ), dy + (VU).dz

— Consider a function U as the function of Cartesian coordinates, so at the same
point P which has Cartesian coordinates (z, y, z) the function is given by U (z, y, 2),
we know from the standard calculus

oU oU oU
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— Comparing these to results for dU (both are valid for arbitrary infinitesimal dz,
dy, and dz) we find
ou - U ou

(V0 =5 (VO =5 (VU). =5

— This is our standard formulas for the gradient in Cartesian coordinates.
e Now we can use this procedure for any other system of coordinates, as long as we
know how to express dr’ in the corresponding coordinate vectors.

15.1.5. Gradient in spherical coordinates.

We want to find how to write the gradient vector VU in spherical coordinates.
e We still have a (smooth) function U which gives a number at each point P of space.
e The gradient is a vector VU at each point P of space which is defined as dU = VU-dF.
e We now use the spherical coordinates to denote each point of space. Our point P
has a coordinates (r, 0, ). At each point P we also have spherical coordinate vectors

ér, €9, €. We want to find the components of the vector VU at point P of space in
the coordinate vectors é,, éy, €, at THE SAME POINT P.

e As any other vector, the vector VU at a point P can be written through its com-
ponents (VU),, (VU)y, and (VU), at the same point P in the spherical coordinate
vectors é,, €, €4 at THE SAME POINT P.

VU = (VU),é, + (VU )geg + (VU) 44,
Again, (VU),, (VU)y, and (VU), are the components of the vector VU in the

spherical coordinates at a point P. It is those components that we want to find.
e By the definition of the gradient vector, and using dr in spherical coordinates

dr' = é,dr + égrdf + é4rsin 0d¢.
we get
dU = VU - dit = (VU),dr + (VU)grd + (VU)4rsin 0d¢

e On the other hand if we now consider U as a function of the spherical coordinates
U(r,8,¢), then calculus tells us

oU ou
dU = —d —d@ —d
or Tt 96
e Comparing the two expressions for dU we find
ou
U
(V = Or
- 19U
(VU)o = r 00
- 1 oU
(VU) = rsin 6 87925
e The vector of gradient in spherical coordinates is then written as
- ou ., 1 8U 1 oU
VU = ér+ — é

or r 00 +7“Sin957¢6¢






LECTURE 16
Central force. Effective potential. Kepler orbits.

16.1. Results of the last lecture
e The coordinate independent definition of gradient of function U is
dU =VU -dF,  for ANY dr.

e In Cartesian coordinates this definition gives

> ou. oUu, 0U,
VU = %Gm + aiyey + 562.

e In Spherical coordinates the same definition gives

= 10, L %Y,
T o " ron? rsin98¢¢

16.2. Central force. General.

e If U is the potential energy, then in spherical coordinates

U, 10U, 1 U
or r90 " rsingop ©

Consider a motion of a body under central force. This can be a Coulomb force from
a point like charge, or Newtonian gravity, or any other.

Take the coordinate origin in the center of force.
A central force then is given by (this is the definition of the central force)

A

Er

F=_VU-=—

F = F(r)e,.

Such a force is always conservative: VxF = 0, so there is a potential energy U such
that:

VU = —F(r)é,
comparing this with the VU in spherical coordinate, we find
ou ou ou
_— = —F _— = _— =
r T 96
71
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so that potential energy depends only on the distance r, U(r). and

ou
F(r)y=——
() or
e The torque of the central force 7 = 7% F= 0, so the angular momentum is conserved:

J = const.

16.3. Motion under central force.

Consider now a particle of mass m which is moving in the central force field. The field is
completely described by the potential energy function U(r). Typically, this function has a
finite limit as 7 — oo (an important exception is the 3D harmonic oscillator). We then can
set this function such, that U(r — oco) — 0.

In order to set up the problem we must also specify the initial conditions. So we know
that at some time ¢t = 0 the velocity of the particle is ¢y and the position is 7.

We have two independent conservation laws: conservation of angular momentum and
conservation of energy (remember, the coordinate origin is at the center of the force).

_Q
J =7 xmu, E:%—FU(T).

Both angular momentum and energy can be computed from the initial conditions:

—
- N mo
J =7 X miy, E:TO+U(7’0).
So from now we treat J and E as known and constant vector and number.

Let’s see how we can use these conservation laws.

16.3.1. Angular momentum conservation.

e The direction of .J is perpendicular to the initial momentum and initial coordinate.

e During the motion the direction of J will not change — it is conserved.

e So during the motion at any moment the momentum and position vectors will be in
the same plane perpendicular to J.

e The motion is all in one plane! The plane which contains the vector of the initial
velocity and the initial position vector 7. As it contains the initial position vector,
this plane contains the center of the force.

e We take the direction of .J as our z axis and the coordinate origin is in the center of
force. The plane of motion is then z — y plane.

e The angular momentum is J = .J&,, where .J = | ﬁ\ = const.. This constant is given
by initial conditions J = m|ry X Tp|.

e In the # — y plane the spherical coordinate § = 7/2 we can use only r and ¢ coordi-
nates — the polar coordinates.

e Writing the value of the angular momentum at any moment of time, and using
U =1é, +1déy, 7 = ré, in the polar coordinates we get

J =7 x m¥ =mré, x (fér + rgz.ﬁé(z,) = mr?¢é, x ey = mrige,

or J
m/]"zq'ﬁ:t]’ ¢_7

mr?



LECTURE 16. CENTRAL FORCE. EFFECTIVE POTENTIAL. KEPLER ORBITS.

73

Notice: The last equation means that if we know r(t) we will be able to compute

o(t)! ;
o) = do == [
So we only need to find r(t)!

at’

()

e The use of the conservation of the angular momentum J allowed us to simplify the
problem of the motion in three dimension to a problem of finding just one function!

16.3.2. Energy conservation.

Let’s see how it works for a particular example of the central force — the gravity.

e The velocity in these polar coordinates is

— . — ] = . — ‘]—.\
U="7€ +rpey =1 + —=¢€
mr

e The kinetic energy then is

o mu> _ mi? n J?
2 2 2mr?
e The total energy then is
mr? J?
FE=K+U=—+—=+U
+ 2 * 2mr? +

e If we introduce the effective potential energy

2

2mr?

Ueps(r) =

then we have
mi-2

U(r),

— tUess(r) =E,  mi=

2

e This is a one dimensional motion in the potential U, ;; which was solved before! This
means that we can find the exact solution of a problem of motion if ANY central

force by simply using the answers we obtained previously.

16.4. Kepler orbits.

70

T'min

Historically, the Kepler problem — the prob-

S lw 3w

7)77’L ax

1
1
1
1
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1
1
1
o1 1
L
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1
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I

lem of motion of the bodies in the Newtonian
gravitational field — is one of the most im-
portant problems in physics. It is the solu-
tion of the problems and experimental ver-
ification of the results that convinced the
physics community in the power of Newton’s
: s : + new math and in the correctness of his me-
chanics. For the first time people could un-
derstand the observed motion of the celestial

bodies and make accurate predictions. The
whole theory turned out to be much simpler

than what existed before.
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e In the Kepler problem we want to consider the motion of a body of mass m in the
gravitational central force due to much larger mass M.

e As M > m we ignore the motion of the larger mass M and consider its position fixed
in space (we will discuss what happens when this limit is not applicable later) For
now we take the position of M as our center of the force and the coordinate origin.

e The force that acts on the mass m is given by the Newton’s law of gravity:

GmM GmM

ﬁ:_ F:_ é;,
7'3 r2

where €, is the direction from M to m.
e The potential energy is then given by

GMm oU GmM
U(r) = — R “or 2

e The effective potential is

: U(r - o00) =0

B J? GMm
©2mr? r

Uess(r)

where J is the angular momentum.
e For the Coulomb potential we will have the same r dependence, but for the like
charges the sign in front of the last term is different — repulsion.
e In case of attraction for J # 0 the function U.ss(r) always has a minimum for some
distance ry. It has no minimum for the repulsive interaction.
e Looking at the graph of U.sf(r) we see, that
— for the repulsive interaction there can be no bounded orbits. The total energy
E of the body is always positive. The minimal distance the body may have with
the center is given by the solution of the equation Ues(rmin) = E.
— for the attractive interaction there is a minimum of the effective potential energy
at r = ry which is given by the equation

OUes¢ B B J?
S or =90, "0 GmEM

r=rg

and U(rg) < 0, where U(r — 00) — 0. Then, from the graph U(r) we see

x if £ > 0, then the motion is not bounded. The minimal distance the
body may have with the center is given by the solution of the equation
Ueff(rmin> =FE.

« if Uesf(ro) < E < 0, then the motion is bounded between the two real
solutions of the equation U.ss(r) = E which gives both r,,;, and 7,4,.
One of the solution is larger than r(, the other is smaller. In the solution
r(t) will oscillate between 7, and 7,,4., they are the “turning points” of
the 1D motion.

* Notice, that we know E from the initial conditions, so right from the initial
conditions we can say if the motion is bounded or not.

« if Uesf(r9) = E, then the only solution is r = ry. So the motion is around
the circle with fixed radius ry. For such motion the centripetal acceleration
v?/ro times the mass m must be equal to the gravitational force, so we
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can find ry in a different way.

mv*  GmM J*  GmM s
o 2 mrd 2 = GmeM
Notice, that this is exactly ry that we found before.

x Also

mv?> GmM B 1GmM
2 To o 2 To '

Uesp(ro) = B =






LECTURE 17
Kepler orbits continued.

Kepler orbits are orbits of the planets and other bodies in the sun’s gravitation field. The
mass of the sun is much larger, than the mass of any other body in the solar system. So we
ignore the motion of the sun (the gravitation force which acts on the body will also act on
the sun, by Newton’s third law).

If M is the mass of the sun, and m is the mass of the body, then the Newton gravitation
force is

F—;: _GMm

€.
r2

It is a central force. The corresponding potential energy U(r) with the condition U(r —
o0) — 0 is

GM
Ur) = o
T
It is an attractive force. The effective potential energy is
J? J? GMm
U. = Ur) = — :
#1(r) 2mir? +U(r) 2mr? r

e In the motion the angular momentum and the energy are conserved

.2
J=mrtd, B =4 Ug(r)

e Accounting: 3D, total order is 6, four conserved quantities, final order is 6 — 4 = 2.

e All motion happens in one plane.

e In that plane we describe the motion by two time dependent polar coordinates r(t)
and ¢(t). The dynamics is given by the angular momentum conservation and the
effective equation of motion for the r coordinate.

e The effective equation for the r coordinate is obtained by differentiating energy with

respect to time.
. J . oU, eff (7“ )
¢= mr?’ e T T e
These equations must be supplied with the initial conditions — initial position r(t =
0), ¢(t = 0), and initial velocities 7(t = 0) and ¢(t = 0). The value of the angular
momentum J must be found from the initial conditions.
e This system of equations is complete. The solution will give us the functions r(t)

and ¢(t) — the position of the body as a function of time.
77
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e One can think of these solution as a parametric form (with ¢ as a parameter) of a
trajectory /path of the object in the polar coordinates (7, ¢).

e For now [ am not interested in the time evolution and only want to find the trajectory
(the path) of the body. This trajectory is given by the function r(¢).

e However, if we know 7(¢), we can solve

b= Do)s=dr

mr?(¢)’
and find ¢(t). Then we will also have r(t) = r(¢(¢)). Thus one can consider finding
of r(¢) as the first step in full solution.
e In order to find 7(¢) I will use the trick we used before. As r(t) = r(¢(t))

podr_dédr _ J dr _JdQ/r)  dr_dédi __ J &(Q/r)
Cdt dtde  mride m do dt2  dtdp  m2r? dg?
e On the other hand
2
agjff = —‘7; (1/r)* + GMm (1/r)*.
e Now I denote u(¢) = 1/r(¢) and get
J? L dPu J? )
or, denoting 2%% =u”
" GMm?
u = —u-+ 72

e The general solution of this equation is

GMm?
u= sz + Acos(¢p — ¢o),

where A and ¢, are arbitrary constants, which must be found from the initial con-
ditions.

e We can put ¢g = 0 by redefinition of ¢ — what direction we measure ¢ from.

e Before I do that, I want to point out that this is cheating. The constants A and
¢o should be obtained from the initial conditions. So unless we know how to get ¢,
from the initial conditions we cannot redefine our system of coordinates to measure
the angle from the direction of ¢y. However, we know that such redefinition exists.
We will discuss the issue of finding ¢y from the initial conditions later and now we
just go ahead and redefine ¢.

e So by setting ¢y = 0 we have

1 GMm?
— =7v+ Acos ¢, v = i
r J?

This is the equation of the trajectory/path r(¢). Both A and ~, J should be found
from the initial conditions.

e If v = 0 this is the equation of a straight line in the polar coordinates. Indeed v = 0
means that either M = 0, or the angular momentum is huge (huge impact parameter,
or huge velocity at infinity, for example ), then the gravitation force has a negligible
effect on the motion of the body.
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e A more conventional way to write the trajectory is

J? 1

1
1 -
(1+ecosg), ¢= i >

rc
where € > 0 is dimentionless number. It defines the “shape” of the trajectory.
e ¢ has units of length and defines the overall size of the trajectory.
e ¢ is easily found from the initial conditions

J2
T GMm?

We also need a way to find e from the initial conditions (and ¢q, but we postpone
this question.)
e In order to find € we compute the minimal distance of the planet to the Sun 7,,;, in
two different ways.
— From the equation of the trajectory, we see, the r is at minimum when cos ¢ is
at maximum. So

Cc

c
1+e€

— On the other hand when r is at minimum 7 = 0 and from the energy conservation

E = mf + Uess(r) we find that

T'min =

C
E = Uess(rmin) = Ueyy (1 n E) :

Using our function Uesp and J? = cGMm? we find

1—eGMm
2 c

which allows us to find € > 0 from the initial conditions.
e We see that there are three different cases, which need to be considered separately.

- 0<e< 1.

—e> 1.

—e=1.

— There is another case of € — co. The only way to make this limit meaningful is
to also take ¢ — oo in such a way as to have €/c is finite. In this case % = £Cos ¢
— the trajectory is the straight line. ¢ — oo means J — oo. So the planet is
either moving too far, or moving too fast.

— In case € = 0, the orbit is just a circle r = c.

B =

17.0.1. The case of 0 < e < 1.

In this case, € < 1, the equation % = %(1 + ecos ¢) describes an ellipse in polar coordinates.
€ is called the eccentricity of the ellipse, it controls the “shape” of the ellipse, while ¢ has a
dimension of length and it controls the “size” of the ellipse.

e From the expression for the energy through € we see that £ < 0. We know from the
previous lecture that in this case the trajectory is indeed bounded. The corresponding
picture of the orbit and the potential energy are shown above.
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aphelion Ueff(r)
C
T,
o C O Tmin perihelion aphelion
\ a :Tmin Tmacc T"
d \ 2n
u—/ perihelion

e If the minimal and maximal distance to the center of the force — the perihelion and
aphelion are at ¢ = 0 and ¢ = 7 respectively.
c o

174-6’ T'maz = 17—6

(This is the same minimum which we used before). Both 7., and 7. are the
solutions of the equation £ = U,s¢(r) — the turning points.
e One can check, that the position of the large mass M (the center of the force) is one
of the focuses of the ellipse — NOT THE ELLIPSE’S CENTER!
e The ellipse can also be written in Cartesian coordinates as
2 2
(z+d)° Y

a? b2

T'min =

=1,

with . .
b= —oor., d=uae, b =ac

T l—e V1—¢€?’
e This is the first Kepler’s law: all planets go around the ellipses with the sun at
one of the foci.

a

17.0.2. The case of € > 1.

e In this case 1 + ecos ¢ is zero at ¢ = +¢., where cos . = —1/¢, so 0 > cos ¢. > —1.
e It means that r(¢ — +¢.) — 0.
e So if € > 1, then the trajectory is unbounded.
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_1-E GmM

5= > 0. As we know, for

e This also can be seen from the fact, that £ =
E > 0 the trajectory is unbounded.
e The equation % = %(1 +e€cos ¢) describes a hyperbola with the sun at the focal point.

17.0.3. The case of € = 1.

 Ueyr(r)

LN
O )Tmin B T'min T

e In this case 1 4 cos ¢ is zero at ¢ = +m, which is the direction straight “back”.

e It means that r(¢ — £7) — oc.

e So if € = 1, then the trajectory is unbounded.

e This also can be seen from the fact, that £ = —1_762% = 0. As we know, for

E = 0 the trajectory is unbounded.
e The equation + = 1(1 + cos @) describes a parabola with the sun at the focal point.






LECTURE 18
Another derivation. A hidden symmetry.

18.1. Kepler’s first law

In the previous lecture we found that:
e All bodies’ trajectories in the attractive potential field U(r) ~ —1/r are
— ellipses with the sun in one of the focal points if £ < 0.
— hyperbolas with the sun in the focal point if £ > 0.
— parabolas with the sun in the focal point if £ = 0.

All these trajectories are described by

1 1
— = —(1+e€cos¢),
r c
where the constants ¢ and € are computed from the initial conditions
J? 1—eGMm
c=——, E=—
GMm? 2 c

aphelion

C For the elliptic orbit we have
"N\ _c _c
T"max C O man Tmin = 1re Tmaz = 1.
a __° p— €
\ g “Tioe Ji—e
u_/ perihelion d= ae, b2 = ac

18.2. Kepler’s second law

The conservation of the angular momentum J = mr2¢ reads

1. J
2"
We see, that in the LHS the rate at which a line from the sun to a comet or planet sweeps
out area:
dA —J
dt  2m’

83
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rde

dg

This rate is constant! — independent of time. So

e Second Kepler’s law: A line joining a planet and the Sun sweeps out equal areas
during equal intervals of time.

Notice, that we have used only angular momentum conservation. So this law is correct for
motion in ANY central force.

18.3. Kepler’s third law

Consider now the closed/elliptic orbits only. There is a period T of the rotation of a planet
around the sun. We want to find this period.
The total area of an ellipse is A = wab, so as the rate dA/dt is constant the period is

T_ A 2mabm
S dA/dt T
Now we square the relation and use b*> = ac and ¢ = G]\{[72mQ to find
2 4 2
T° = 471’2%&36 = —G?]TMCL3

Notice, that the mass of the planet and its angular momentum canceled out! so

e Third Kepler’s law: For all bodies orbiting the sun the ratio of the square of the
period to the cube of the semimajor axis is the same.

This is one way to measure the mass of the sun. For all planets one plots the cube of the
semimajor axes as y and the square of the period as x. One then draws a straight line through
all points. The slope of that line is GM /472

18.4. Another way.
Here we consider a motion in an ARBITRARY central potential U(r) (central force).

e We start from the angular momentum and energy conservation laws:

: J mi? 2
= —— —+ U, =F, U, = U(r).
¢ mrQ(t) ) 9 + Uesy (T) Ir (T) 2mr2 + (T)
We know E and J from the initial conditions. We also know r(t = 0) = 7y, and
¢(t - 0) = ¢init‘

e We want to find 7(¢) and ¢(t).
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e We express 7 from the second equation

2
= | B = Ug(1).
r - r(7)

e From this equation we can find r(t) the same way we solved every 1D problem in
Lecture 14

\/ﬁ /T(t) dr _

2 S \[E=Upgs(r)
This will give us the function r(t).

e Then we use ¢ = —%— to find ¢(t)

mr2(t)
J rtodt
(t) — Gt = — /0

m Jo r2(t)

This gives us the function ¢(t).

e To do that we need E, J, ¢, and iy (total 6) which are given by the initial
conditions.

e We can also find the trajectory r(¢) directly. We divide 7 = \/%1/E — Uess(r) by )
from. We then find

dr dr/dt 7 5 [2m
Ao dejdt ¢ | N2 Uers(r),

= do,

or

J dr J r(¢) dr’
V2m 2, [E — Uepy(r) V2m e 12\ B — Uepp(r)

where E, j, Ginit, and Ty (total 6) are given by initial conditions.

e These formulas give the trajectory for any central potential U(r).

e For the potential U(r) ~ 1/r the integral becomes a standard one after the substi-
tution x = 1/r.

= ¢ - ¢init>

18.5. A hidden symmetry.

Let’s assume, that we have some central attractive potential U(r), which decays to zero at
infinity.
e The problem is mapped to a one dimensional problem for the coordinate r and
effective potential energy Uess(r) = % + U(r).
e For total energy E < 0 we have bounded motion for r between r,,;, and 7,4,
e We can compute the time T, for a particle to go from 7,,;, t0 rne and back

Tmax d
T, =V2m —T, where 7, and 7,4, are the solutions of £ = Ugyy(r).
rmin \JE = Uesy(r)

Notice, that this period is a function of energy and angular momentum: 7,.(E, J).
e We can also compute r(t), as we have done in the lecture 14.
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e We then can compute the time 7, it takes for the angle ¢ to change by 27

J J T dt
do=—"dt, or=" / .
T B =0
Notice, that this time will also be some function of energy and angular momentum:

Td)(E ] )
e The two times 7, (£, J) and T,(E, J) do not necessarily coincide.
e It is only for a very special potential energy function U(r) that T,.(E, J) and Ty (E, J)
coincide for ANY F and J!
e There are only two such functions U(r) ~ 1/r and U(r) ~ r?.
If T, # T, the orbit is bounded, but not closed — this is the general situation.

It is a very special property of the gravitational (or Coulomb) potential that T, = T} for
ANY FE and J. This symmetry requires an explanation.

If U(r) is the gravitation potential energy with a small correction this discrepancy between
T, and T} is small. The orbit is almost closed, or one can say that it precesses.



LECTURE 19
Conserved Laplace-Runge-Lenz vector.

19.1. What we have learned.

e A central force field can be presented by a potential energy function U(r). We choose
the arbitrary constant such that U(r — oo) — 0.

e The initial conditions 7(t = 0) = e, 7(t = 0) = Tini.

e The vector of angular momentum is conserved and can be computed in from the
initial conditions J = MTinit X Vinit -

e The energy is also conserved and can be computed from the initial conditions £ =
mug
=2+ U (7init ) -

e The motion happens in one plane perpendicular to J.

e In that plane the motion is easier to describe in the polar coordinates r and ¢. The
initial conditions can be translated to:

r(t=0) =i, 7t =0) =T, S(t=0)= i, Ot =0)= it
Through these initial conditions we also can compute the value/ magnitude of angular

er 2 + U(ﬂmt)

e If the total energy is negative, then the orbit is bounded — the object always stays
at finite distance from the center.

e We can construct the effective potential energy

J2

2mr?

momentum J = mr? G and the total energy E = "“t +

Uep(r) =Ul(r) +

e We the can compute the functions r(t) and ¢(t).

r(t) / t /
R L Y ey Sy s
2 Jrinie \/E_Ueff(rq 2m r (t)

The first equation gives r(t) implicitly.
e We can compute two different periods

Tmax d / J T (E’J) dt/
TT(E’J):\,Zm . ) 27-[-:7/4> ﬁ
Tmin E — Ueff(rl) 2m 0 r (t)
87
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where 7,,;, and r,,q, are the shortest and the largest distances to the center of the
force. The are found by solving the equation

Ueff (Tmin,ma;r> =F.

e T,.(E,J) is the time it takes the object of energy E and angular momentum (magni-
tude) J to return to the same distance to the center of the force.

o Ty(E,J) is the time it takes the object of energy E and angular momentum (magni-
tude) J to rotate by 27 around the center of the force.

e For general U(r) these two times do not coincide:

TT‘(E7 J) 7£ Tr(E> J)

It means that after rotating by 27 the object does not return back to the same dis-
tance! So after rotating full 27 around the sun the object is NOT at the same position
where it started from. The orbit is bounded, but unless 7, (£, J) and T,(E, J) are
commensurate the orbit is NOT closed.

e In the Newtonian gravity we can find the orbit in the closed form

1 1 2 1—¢€
o= 5(1 +ecos(¢p — o)), ¢ 4 E < GmM

~ GMm? 2 c

¢o must be found such, that the point ri,; and ¢, are on the orbit. So ¢ can be
found from the equation ﬁ — %(1 +€ COS(¢init — ¢0)) So the value of ¢0 is conserved
during the motion!

The last point surely requires an explanation!

—

19.2. Conserved Laplace-Runge-Lenz vector A.

The Kepler problem has an interesting additional symmetry. This symmetry ensures that
T.(E,J) =T4(E,J) (for any E and J). As usual this symmetry also leads to a new conser-
vation law. In this case the Laplace-Runge-Lenz vector A is conserved. This vector is want
we want to study.

If the gravitational force is

~ k k
F=—-—¢, k=GMm, U(r)=——
72 r
(in this form we can treat k as a parameter, then it also covers the Coulomb force k = —%)

then we define the Laplace-Runge-Lenz vector A:

A= P X J— mke,,
where p'is the momentum of the object, J=7x P is its angular momentum, m is the mass of
the object, and é, is the unit vector pointing from the center of the force towards the object.

The vector A can be defined for both gravitational and Coulomb forces: k > 0 for attraction
and k£ < 0 for repulsion.
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LECTURE 19. CONSERVED LAPLACE-RUNGE-LENZ VECTOR.
An important feature of the “inverse square force” is that this vector is conserved during
the motion. Let’s check it. First we notice, that J = 0, so we need to compute:
A= ﬁ x J— mké,.

(I)’_
T omr?”

We notice, that for ANY central force ¢ = # and hence
. . 1 -
p=F, € =W Xeé=—3Jxe
mr
Notice, that 1/7? in the last equation comes from angular momentum conservation.
We now see
A=FxJ——5Jxeé = <F—|—2§r> xJ=0
r r

So this vector is indeed conserved.
e Notice, that it is conserved ONLY for F= T%é}.
The question is: Is this conservation of vector A an independent conservation law? There
are three components of the vector /T, are there three new conservation laws?
The answer is that not all of them are independent.
o As J = 7 x p is orthogonal to €., we see, that J-A=0. So the component of A
perpendicular to the plane of the planet rotation is always zero A, = 0. Vector Ais

in the plane of motion.
e Now let’s calculate the magnitude of this vector
2mk -
iy [T % P
r

-

=

A=p2T% = (5 IV +mk? — 2mké, - [fx J)| = 52T + m?k* —

€ A
T~
O\ L
' ﬁper

|

T

Orper

perihelion

e Using the relation between the eccentricity € with J% and F from the last lecture we

find, that
|A] = VA A=ekm
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e We are left with only the direction of A within the orbit plane. Let’s check this
direction. As the vector is conserved it is the same at any point of the orbit, so we
can chose a point where we compute it.

e So we consider the perihelion. At perihelion ppe, L 7per L J_; where the subscript per
means the value at perihelion.

e Simple examination shows that P, X J = DperJ€per. Then at the perihelion A=
(pperJ - mk)gper-

e However, vector A is a constant of motion, so if it has this magnitude and direction
in one point it will have the same magnitude and direction at all points!

e We computed its magnitude before |A| = ekm, so

A = mkeeye,.

We see, that for Kepler orbits A points to the point of the trajectory where the planet
or comet is the closest to the sun.

e So we see, that A provides us with only one new independent conserved quantity.

e It also means, that if we know the velocity and the position of a planet or a comet at
any time, we can compute the vector A at this moment of time and immediately know
the position of the perihelion. And this position is constant — no precession. (In
particular it tells us what ¢y is in the equation for the orbit 1 = (1 +ecos(¢—¢o))).

We can also compute 7,,i,, so we will know how close, say, a comet will come to the sun and
where the point of the closest approach will be. We can compute this from just the initial
conditions and without solving any differential equations.

But we can do more!

The planet has 3 degrees of freedom (its position is described by three numbers) so the
total order of the Newton’s differential equations is 6. We already had conservation of energy
and angular momentum — this is four conservation laws. As the result the totlal order of
the differential equations is 6-4=2. These are the first order equation mr?(¢)¢ = J and the
equation for the function 7(¢) which also must be the first order equation for the total order
to be 2.

Now we have one more conservation law. So the total order is 2-1=1. We still have the
equation mr?(¢)¢ = J — the first order equation. It means that the equation for r(¢) must
be of zeroth order — not a differential equation, just an algebraic equation.

We will see that this is exactly so in the next lecture.



LECTURE 20

Kepler orbits from A. Virial theorem. Panegyric to
Newton.

20.1. Kepler orbits from A.

Last section we showed, that for the central force

é —
e A F= —fQér, k= GmM
the vector
1 A=pxJ—mkeé,,
> is conserved.
O The existence of an extra conservation law simplifies

many calculations. For example we can derive equa-
tion for the trajectories without solving any differen-

tial equations. Let’s do just that.
Let’s derive the equation for Kepler orbits (trajectories) from our new knowledge of the

perihelion

conservation of the vector A. For this we consider 7+ A at some point P of the trajectory
given by the polar coordinates (7, ¢). At this point the vector A is the same as in any other
point (as it is conserved vector) So we compute 7' A first from the definition of the vector A
and then from the geometry.

From the definition:

=

7o A=7-[px J) —mkr = J* = mkr
From the geometry:
7 A=rAcos 0.
Comparing the two we have
rAcos¢ = J* —mkr

Or
1 mk B J? A

roJ2 kaOS ’ C_mk’ Tk

20.2. Change of orbits.

Consider a problem to change from an circular orbit I'; of a radius Ry to an orbit I'y with a
radius Ry > R;.

91
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e For the transition we will use an elliptical orbit v with 7,,;, = Ry and 7,4, = Rs.
e We need two boosts. One to go from I'; to «y, and the second one to go from v to I's.
e The final speed on I'y will be less than that on I';.

20.3. Kepler orbits for comparable masses.

If the bodies interact only with one another and no

77.11 external force acts on them, then the center of mass

. T has a constant velocity. We then can attach our frame

‘Tk CVY of reference to the center of mass and work there. This

o ® r1 way we will only be studying the relative motion of the
mo bodies.

Let’s now consider two bodies with masses m; and
msy interacting a force F(r)é,, where r is the distance between the bodies and é, is a unit
vector in the direction from one body to another, for example, the interact by the gravitational
force. We will use center of mass system of reference and place our coordinate origin at the
center of mass. If the position of m; is given by 7} and the position of ms is given by 7%, then
as the center of mass is in the origin we have

m177’1+m2772:().

So if we know 7 (t) we immediately know

— m —
o (t) = —*mlrl(t)
2

. So we only need to find 7 ().
Let’s write the equation of motion for 7 (¢)
m17'7"1 = F(’T‘)é;,,
where 7 is a vector from mgy to m; (r is the magnitude of this vector and é, is its direction).
For this vector we have
L L L Mg tma, ., my
r=r1—Tr9=——", or rn=-——r.
mo my + meo
Using this in the equation of motion for the mass m; we get

mimg - - -, -
———7=F(r)e,, ur = F(r)é,,
my + Mo
where p is called “reduced mass”
mims
f=——
my + Mo

We then see, that the problem has reduced to a motion of a single body of a “reduced mass”
p under the central force F'(r)é,. This is our standard problem, that we have solved before.
The solution will give us 7(¢). This will allow us to compute

= m2 > /"L — — ILL —
ri(t) = ————rr(t) = —r(t ro(t) = ——r(t
()= i) = Krte), ) = Lo
In the case of gravitation we can go further and use F(r) = —%, where k = Gmymy =
G%(ml + mo) = GuM, where M = mj; + my — the total mass. So the equation of
motion is

GuM

T

pr = —
7”2
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Or just a motion of a particle of mass p in the gravitational field of a fixed (immovable) mass
M. This is the Kepler problem which we solved before.

20.4. Virial theorem

Let’s consider a collection of N particles interacting with each other. Let’s assume that they
undergo some motion with a period T'— it also means that we are in the center of mass frame
of reference. Then we can define an averaged quantities as follows: Let’s imagine that we
have a quantity P(7;,7;) which depends on the coordinates and the velocities of all particles.
We assume that we solved all equations of motion and we know all 7(¢) and hence 7(t).

Then we define an average

(P)= . [ PG0). 7))

e [f the motion is not periodic, then we define the average a bit differently:

1 T .
<m:m*/P@mﬁ
0

T—o00

1 T m.i2 T. .
Ky=g [ S a=y " [ T
) Togjzdt : dt = i 2T Ty - Thdt

Taking the last integral by parts and using the periodicity to cancel the boundary terms we
get

K) = 121/T* Fidt = 121/T* Fdt = /Z Fydt,
- QZTOT'L mZTZ - 27IT0TZ 3 - rl

where F’Z is the total force which acts on the particle 7.

So we find
—<Zﬁ-é>.

In the next step we use the fact, that the only forces acting on the particle ¢ are the forces
of the interaction with other particles
JJF#e
where F’ij is the force with which the particle j acts on the particle 7.
For any moment of time
Zn F, = Zn i

i#£]
here the summation goes over both mdexes 1 and j. Notice that each pair of particles i, j
appears in the sum twice, say the pair + = 3, j = 5 also appears when ¢+ = 5 and 7 = 3. We
want to fix this and rewrite the sum in such a way that each pair of particles appears in it
only one time. In order to do that we split the sum into two parts the first is when the ¢ > j
and the second when 7 < j.

Zrz F Zrz ij Zrz ‘I'ZTZ ij

i#£j 1>7 1<J
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Next, in the second sum we rename the indexes 7 <> j
DT Fy=) T Fyy+ ) 7 Fy
i i>j j<i
Now in the second sum we remember that according to the third Newton’s law

— —

Fij = —Fji,
so we get

i i>j
We see, that in this form every pair appears only one time and the whole expression depends
only on the relative positions of the particles.
So far it was all very general. Now lets assume that all the forces are the forces of

Coulomb/Gravitation interaction between the particles.

. J A . o 11]
Fij = —7261']', kij = Gmimj, or kij = —
T A7eq
where r;; = |7; — 7;| and é;; is a unit vector pointing from j to 1,
PN T 7nj
61']‘ =
Tij
So
c LR A Loy A Ry kij_U
D Fi=) (=) By == (M=) -8y == = =T
i i>j i>j ij i>5 U

where U is the total potential energy of the system of the particles at the given moment of
time. So we have

This is called the virial theorem.
As the total energy E is conserved — independent of time — we can write £ = (K)+(U).
Using the virial theorem we find that F = —(K), and E = 1(U).

e It is important, that the above relation is stated for the AVERAGES only. For
example, in the perihelion of a Kepler orbit we know that 2K, (1 + €) = —Upe,-

e On the other hand for the circular orbit kinetic and potential energies are constant
in time, so their averages are just their values.

It is even more important to remember, that this was proven for averages over time!!!! On can
also define different kind of averages. For example one can define averaging over ensemble.
Let’s describe the averaging by ensemble procedure.

Averaging over ensemble: We prepare N, copies of the same system of N particles, where
N, is large (N, — 00) and average the measurable quantities over these copies (for example
measure the kinetic energy of all the copies, sum them up and divide by NV,).

The question is what does it mean to prepare the copies of the same system? Each
system has a some fundamental conserved quantities: the number of particles N, the total
momentum ]3, the total angular momentum J and the total energy F, all together it is 8
conserved quantities. So we prepare the systems with the same N, 15, f, and E but with
different initial conditions. In this sense the averaging over ensemble means the averaging
over the initial conditions.
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This about it this way. We represent each system as a single dot in 6/V dimensional space.
The coordinates in this space are the coordinates of each particle (the number of particles is
N, so we have 3N coordinates in total) and the values of momentum of each particles — this
is another 3N coordinates in our space. This space is called the phase space of the system
(more on this later in the course) If we have a galaxy with a 100 billion stars, then our phase
space is 600 billion dimensional space.
The conserved quantities P, j, and E define the 3N-7 dimensional manifold M inside
our phase space. Each point of this manifold satisfies our conservation laws.
The following statements follow from the definitions of the phase space and the manifold

M.

e One system of N particles is a point on the manifold M.

e When one system is evolving with time the point representing the system moves on
the manifold M and never leaves this manifold.

e When we construct a system the initial conditions must be on the manifold M.

When we construct the ensemble of systems, we give them initial conditions that uniformly
cover the manifold M.

If the time evolution of ONE system is chaotic, then the trajectory of the point represent-
ing the system in our phase space uniformly covers the manifold M. This statement should
be taken as a definition of chaotic motion. It means that you are equally likely to find the
system in any of the available states.

As any point of a trajectory in the phase space can be considered as an initial condition for
the rest of the motion, and the trajectory covers the manifold M uniformly, the averaging
over time on such trajectory is the same as the averaging over the initial conditions, or
averaging over ensembles.

This property is called ergodicity.

One can think of the situations when this property would break. For example, if the
trajectories on M split into a several “orbits”. In this case there will be areas of M which are
never explored by a single system — the ergodicity will break. Typically the splitting of the
trajectories into separate “orbits” means that there are several more conserved quantities. If
we now define the submanifolds of M each of which satisfies the new conservation laws, then
on that new manifolds the ergodicity will be restored.

Another case is that the manifold M is split into several submanifolds. A single system
spends most of the time in one submanifold and transitions to another submanifold very
infrequently. The ergodicity still works, but in order to observe it one has to observe the
system for times much longer that the time between the transitions between the submanifolds,
so the system has enough time to explore all the states. However, if the time between the
transitions growth (typically exponentially) with the number of particles in the system, then
if the number of particles is huge (N — oo — it is called thermodynamic limit) then one
only observes the system in one submanifold — this is the situation with the spontaneous
symmetry breaking and thermodynamic phase transitions.

20.5. How to see ' = “¥™ from Kepler’s laws.

7’2
Here I will show how the Newton’s gravity could be derived from the Kepler’s laws. Kepler

found Kepler’s laws from the observations of the planet’s motion. It is clear that there
should be some attraction between the planets and the sun. How do we find the force of this
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attraction if we only know the Kepler’s laws/observations and the Newton’s laws of mechanics.
In other words how could Newton figure out that the force of gravity is F' = G%m?
The crucial observations made by Kepler were

First Law: All planets move along ellipses with the sun in the focus. Different planet’s ellipses
have different eccentricity and different size.
Second Law: The area swept by the position vector increases linearly with time.
Third Law: The ratio of the square of the period of orbit T" to the cube of the large semi-axis a
of the ellipses is the same for all planets — this ratio does not depend on the mass
of the planet or the eccentricity or the size of the planet’s orbit.

Kepler (1571-1630) formulated these laws from the observation of six planets known at his
time (Mercury, Venus, Earth, Mars, Jupiter, and Saturn) There was no reason to expect that
the laws are universal, the laws might have been correct only for these six planes. In fact,
Kepler did not even think about this, the six planets were all there was.

It was the genius of Newton that declared that these observational laws are universal and
would work for any other body in the solar system. He basically declared that there are
universal laws that govern everything and what we observe are just a particular realizations
of these laws. This understanding is the basis/foundation for all the science that exists today!

The argument then goes as the following:

e As the ratio 7?%/a® does not depend on eccentricity, it must be the same if a planet
had a perfectly circular orbit, as a circle is just a special case of ellipse. The radius
of this orbit r will play the role of the large semi-axis.

e From the second law it follows, that the speed of the planet on such an orbit must
be constant.

e Let’s consider this orbit of radius r. There is a force that acts on the planet F(r)
directed to the sun, and we must have

2
m = F(r), v = TF(T),
r m
where m is the mass of the planet and v is its velocity.
e The period of rotation is

2
v .
* So T2 21
r m
=(2r)}P=—= = (@2n)’5=—.
(’ﬂ—) U27”3 (W) 7’2F(7")

73
e As this ratio must not depend neither on mass m nor on the radius r, we then must
have m
F(T) ~ ﬁ

e If the sun attracts the planet with such a force, then the planet must attract the sun
with the same force. But then, according to the above formula the force must be
proportional to the mass of the sun. So we have

F(r)=G———,
() =G,
where G is just some constant.

This is not the complete proof. We need to take the force we found, compute the arbitrary
orbits, and show, that they are ellipses — just as Kepler observed.



21.1.

e A function establishes a correspondence/map between elements of one set with ele-

21.2.

e In normal real life we deal with the functionals more often than one might think.

LECTURE 21
Functions and Functionals.

Difference between functions and functionals.

ments of another. Usually for a number x it gives back a (single) number y according
to some rule: y = f(x), where f denotes this rule. So a function is a rule according
to which if T give it a number it returns back a number. For example the function
f(x) = 2® — it is a rule, according to which if I have a number x, I need to square it
and return the result back. Two different 2’ may return back the same number. For
the previous example the numbers x and —z will return the same value of f(x).

f @ number — number.

A function of many variables is a rule by which it takes a few numbers and returns
one number.

A functional establishes a correspondence/map between functions and numbers. Nor-
mally one has to restrict the space of functions. So a functional is a rule which one
applies to a function from established space to receive back a number. Or if you
give a function to a functional it returns back a number. In order to define a func-
tional we must define the space of functions it can act on and a rule by which it
returns/computes a number if we give it a function from that space.

F : function — number.

A functional can take more than one function as an argument.
An operator takes a function from a defined space and returns back a function (from
the same or from a different space).

O : function — function.

We will not be dealing with operators.

Examples of functionals.

97
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e The rule is the following. For a function f(z) from the space of functions smooth
on the interval [a, b] the functional F' returns a value of the function f(x) at a point
xo € (a,b).

Flf ()] = f(xo).

This functional plays a very important role in physics. It is typically written as

FIf@)] = [ 6z — ) f(@)dz = flz), w0 € (ah)

The function d(x) is called Dirac d-function. The above expression is the definition
of the d-function.
e Area under the graph: for a (integrable) functions on interval [a,b] we can define a

functional ,
= / f(z)dx.

That means, that if you have a function f(x) which belongs to our space (it is
integrable on the interval [a, b]) we can construct the number — the area under the
graph. This is the rule which defines our functional.
e Length of a path in 2D.
— Our space is the space of smooth functions on the interval [a, b].
— For any graph y(z) we can compute its length

(z)
/a v/ (dx)? + (dy) —/41—1- dx dx

— Let’s now take a path x(t , where t € [a,b] is a parameter. Both x(t), y(t)
are smooth. Then the length of this path is

Lla(t), y(t)] = /bJ (fg): (fi) dt.

This is a functional of 2 functions: z(¢) and y(t) smooth on the interval ¢ € [a, b].
e Length of a path in 3D.
— Now the path is given by three functions x(t), y(t), and z(t), where t € [a, D]
is a parameter. All three functions z(t), y(t), and z(¢) are smooth. Then the
length of this path is

b dr\’ dy 2 dz
t t t) = — — dt.
£laft). u().2(0)] = | J () (%) + (&Y
This is a functional of 3 functions: z(t), y(t), z(t) smooth on the interval t €
[a, b].
It is important to specify the space of functions.




LECTURE 22
More on functionals.

22.1. Examples of functionals. Continued.

e Length of a path. Invariance under reparametrization.
— In the last lecture we considered a path z(t), y(t), where t € [a, b] is a parameter.
Both x(t), y(t) are smooth. Then the length of this path is

£l (0,90 = | J () (&)

— Let’s now change this parameter. Namely we take ¢ to be a function of another
parameter 7: ¢(7). The very same graph is given by x(7) = z(¢(7)) and y(7) =
y(t(7)). Then the length is

Llalr).y(r) = | J (%) + (&)

where t(a,) = a, t(b;) = b. Using the chain rule we get 9 = 924 anq the same
for %, as well as dr = ‘fl—;dt we will get exactly the same expression as before.

So the length — the functional — is invariant under reparametrization.
— In N dimensional space a curve is given by smooth functions z;(t), i =1... N.
The (Euclidean) length of this curve is given by

dt dt

It is a functional on N functions.
A side note: One can also define a functional

dx; dx
/\/dtg” ({ei) ]dt

where g;;({z;}) is N x N matrix which depends on the position given by all
{z;}. This matrix must be positive definite at each point of space. This matrix
is called the metric tensor of the space. In Euclidean space the metric tensor is
just N x N unit matrix d;;.

e Energy of a horizontal string in the gravitational field.
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— Consider a rope linear density p. We attach it to two nails distance [ apart
which are on the same height. We take the rope to have a shape given by a
smooth function y(z) (The origin is at the left nail, x is the horizontal coordinate
pointing to the right, y is the vertical coordinate pointing up.) with

y(0) =y(l) =0
and ask the following question: What is the potential energy of the rope of this
shape?
— Consider a small piece of the rope. It has a mass py/(dz)? + (dy)?. The potential

energy of this piece is pgy./(dx)? + (dy)? . So the total potential energy is

Uly(x)] = py /Ol y(x)\1+ () da.

— It is a functional on a space of smooth functions y(x) in the interval [0, ] with
the condition y(0) = y(I) = 0.

— If the total length L > [ of the rope is given, then the we further restrict our
space of functions y(z) by demanding, that they satisfy the following constraint

L = Lly(z)].

e Functions of many variables. Area of a surface. Invariance under reparametrization.

It is important to specify the space of functions.

22.2. General form of the functionals.

e We need to establish a rule which will allow to compute a number for an arbitrary
function y(z) from the given space.
e General form of a functional

T2
/ L(z,y,y',y",...)dz.

1
e The space of functions, the integration boundaries x; and x5 as well as the function
L are parts of the DEFINITION of the functional. They must be given in order for
the functional to be defined.
e Important: In the function L the y, 3/, y” and so on are just independent variables.

e It means that we consider a function L(z, 21, 22, 23, . . . ) of normal variables z, 2, 29,
23, ... and for any function y(x) at some point x we calculate y(z), ¥'(x), y"(x), ...
and plug x and these values instead of 21, 29, 23, ... in L(x, 21, 29, 23, ... ).

e We do that for all values of  in the interval [xy, 2], so that we obtain (FOR GIVEN
y(x)!!) a function of x: L(x,y(z),y (x),y"(x),...), and then we integrate this func-
tion over z in the interval [x1, 23]

As L(x, 21,29, 23,...) is just a KNOWN function of its arguments we can compute the
partial derivatives %, g—i, 887]:2’ etc. AFTER we computed these derivatives we can substitute
the GIVEN function y(z) and its derivatives instead of the corresponding variables z; ,zs, 23,

OL(z, 21,29, 23,...) OL(x, 21,29, 23,...)
821 ’ 822 ’

z1=y(z),z2=y’ (x),... z1=y(z),z2=y’ (x),...
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This procedure is DENOTED as 25, 2L IL " otc.

Biy’ 67?/7 ay//7

OL  OL(x,z,%,23,...)

9y 02 A=) 2 @),
OL  OL(x,2z1,22,23,...)

oy’ 0z zn=y(x),22=y' (2),...
OL  OL(z,z,29,23,...)

oy 0z3 z1=y(z),22=Yy'(2),...

Another way of thinking about this notation is the following: You are typically given a
functional in the form [? L(x,y,v',y",...)dz. When you are taken the derivatives %’ g—;,
etc., you treat y, i/, etc. as DIFFERENT letters — different INDEPENDENT variables, and
only after the derivatives are computed you recall that these variables are the function y(x)

and its derivatives.

22.3. Discretization. Fanctionals as functions.

Let’s consider a functional A[f(z)] acting on the functions from some well defined space, let’s
say on smooth functions on the interval [a,b]. We can do the following trick.

e Consider the variable x to be discretized: instead of thinking of z as a continuous
variable we will select N points z; in the interval [a,b]. Lat’s also take x; = a,
IN = b.
e Eventually we will need to take a limit N — oco. This limit should be taken in such
a way, that max(Ax;) — 0.
e A function f(z) is then represented by its values f; at x;: f; = f(z;).
e Then the functional A[f(z)] can be thought as a function of the values f;: A[f(z)] =
A(fr, s f).
e We then can deal with the functional as a with the function of many variables.
e At the end we must take the limit N — oo as described above, and make sure, that
such limit does exist.
In many non-trivial cases this procedure allows one to make sense out of the calculations.
If you are to compute the value of a functional numerically, then this procedure is exactly
what you have to do.






LECTURE 23
Euler-Lagrange equation

23.1. A word on notations.

We will consider the functionals of the form

Aly(z)] = / " Lz, y(2), ¢ (x))de.

A

One MUST always specify the space of functions the functional is defined on.
The function L under the integral is whatever is multiplied by dz in the integral.
Function L is a FUNCTION.
When we look at it as a function, z, y(z), and y/'(z) are simply its variables.
The procedure to find the value of a functional on a function is the following
— You have a functional Afy(x)]. What it means is that you have a defined space
of functions, you have numbers x4 and zg, and you have a function L(z, 21, 22)
— now your functional is specified.
— You are given a function y(x) from the specified space and you are asked to
compute the value of the functional A on this function.
— at the first step you compute 3/(z). Then

y(f) y’(f)
Lz, 2z, z) — Lxy),y (@) — Aly(e)] = 77 Lz, y(@),y'(x))de

e As for any (smooth enough) function we can differentiate the function L over its
variables.

e We can take the partial derivatives of the function L with respect to its arguments.
For example

oL
Oy(x)
e This expression simply means that you need to take the function L(x,z,2z9), dif-
ferentiate it with respect to the second argument z; and AFTER the differentiation
substitute z; = y(z), 22 = ¥/(x)
oL OL(z, 21, 22)
Oy(x) 0z
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e Analogously
oL OL(x, z1, z2)

0y'(x) Oz z1=y(x), 2=y (z)
e IMPORTANT: The substitution z; = y(z), z2 = ¥/(x) is done AFTER the partial
derivative is taken.
e To shorten the notations we write the function L as L(z,y,y’) and write the deriva-
tives as

oL oL
oy’ oy’
This emphasizes that when we take the partial derivatives we treat y and y’ as simply
completely independent variables (think of y and ' as of absolutely different letters).
e On the other hand when we take the FULL derivative %, then we remember that y
and 3/ are the functions of x. For example, using the chain rule

oL dLdy dLdy 9L OL, IL

83:+87ydx+87y’dx _£+8yy+7y

d
—L(x,y,y) = o7

dzx

23.2. Minimization problem

What kind of problems can we state with the functionals?

One of the most important problem (but not the only one) is stated as following: given
a functional A[f(x)] (remember, that the space the functional works on is a part of its
definition) which function (from the defined space) will give the smallest (or the largest)
value of the functional? How do we find this function?

For an arbitrary functional such function may not exist. Moreover, generally if you change
the space you will find a different answer. In many cases, if you change the space the question
will not have an answer.

Notice, that this is exactly the same situation as with functions. A function may or may
not have minimum or maximum on a given interval. This statement depends on the interval.
For example a function 1/z has no maximum or minimum in the interval [—1, 1], but it has a
minimum and a maximum in the interval [1,2]. The position of the maximum and minimum
depends on the interval boundaries.

In the following examples notice the importance of defining the space of functions.

Minimal distance between two points.
Minimal time of travel. Ferma Principe.
Minimal potential energy of a string.
ete.

23.3. Minimum of a function.

Before we derive the equation for the function which minimizes a functional. Let’s remember
how it is done for functions.
The questions is: if we have a function f(x) how do we find the position z of its minimum?
There are different ways to think about it. I want to emphasize the following line of
arguments:

e Let’s assume, that we know the position of the minimum .
e Let’s consider x which is very close to xg.
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We know that if = is close enough to zy the value of the function at x can be
represented as a series (0x = x — x)

f(z) = f(zo) + a1dx + as(d2)* + . ..

where the coefficients ai, aq, etc. are the coefficients of the Taylor expansion. They

are some fixed numbers! We know how to compute these numbers: a; = % ,
T=x0
1 d*f
and ay = 5 5% .
2 2 dx? T=10

In this series for dx small enough the term a;dx is dominant. And it’s dominance is
the larger the smaller x is.
So for very small dx we can write

Of = f(x) — f(zo) = ardx.
As f(xg) is the minimum, for small enough dx we must have f > 0. This must be

true for both positive and negative dx!
The only way to have ensure this inequality is to have

a1:O.

Then the Taylor expansion starts with the term ay(dx)? which is positive if a; > 0
for any dx.

According to Taylor expansion a; = % oy’ So to find the minimum we need to
solve the equation

oy g

x|, _,.

Notice, that the condition which leads to the equation above is that the change of the function
in the first order in dx is zero!
Notice the whole strategy to find the position of the minimum/extremum for a function

f(@):

23.4.

We first assume, that we know the position of the minimum z.

We find how the function f(z) changes, when we shift 2 by small dx from .

We compute the change 0 f = f(x¢ + 0z) — f(z) in LINEAR order of oz.

We DEMAND, that z be such, that this change 0 f vanishes (at LINEAR order in
ox).

As the result we obtain an algebraic equation for xg.

The Euler-Lagrange equations

The functional Afy(x)] = [;* L(y(z),y (), )dx with the boundary conditions y(z,) =
y1 and y(z2) = ya.

The problem is to find a function y(x) which is the stationary “point” of the functional

Aly()].

The stationary “point” (it is a function, it is a “point” in the space of functions) of
a functional Aly(z)] = [ L(z,y(z),y'(x))dz for the functions satisfying y(z1) = v,

y(x2) = yo is given by the solution of Euler-Lagrange equation.

Euler-Lagrange equation is the second order differential equation with boundary

conditions y(x1) = y1, y(x2) = yo.

Derivation of the Euler-Lagrange equation.
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— Let’s assume, that we found the function yo(x) which gives us a minimum of the
functional Aly(x)] = [ L(z,y(z),y'(z))dz for the functions satisfying y(z1) =
y1, Y(x2) = va.

— Lets shift this function a little and consider a function y(z) = yo(z) + dy(z),
where dy(z) is small/infinitesimal.

— The main objective is to find out what equation the function yo(z) must satisfy
in order for the change of the value of the functional 6.4 = Alye(z) + dy(x)] —
Alyo(z)] be positive for ANY small enough 0y(z).

— In the same logic as with the functions we then must require that .4 vanish in
the LINEAR order in dy(z).

— The new function y(x) = yo(z) + dy(x) must be from the same space, so me
must have

(23.1) dy(z1) =0, dy(z2) = 0.

— The value of our functional on the new function is
T2
Alyo(@) +0y(@)] = [ Lz, yolx) + 0y(a), yh() + 0y (2))d

— Let’s compute Alyo(z) + 0y(x)] up to the linear order in dy(x).

— Let’s consider L(x,yo(x) + dy(x), y(x) + dy/(x)). I want to fix the value of z.
Then yo(z) 4+ dy(x) and y,(x) + 0y’ (x) are just numbers and we can write in the
LINEAR order in dy(x)

oL oL
L(r 0() + 09(z). 4y (x) + 09/ (@) = Lz 1), v5(x) + 5.0+ 520y
0
— As before, to shorten notations I used g—L to mean ‘?)—L , and the same for
Yo Y ly=yo(x)

the primed term.
a

— Notice, that after this substitution y = yo(x) the functions gL and 7 - are the
Y0

functions of x only!
— So to compute the value of the functional on the function yo(x) + dy(x) at linear
order in 0y(x) we need to compute

z2

oL oL

Alnle) + oyt = [ |Lama) o) + g+ Gl

— The first term under the integral is what is in Afyo(x)] — the value of the
functional at the minimum.

1

Alpolw) + 8y(w)) ~ Aly()] + [ [ oy + 5 54 da
— S0 0A = Alyo(x) + 53/(1:)] — Alyo(x)]. (It is called variation of the functional. )
2 0L vz L doy(x)
A~ O dy(z)dx + o Oy du dx

— Notice, that in the last term in dy(@) it is a full derivative over . The function

dx
gyL, is a function of = only, as we already plugged yo(x) instead of y and y;(z)
0

instead of y/'.
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— [ will use the partial integration on that term

@2 I d OL OL |

A~ [ sy@)de — [ dy(n) S dr 6
Ax [ 75 oy~ [ Coy(e) gpde 4 dy(e) g

1

Notice that in this step %g—:, assumes full differentiation over z.

— Now we use the boundary conditions (23.1)) and see that

oL
oy (x) o

€2

= 0.

1

— So we have

2 oL d OL

— This equation tells us how the value of the functional Afy(x)] changes, when we
change the function from the minimum yy(z) by an ARBITRARY infinitesimal
function dy (subject, of course to (23.1))).

— As the function éy(z) is arbitrary, the value of the integral [;** dy(x) [gTLo -4 gyL(,) dx
can be either positive or negative.

— But the function yo(x) is the minimum! If we shift from the minimum we can
only go up, so the value §. A must always be positive! (or non-negative in the
linear order — it will become positive in the quadratic order)

— The only way to ensure that 6.4 is non-negative for ARBITRARY dy(x) is to

demand, that

OL d OL 0
Oyo  dxdyhy
The statement then is that the function yo(x) must be such as to satisfy this
equation.
e The Euler-Lagrange equation reads
d oL 0L

_— €T = s X =

dz 0y’ W y(x1) =y, y(w2) =1

This is the second order differential equation with boundary conditions y(z1) = v,
y(@2) = ya.






LECTURE 24
Euler-Lagrange equation continued.

24.1. What to do.

If you have a functional which acts on functions f(£) given by

¢B
A[f(&)] = /5 L(&, £(€), F(€))de.

(this means that you know &4, &g, and the function L of three INDEPENDENT variables),
with the space of functions defined as smooth functions with

f(€a) = fa, f(€s) = fB.

(or any other way.) You can find such a function f(§) that minimizes (or maximizes) the
functional A.
Here is what you do.

e You take the function L(&, f, f’) and differentiate it with respect to the f and f
treating f and f’ as simply the names of INDEPENDENT variables. You get

OL OL
af’ af”
e AFTER that you treat both f and f’ as (unknown) functions of &: f(§) and f'(§) =
dfd—(;), and take the derivative
d OL
deaf

using the chain rule (you will have to use the chain rule, as you do not know the
function f(£)).
e You write the second order differential equation

d oL 0L
dsof  of
e You solve it and find the solution which satisfies the boundary (or other) conditions

f(&a) = fa, f(&B) = fB.

This is a mathematical procedure. There is no “meaning” of the functional A or function f,
or variable £&. The “meaning” of these objects comes from the physical problem which you
are trying to solve with this machinery.

109
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24.2. Examples

24.2.1. Shortest path between two points in 2D.

There are two points: point A and point B in 2D Euclidean space. We want to find a path
between the two points which has the smallest length.

24.2.1.1. Cartesian coordinates.
We introduce Cartesian coordinates z and y. The points A and B have coordinates A :
(xa,ya) and B : (zp,yp). A path is given by a function y(z).

The displacement vector is dif = dzé, + dyé,. The length of this vector is dI* = dr- dF =
(dx)?+ (dy)?. The element of length of the path y(z) is dl = \/(dzzc)2 + (dy)? = \/1 + (v)%dx.
The length of the path between the points A and B given by y(x) is

L) = [ VIt @Pde oy =va v(es) = s

We want to find which path y(z) gives the shortest length. In other words, what function
y(z) gives the minimum of the functional L[y(z)].
After the question is posed this way we know what to do!

e The function L(y,y’, x) is given by

L(y,y' x) = 1+ (')
It has no dependence on x and y, only on 3. This will simplify the calculations, but

changes nothing about the procedure.
e We compute the partial derivatives

oL oL Y
dy ’ oy’ 1+ (y/)Q'
e We write the Euler-Lagrange equation
d /
d v
A1+ ()2

e At this point we treat y and 3’ as the functions of x (in this particular problem we
do not have y).
y// <y/)2y//
L+ ()2 @™
e This is the differential equation we need to solve. We need to find a solution which
satisfies the boundary conditions

y(ra) =ya,  ylzp) =yp.
The rest is simply a solution of this equation.
e The easier way to solve this Euler-Lagrange equation:

d /
SR S const., y'(x) = const., y=ax+Db.

o i (yp L+ ()2
The constants a and b should be computed from the boundary conditions y(z4) = ya
and y(zp) = yp.

/
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24.2.1.2. Polar coordinates.
We introduce polar coordinates r and ¢. The points A and B have coordinates A : (r4, ¢4)
and B : (rg,¢p). A path is given by a function r(¢).

The displacement vector is di = dré, + rd¢é,. The length of this vector is dI* = dr -

dr = (dr)? + r*(d¢)*>. The element of length of the path r(¢) is di = \/(dr)2 +r2(dp)? =
v/ (17)2 + r2d.
The length of the path between the points A and B given by r(¢) is

chr@) = [ VRE R, ron = ros) =1

We want to find which path r(¢) gives the shortest length. In other words, what function
r(¢) gives the minimum of the functional L[r(¢)].
After the question is posed this way we know what to do!

e The function L(¢,r, ") is
L=1/(r")%+r2.

e Treating r and " as INDEPENDENT variables we compute
0L r 0L r’

EZ /(7,/)2+7,2’ %: /(r’)2+r2'

e We write the Euler-Lagrange equation, treating » and r’ as the functions of ¢!!!

don_or
d¢or  or’
o We get
r" ' (r'r" 4+ rr') r

M2 +r2 (M2 +r2)? )2 42
This is the differential equation we need to solve. We need to find a solution which
satisfies the boundary conditions

T(¢a) = T4, r(¢B) = ép.

The rest is simply a solution of this equation.
e After simple algebra we get

2
r'r? —2rr’* — % = 0.

e Making the substitution r(¢) = ﬁ and hence 1’ = —;‘j—;, r’ = —Z—g —1—22—’32 we convert
the equation into
u' = —u.
e This is an oscillator equation with the solution u = C'cos(¢ — ¢y).
e So the solution r(¢) is
A
) cos(¢ — o)

The arbitrary constants A and ¢y must be found from the boundary conditions.
This is the equation of the straight line in the polar coordinates.
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24.2.2. Shortest time to fall — Brachistochrone.

A

>

Y
|9

B

e What path the rail should be in order for the car to take the least amount of time
to go from point A to point B under gravity if it starts with zero velocity.

e Lets take the coordinate x to go straight down and y to be horizontal, with the origin
in point A. (I switched the conventional names for the axes because I know that this
problem is easier to solve this way.)

e The boundary conditions: for point A: y(0) = 0; for point B: y(zg) = ys.

e We need to write the functional which gives the total time of travel for a rail described
by a function y(z). From the energy conservation (there is no friction!) mwv?/2 =
mgz, so the velocity at “height” x is v(x) = y/2gx. The length dl of the rail between
“heights” z and = + dx is dl = \/(dac)2 + (dy)? = \/1 + (y')%dx, so the time it takes
to travel from the “height” x to the “height” x + dx is dt = %.

e The total time of travel between the points A and B along the rail given by y(z) is

T:/f:A”vv%?zm

e We have

1+ (v')? oL aL 1 Y
2gr Dy ’ oy 2gx \/1 + (y/)z'

Ly, y, x) =

e The Fuler-Lagrange equation is

a1 Y 0
dx \/2936\/14_@/)2 o

e At this point we treat y and ¢’ as the functions of x (in this particular problem we
do not have y).

1o y Y L WPy
202\ T4 () V29T \Le () V2 (1 (1))

We need to solve this second order differential equation and find the solution which
satisfies the boundary conditions.

=0
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e The easier way to solve this Euler-Lagrange equation.

P R A VAP N S R
dx (\/ng \/1—|—(y’)2) =0, rl1+(y)? 24 y (@)

e So the path is given by

/ 2a—a:

e The integral is taken by substitution Z = a(1 — cos 9) It then becomes

y(x(8)) = a/:u —cosf)df = a(f —sinf),  z=a(l - cosh).

So the path is given by the parametric equations

x =a(l —cos?), y = a(f —sinb).

113

The point z = 0, y = 0 is already on the path for § = 0. The constant a must be
chosen such, that the point xp,yp is on the path. It means, that there is such g

that
za=a(l —cosfp)

ya = a(fp —sinfp)

Notice, that these are two equations with two unknowns 6 and a. (These equations
are transcendental. The solution does exists but cannot be expressed through any

normal way. It can be found numerically.)

24.3. Reparametrization. For self-study.

The form of the Euler-Lagrange equation does not change under the reparametrization.

Consider a functional and corresponding E-L equation

X2 / d aL 8L
A:/x L(y(z), y,(x), z)dx, dzdy,  Oy(x)

Let’s consider a new parameter £ and the function x(§) converts one old parameter z to

another &.
Using the function () we can change the variable in the function y(z)
dy _ dydg _ f
= ! = — - = 7d
Our functional then becomes
3 d€ dx
A= / dz = / L),y
(z), 2)de = | <y(£) Ve o x) ae %
So that we have the new function (the one between the integral and d¢)
d& dx
/ _ IS o
Le(y,y:,€) = L (y(é),ygdx,x) i
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This is now a function of y, y;, and &, and

&2
A= A Le(y(), ye(§), §)d€

(z(§1) = 71, T, = T2)
The E-L equation then is

d 0L OLg
dg Oy Oy(&)
Using
OL¢ dx OLdf 0L OLg  dx OL

Oye — d§ Oy, du— dy,”  Oy(&)  dE dy(x)
we see that E-L equation reads
d oL  dx OL d OL 0L
dgoy, — d¢oy(x)  dxdy, Oy(x)
So we return back to the original form of the E-L equation.
What we found is that E-L equations are invariant under the parameter change.




LECTURE 25
Lagrangian mechanics.

25.1. The Euler-Lagrange equations, for many variables.

If we have a functional of two functions y(x) and z(z)

x2

Aly (), 2(x)] ZL L(z,y(x), 2(x),y (x), #'(x))dx

1

then, as we derived the Euler-Lagrange equation working with the functional variations only
in the linear order, we have simply the E-L equation for each of the function

d oL dL
dzdy Oy
d oL 0L
dr 0z 0z

And so on.

e It is VERY important that the functions y(z) and z(x) etc. are independent from
each other. We have to be able to take the variations over them INDEPENDENTLY
in order for the Euler-Lagrange equations to be valid.

25.2. Problems of Newton laws.

e Not invariant when we change the coordinate system:

o S A2 F.
Cartesian: { Fy : Polar:{ . ro ) .
mj = F, m (ré+2id) = F,

Too complicated, too tedious. Consider two pendulums.
Difficult to find conservation laws.

Symmetries are not obvious.

Cannot be used in non-classical world.

25.3. Newton second law as Euler-Lagrange equations

Second order differential equation.
115
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25.4. Hamilton’s Principle. Action.

Hamilton’s Principle: For each conservative mechanical system there exists a functional,
called ACTION, which is minimal on the solution of the equations of motion
This functional — Action — has the following form:

AlfaY = [ L AaO} (a0 D

Let’s see what it means.

e {¢;} — a set of numbers which describes the configuration/position of our system.
These numbers are called generalized coordinates — a set of numbers which unam-
biguously describes the configuration of the system.

— These numbers must provide the complete description. Example when it is not:

two coordinates in 3D space.

— These numbers must be independent. Example when it is not: a bead on a rail.
During the motion these generalized coordinates change as functions of time t. 1
collectively denoted the full set of these functions as {g;(t)}.

Correspondingly, there are generalized velocities: ¢; = Cfiqti for each of the coordinates.
I collectively denote them as {¢;(t)}.

t; is initial moment of time, ¢; is the final moment.

The function L(t, {q;(t)},{¢:(t)}) of time ¢, generalized coordinates {¢;(t)}, and gen-
eralized velocities {¢;(t)} is called the Lagrangian of the system.

e The integration is done over time ¢.

The Hamilton’s principle is not constructive. It states that such functional — Action
A[{q;(t)}] — exists. We still need to construct this functional. This means, that for any
system, after we have chosen the coordinates {¢;}, we need to be able to construct the
Lagrangian L(t7 {Qi(t)}> {QZ(t)})

However, after we have constructed the Action, in order to find the time evolution of the
generalized coordinates all we need is to find the functions ¢;(¢) that minimize the Action.

25.5. Lagrangian.

Before I show how to construct the Lagrangian, I want to emphasize two important points:

e Lagrangian is not energy. We do not minimize energy. We do not even minimize the
Lagrangian. We minimize action!

e Lagrangian is a function of generalized coordinates {¢;} and generalized velocities
{¢;}. There must be no momenta in Lagrangian.

The Lagrangian is constructed by the following procedure:

e First, chose the generalized coordinates {¢;}. They MUST satisfy the requirement
of being complete and independent.

e After we have chosen the generalized coordinates {¢;}, we compute the potential
energy U(t,{¢;}) as a function of our generalized coordinates {¢;}. It may or may
not also explicitly depend on time.

e Assuming that we know the generalized velocities {¢;(t)} we compute the kinetic
energy of our system: K(t,{¢;},{d;}) as a function of our generalized coordinates
{¢;} and generalized velocities {¢;}. It may or may not also explicitly depend on
time.
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e The Lagrangian then is given by:

L(t.{ai}, {a:}) = K (¢, {ait {ai}) — UL, {a:})-
After we constructed the Lagrangian, we can write the equation of motion for each of
generalized coordinates:

4oL oL
dtd¢ — 0q;

25.6. Examples.
25.6.1. Free fall down a vertical line.

e First step: CHOSE THE COORDINATES, and CHECK:

— Are the coordinates complete? Do they completely describe the system? If you
know the coordinates do you know the configuration of your system?

— Are the coordinates independent? Do the any values of the coordinates chosen
independently describe possible configuration of the system?

e We chose our standard y vertical up coordinate, to describe the position of the body.
As the motion in 1D this coordinates provides the complete description. As it is
only one coordinate it is independent.

e The kinetic energy is K = %f

e The potential energy is U = mgy.

e The Lagrangian is

"2

. my
Ly,y) = K = U = —~ — mgy.
e The Lagrange equation:
d oL 0L
dt oy Oy
As % =my, % = —mg we have
my = —mg.

25.6.2. Motion of a particle in an arbitrary potential U(r).

e First step: CHOSE THE COORDINATES, and CHECK:
— Are the coordinates complete? Do they completely describe the system? If you
know the coordinates do you know the configuration of your system?
— Are the coordinates independent? Do the any values of the coordinates chosen
independently describe possible configuration of the system?
We chose our standard Cartesian coordinates: x, y, 2.
The kinetic energy is K = m;z .
The potential energy is U (7).
The Lagrangian is

mi? mi?  my?  mz?

L =— — = —
e The Lagrange equation for the component z is
doL 0L

dtoi v
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As ‘3—’; = mi, g—i = —g—g we have
. ou
mé=——5_.
e The same are for the other two components:
ou . ou
my = “ay mE=———
e So we can write all these equations together
mi- = —VU.
This is Newton’s equation F = ma So we indeed reproduced the Newtonian dy-

namics!

25.6.3. A mass on a stationary wedge. No friction.

\y%m

% Z

e First step: CHOSE THE COORDINATES, and CHECK:
— Are the coordinates complete? Do they completely describe the system? If you
know the coordinates do you know the configuration of your system?
— Are the coordinates independent? Do the any values of the coordinates chosen
independently describe possible configuration of the system?
There is only one coordinate here y.
The kinetic energy is %ﬁ
The potential energy is —mgy sin a.
The Lagrangian is L = mTyQ + mgy sin a.
The Lagrange equation is

doL 0L
dt oy Oy
As % = my, % = mgsin a we have
miy = mgsin a.

Notice, we did not need any forces/vectors to find the acceleration!
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LECTURE 26
Lagrangian mechanics.

General strategy.

ONLY IF ALL THE FORCES ARE CONSERVATIVE!!!

Choose generalized coordinates {¢;}, i =1...N.

Generalized coordinates:
— A set of numbers which ambiguously describe the configuration of the system.
— These numbers must be independent.
— These numbers must provide the complete description.

e The number of generalized coordinates NV is called the number of degrees of freedom.
e Write the total kinetic energy K of the system in terms of the generalized coordinates

and their time derivatives: {¢;} and {¢;}.
Write the total potential energy U in terms of the generalized coordinates {g;}.
Both kinetic and potential energy may or may not depend on time explicitly.

Define the Lagrangian L = K(t,{¢;},{¢:}) — U(t,{a}).

Write down the Lagrange equations for all/every generalized coordinates
dJL OL
dtd¢ — Oq;

Generally, these are coupled non-linear second order differential equations for the
functions ¢;(t).

The number of equations equals to the number of the coordinates ¢;, the number of
degrees of freedom N.

As all equations are of the second order the general solution of the system of the
equations will depend on 2N arbitrary constants.

Set up the initial conditions for all generalized coordinates {¢;} and generalized
velocities {¢;}. So each degree of freedom requires 2 initial conditions. The total
number of initial conditions is 2/V.

Solve the equations. Use THE INITIAL CONDITIONS to fix the arbitrary constants
in the general solution!

As the number of initial conditions 2N equals to the number of unknown constants
2N, the equations for the constants will have a solution (but the solution is not
necessarily unique.)

119
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26.2. Examples.

26.2.1. A mass on a moving wedge. No friction.

e First step: CHOSE THE COORDINATES.
e The coordinates are x and y — see figure.
e CHECK:
— Are the coordinates complete? Do they completely describe the system? If you
know the coordinates do you know the configuration of your system?
— Are the coordinates independent? Do the any values of the coordinates chosen
independently describe possible configuration of the system?

e The kinetic energy of the wedge is M2“"’2.

Let’s compute the kinetic energy of the mass m.
— In order to do that, we set up an auxiliary Cartesian coordinate system: X —
horizontal axis and Y vertical axis pointing up.
— The X coordinate of the mass m is X = x + ycosa, and the Y coordinate is

Y = —ysina. _
— For the mass m its horizontal velocity component v, = X =& + ycosa.
— Its vertical velocity component is vyey = Y = —gsin a.

— So its velocity squared is given v = v + 02, = @ + y* + 247y cos .
— And the kinetic energy of the mass m is 2 (Vi + V) = % (@ + y° + 24y cos ).

So the total kinetic energy of the system is

M m
K="¢%+—
S

The total potential energy is just the gravitational potential energy of mass m and
it is given by —mgysina. In this case he potential energy does not depend on =x.
However, if we attache the wedge to a wall with the spring of spring constant k, we
simply add the potential energy of the spring kz?/2.

The Lagrangian is

(4% + 97 + 2@y cosa) .

M+m , m ., . .
5 T —|—§y + mxy cos a + mgy sin a.

There are two Lagrange equations, for x and y. In order to derive them we compute
— For z coordinate
oL oL
=0

— =0, — =Mz + mycosw
ox 0% 4

I =
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and 4oL
1o M3E + mjjcos a.
So the Lagrangian equation for x coordinate is
oL
— = M3+ mgcosa =0.
ot
— For y coordinate
oL . oL . .
— = mgsinaq, —— = MYy + MT cos«
dy 9y
and
d 0L j + ma cos
——— = my + m cos .
atog Y

So the Lagrangian equation for y coordinate is
my + mi cos @ = mgsin a.
e The two second order differential equation together read
(M 4+ m)i+mijcosa=0
my + mi cosa = mgsin «

They must be solved together and the initial conditions must be used to fix the
arbitrary constants in the general solution.

26.2.2. A pendulum.

e The coordinate is ¢ — the angle the pendulum makes with the vertical line.

e The potential energy: U(¢) = mgl(1 — cos ¢).

e The kinetic energy is the rotational kinetic energy K = %, where I = mi?> — the
moment of inertia, and w = ¢ — angular velocity.

e The Lagrangian is

2 12
L:K—U:ml(b —mgl(1 — cos ¢).
e The Lagrange equation is
d oL OL oL . 0L
dtagb (()gb’ a¢ ¢7 a¢ mg Sln¢
b = —%Singb.

26.2.3. A pendulum on a cart.
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e The coordinate x — the position of the Cart and ¢ — the angle of the pendulum
are good generalized coordinates. A good test is the following:

— If I know x and ¢ will I be able to draw the picture, or there will be pieces whose
position I do not know?

— If I know x can I chose ¢ arbitrarily from withing its domain? If I know ¢ can
I chose x arbitrarily from withing its domain?

— The first test is for completeness, the second is for independence.

e Next we need to find the kinetic energy K of the whole system through z, &, ¢, and
¢. And the potential energy U of the whole system as a function of x and ¢.

e The kinetic energy of the cart is Mi?/2.

e To find the kinetic energy of the pendulum we need to find the velocity of the ball
m through our generalized coordinates.

— Again, we set up an auxiliary Cartesian coordinate system: X — horizontal axis
and Y vertical axis pointing up.
— The X position of the ball is X = x 4 [sin¢, the Y position of the ball is
Y =lcos¢. ‘ ‘
— Then for the ball we have vx = X = & + ¢l cos ¢, and vy = Y = —¢lsin ¢.
— So v? =v% +v¥ = (& + ¢l cos ¢)? + ¢*1%sin? ¢.
e The total kinetic energy is the sum of the two:
2
K = ]\/[295 + % (:ic2 + 2%l cos ¢ + l2¢2> .

e The potential energy is U = —mgy,, = —mglcos¢. (In this case the potential
energy does not depend on x. However, if, say, we had attached the cart to a wall
with a spring, then we would have had the extra term in the potential energy — the
potential energy of the spring — which depends on the cart’s position.)

e The Lagrangian is

Mi*  m K 99
L=K-U-= 5 —|—§ (x + 2&plcos g + [“¢ ) + mgl cos ¢.
e We need to write two equations for z and ¢.
— For x we have:
a—L =0, a—L = Mi + mi + mal cos ¢, i@i = Mi + mi + mel cos ¢ — md*Lsin .
ox 0t dt 0%
— The first Lagrange equation is
Mi + mi + mol cos ¢ — md?lsin ¢ = 0.
— For ¢ we have
gg = —migl sin p—mygl sin ¢, gz = mal cos p+mi?¢, jtgz = mil cos p—midl sin p+12¢.

— The second Lagrange equation is
mil cos  — miglsin g + ml’p = —midlsin ¢ — mgl sin ¢
So the Lagrange equations are
M3+ mi +m<5lcos¢ —md?lsing =0

mil cos ¢ + mldp = —mglsin ¢



LECTURE 27
Lagrangian mechanics.

27.1. Examples. A bead on a vertical rotating hoop.

>

—)

We have a loop of radius R rotating with a constant
and fixed(!) angular velocity Q2 around a diameter in
the vertical direction, see figure. There is a bead of
mass m which can freely — without friction — move
along the loop. There is gravity acting on the bead.
We want to write the equations of motion for the sys-
tem, analyze them, and see if we can learn something
interesting.

“Something interesting” means that we want to
learn some universal aspects. The aspects which do
not depend on the details of the problem and can be
used in developing intuition about more general and
more complicated physical effects.

In particular, this problem illustrates a very gen-
eral idea of spontaneous symmetry breaking. This
idea is used very widely in physics. It is central for
the Landau theory of the second order phase transi-

tions. Such diverse phenomena as Higgs boson, magnetization in magnets, superfluidity,
superconductivity, etc are all in the realm of this theory.

The phenomena mentioned above are quantum and as such requires a different machinery,
but, remarkably this simple problem shows one of the most important aspects of all of them.

27.1.1. Equation of motion.

e The loop is rotating with the constant/fixed angular velocity (2, so its motion is
known and no equation required for it (Notice, that this would be different should
the loop rotate freely, then its motion would be influenced by the motion of the bead
and we would have to write the equations of motion for both the loop and the bead.)

e () is a parameter of the problem. We have full control over it.

e The position of the bead at any moment of time is then fully described by just one
generalized coordinate — the angle 6.

e Lagrangian. We need potential and kinetic energies:

123



124 FALL 2025, ARTEM G. ABANOV, ADVANCED MECHANICS I. PHYS 302

— The potential energy U(f) = mgR(1 — cos ).

— For the kinetic energy we notice, that the total vector velocity of the bead
has two components vy — the velocity along the loop, and vg — the velocity
perpendicular to the plane of the loop, see figure. We also see that vy = R,
and vg = Q2Rsinf. The two components are perpendicular to each other, the
total velocity of the bead is v? = R*0* 4+ Q*R?sin® §. The kinetic energy then is
K(0,0) = ZR*0* + ZO*R*sin* 6.

So the Lagrangian is

L= %RQQQ + %92}%2 sin? @ — mgR(1 — cos ).
e Now we compute
oL

L .
8—. = mR?6, — = mO*R*sinf cos§ — mgRsin 6.
00 00

e And the equation of motion is.

RO = (Q*Rcosf — g)sin 6.

27.1.2. Analysis of the motion.

The motion of the bead depends on the initial conditions. If one wants to know the full
solution one has to set up initial conditions and then solve the equation of motion. This
exact solution is fairly complicated and not very illuminating.

Instead we want to consider the motion around the equilibrium positions of the bead. We
expect this motion to be a harmonic motion and have some universal features.

e At equilibrium the bead does not move, so @ = 0 and 6 = 0, so the right hand side
of the equation of motion must be zero.
e There are four equilibrium points 8., the bead can remain stationary on the loop.

9

Q2R

e The first equation gives two equilibrium points 6., = 0 or 6., = 7.

e Critical §2.. The second equation cos ., = ofx gives two equilibrium points if and
only if

sinf,, =0 or cos B, =
q ) q

2

Q
Q‘gR<1, or Q>0Q.=,/g/R, cos@eq:Q—S.

27.1.3. Effective potential energy.

e The Lagrangian can be written as
L= %329'2 — U.sp(0),
then we can read the effective potential energy:
1
Uesr(0) = —mR? (292 sin? 0 + Q2 cos 9) :

where T used g = Q2R and ignored a constant in the potential energy.
e Notice, that the effective potential energy has a symmetry: 6§ — —6. If one changes
the sign of € the potential energy does not change!
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e Using this effective potential energy the equation of motion becomes

8U€ff

0
mR“0 = 20

e One can check,

— that the point 0., = 7 is always unstable — it is a maximum of the effective
potential energy;

— the point 0., = 0 is stable for 2 < €2, then 0., = 0 is a minimum of the effective
potential energy and is unstable for 2 > )., when it becomes the maximum of
the effective potential energy;

— the two points cos 0., = %z are stable (minima of the effective potential energy)
when they exist.

e Notice, that the equilibriums # = 0 and # = 7 are symmetric under § — —f — under
this transformation each these points turn into themselves. However, the other two
equilibriums are NOT symmetric, under this transformation they turn into each
other.

e The most interesting regime is {2 ~ .. In this regime 6., is small. If we are interested
in small oscillations about the equilibrium, then 6 is also small.

e Assuming {2 ~ (2. we are interested only in small 6. So

1 3
Uepp(0) = 5mz?(fzi — Q0% + amR2Q§94

Or, to make life easier and use €2 =~ ). we can write the same function as
3
Uesr(0) = mR*Q.(Q, — Q)0 + EmR2QZG4,

One should notice, that there are two terms: one of the order of (2 — Q.)6* and the
other is of the order of §*. It seems unreasonable to keep only these terms and drop
the rest. However, we will see below, that 6% ~ (2 — Q.), so in fact both terms are
of the same order (2 — €2.)? and the rest of them are of the higher order.

e Spontaneous symmetry breaking. Plot the function U,ss(6) for Q < €., Q = €., and
Q > Q.. Discuss universality.

Q< Q. AUcss(6)

/ Q> Q,
rd

<1

Figure 1. Effective potential for |§] < 1 and Q ~ Q..
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27.1.4. Small oscillations about stable equilibria.

e () < )., the stable equilibrium position is at 8y = 0. To study the mall oscillations
around 6y = 0, we write the equations of motion in the first order in 6

mR¥M = —mR(Q2 - 020, w=/02 - 02~ /20.(Q

e () > ., the stable equilibrium position is at 6y, cosfy = Q2/Q?. To study the mall
oscillations around 6y, we write the equations of motion in the first order in 6 — 6,

1
Uesr(0) = —mR? (292 sin® 6 + Q2 cos 6) :

8Ueff 2/ 2 o\ - 82Ueff 202 3.2 2 2 2
50 = —mR*(2° cos — €2Z) sin b, 2 mR“Q*sin“ 0 — mR* cos 0(Q° cos O — Q7))
OUecsy PUesy 2 (D

= =—mR —Q
0 |y o |, @

So the Tylor expansion gives
4

1 Q
Ueff(e ~ 60) ~~ const + §mR2 (m — Q2> (0 — 00)2.
Accordingly, the equation of motion in the same approximation is
, U, Ql
24 _ eff 2
mR 9——W~—mR <Q2 Q ) (0 —b)).

We can read the frequency of small oscillations from this equation

B N YO N

27.1.5. Universality. Response.
e The effective potential energy for small # and |Q — Q|

1 1
Ui ¢(0) = =a(Q. — Q)6 + ~b6*.

e O for the stable equilibrium is given by OU.s;/068 = 0
p 0 for Q< Q.
0= 4Q—-Q,) for Q>Q.

Q. Q
Stable equilibrium 6, as the Plot 00(2). Non-analytic behavior at €.
function of Q (red), and the e Response: how 6, responses to a small change in €.
response Y as the function of 39 9o for Q< Q.
Q (blue). X(Q) = = for Q>Q,
\/_

Plot x = 890 vs ). The response diverges at €)..



LECTURE 28
Lagrangian mechanics.

28.1. Example.

Here we consider one more example — a double pendulum. The strategy
is same as always

e Choosing the generalized coordinates.
e Write the potential energy.
e Kinetic energy. Normally, most trouble for students.

Here the most natural choice of coordinates are the angles ¢; and ¢s. It
is also convenient to use the auxiliary x and y for the intermediate steps.
So that we have

x1 = [ sin ¢y, To = [y sin ¢y + [y sin ¢

y1 = —ly cos ¢y, Yo = —lj cos ¢1 — I3 cos ¢y

e Now we can write the potential energy

U:

migyr + magys = —(my + ma)gly cos ¢ — magls cos ¢y

e In order to find the kinetic energy we need velocities

Vig

=1I = l1§251 oS @1, Vg = Tg = llﬁgl cos ¢1 + l2¢52 COS g

vy, = 1 = Lidy sin ¢y, Vgy = Yo = L1y Sin @1 + oy sin by

SO

2 _ 2 2 3252
U1 —Ulz+vly—l1¢1

v3 = v3, + V3, = % + 55 + 21 1a¢1 92 cos(dy — ¢o)

and the kinetic energy

Cbg + malilag da cos(dy — o)

e The Lagrangian then is

(m1 + m2>l%

L —

o+

2

¢2 + Malylady s cos(dr — o) + (my +ma)gly cos ¢y 4+ magls cos ¢o.
127
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e Now we write the Lagrangian equations. We first compute the partial derivatives:

. : oL . .
%’1 = (m1 + mz)l%¢1 + malilagy COS(QZ51 - ¢2), % = —mslilop10o sm(gzﬁl _ ¢2) _ (ml + mg)gll sin ¢y
1
. . oL . ‘
(;97.52 = mal3gy + malilagy cos(dy — ¢a), % = +malyladrPasin(dy — Pa) — magls sin ¢o
2

and then the full derivative for each

(m1 + mg)l%QSl + mglllgég COS(¢1 — ¢2) + mglllgég Sin(¢1 — gbg) = —(m1 + mg)gll sin ¢1
Malsps + malilagy cos(dy — da) — malilad? sin(gy — ¢o) = —magly sin ¢y
(some terms which appeared originally have canceled each other)

These are the equations of motion. They are second order coupled nonlinear differential
equations. In order to complete them we need to supply also the initial conditions for both
variables.

Such equations are hard to solve or analyze. Typically we are mainly interested in
the small oscillations around the stable equilibrium position. The stable equilibrium is the
minimum of the potential energy!! In this case the stable equilibrium position is obvious:
Dl,eq = P26 = 0 — this is the minimum of the potential energy. Notice, that there are other
equilibriums

® Preg =T, Poeqg = 0 and @1y = 0, P2, = ™ — the saddle points of the potential
energy.
® P1cg = P2 = ™ — the maximum of the potential energy.

So we need to linearize our equations around the point ¢; ¢, = @2, = 0.
Linearizaton means that you only keep the linear terms in ¢ — ¢ o, and in ¢ — ¢ o, and
their derivatives. In our case we then have

(my + ma)2d1 + malilady = —(my + ma)glidy
m2l§¢2 + malilapy = —maglags

These are much simpler — they are still coupled, but at least they are linear! They can be
solved by a simple Fourier transform.

28.2. Small Oscillations.

We will study the problem of small oscillation in the next semester. Here is just an overview.

A system will always have some dissipation. In many cases the dissipation can be con-
sidered to be very small. However, no matter how small it is if one waits long enough the
system will find one of its stable equilibrium positions (there can be several.) Such stable
equilibrium positions are the minimums of the potential energy. If {¢;} are the set of N
generalized coordinates and U({¢;}) is the potential energy, then the equilibrium positions
{Qieq} are the solutions of N algebraic equations

ou

= 0.
0g;

{qi:(h,eq}

One solves these equations. There might be many of the solutions, this means that there
are several points in the coordinate space {¢;} at which the above equations are satisfied. If
we have M solutions, then we well have M points {¢f,,}, o = 1... M. Out of these M we
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must chose the ones that are minima (not maxima or saddle points) of the potential energy.
92U
0q;0q;

This means that we need to chose the points at which the matrix fa® ) is positive
definite. The solutions that satisfy this condition (there still can be several of fflem) are the
minima (local) of the potential energy — they are the stable equilibriums.

In many cases the stable equilibrium position can be guessed form the problem itself, but
not always!!! One has to be careful. We will now by {g; ., } refer to only stable equilibrium.

We expect the motion near a stable equilibrium (minimum of the potential energy) to be
close to harmonic motion. The equation for the harmonic oscillator is LINEAR. Let’s see
what it means for the Lagrangian.

The Lagrangian equations of motion contain the derivative of the Lagrangian 8qL and gi
So in order for the equations of motion to be linear in the displacement of the generalized
coordinates from the equilibrium positions {¢; — ¢; ¢} and generalized velocities one needs
to write the Lagrangian in quadratic order in displacement of generalized coordinates and
generalized velocities.

For example, for the problem of the double pendulum the equilibrium position is obvious
Dleq = P2 = 0. We can write the Lagrangian in the quadratic order in ¢ — ¢1 = ¢1,

G2 — ¢2,eq = ¢ and in él, ¢2
(m1 + mg)ll gb
1

(I dropped the Constant terms from the Lagrangian.) One can see, that our linearized equa-
tions can be obtained from this Lagrangian right away, by the standard procedure.

1 1
L= ¢2 + m2lll2¢1¢2 - §(m1 + m2)gl1¢1 2m29l2¢§.






LECTURE 29
Lagrangian mechanics.

29.1. Non uniqueness of the Lagrangian.

For any problem and any given set of generalized coordinates the Lagrangian is not uniquely
defined. This is similar to the fact that the potential energy is not uniquely defined — one
can always add a constant to it.

In the same way as two potential energy functions which differ only by a constant give
the same equations of motion, two Lagrangians for the same problem must give the same
equations of motion. So two Lagrangians are equivalent if the resulting Lagrangian equations
are the same.

Let’s take a Lagrangian L(q, q,t).
Let’s take an arbitrary function G(g,1).
Let’s construct a new Lagrangian L(q,q,t) = L(¢,q,t) + q% + %

The statement is that the two Lagrangians L and L are equivalent. Equivalence
means that the two Lagrangians result in exactly the same equation of motion.

29.1.1. Proof of equivalence.
e The Lagrange equation for the Lagrangian L is
doL_o
dt 0¢ Oq
Let’s use our definition of L and see how it works

oL 0L oG oL 0L  9°G G

9~ 0q "9 g 9q  orq " onag
then
i@fiai+ L ACNAC
dtaq  dtog  Laq " aqor
and we see

doL 0L doL 0L

dt 0 O0q dtog Oq
131
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e So we see, that the equation we obtain using L is exactly the same as the equation

we obtain using L.
doL 0L

dt o 9q
29.1.2. The reason.

We want to understand why the above transformation of the Lagrangian does not change the
equations of motion.

e The reason for this is the following: the expression I added to the Lagrangian q%—f—l—%—?

is a full time derivative of the function G(6,1): % = q'% + % as can be seen using
the chain rule. So L = L + %. But then the Action changes by

- ty ty tr dG ty
A= Ldt = Ldt + / dfdt = Ldt + G(q(ty),tf) — G(q(t:), t;) = A+ const.

ti t; t; t t;
So the minimum of A and the minimum of A is achieved on the same function
q(t). Or, in other words, the variation of the Action does not change, and thus the
condition for the extremum — the Euler-Lagrange equation — also does not change.
So one can always add a full time derivative to a Lagrangian.
The last statement is correct only in the classical mechanics. In quantum mechanics the
Action itself has its own meaning (unlike the classical mechanics where we are only interested
in its minimum.) and addition of a constant to the Action is not necessarily harmless.

29.2. Generalized momentum.

e Definition: For a coordinate ¢ the generalized momentum is defined as
0L
]
e Examples:
— For a particle in a potential field L = ™2 — [/ (7) we have

2
__ 0L -,

= —=mr
P or

The generalized momentum is just the usual momentum.
— For a rotation around a fixed axis L = I;ﬁ — U(¢), then

oL .
= =Id=J
D ) ¢

The generalized momentum is just an angular momentum.
A less obvious example is the bolt in a threaded hole. Consider a bolt with pitch A, mass M
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and the principle moment of inertia along its axis I. It is attached to the wall with the spring
of spring constant k. We want to use coordinate x (shift from the spring’s equilibrium). Let’s
find the generalized momentum for the coordinate x.

When the bolt moves it also rotates. It must rotate by 27 when x changes by A. So if ¢
is the angle of the rotation, then

xXr ¢ o ¢ 27 o ¢ 27 .
— = r = —x r = —1
A 21’ A A
The kinetic and potential energies are
Mi2 I 1 I ka2
K = = (M+4 2) i = —
> T2 T2 ( AT ) U=

So the Lagrangian is
1 o I\ ., ka?
Lo (0 ) =
and generalized momentum
oL o I\ .
Notice, that if there is no spring, then this generalized momentum is conserved.

29.3. Ignorable coordinates. Conservation laws.

If one chooses the coordinates in such a way, that the Lagrangian does not depend on say

one of the coordinates ¢; (but it still depends on ¢, then the corresponding generalized

momentum p; = 2£ is conserved as

oq
d d 0L oL
p1 = = =

S =22

29.3.1. A pendulum on a cart.

Z
Problem of a freely horizontally moving cart of mass M with hanged pendulum of mass
m and length [.

L=

M 12 . .
296 + % (:'C2 + 22¢l cos ¢ + l2¢2) + mgl cos ¢.

According to our definition of generalized momentum we can define two momenta p, and p,:

Py = gg = ml*¢ + mli cos ¢

Dy = gﬁ = (M + m)& + mal cos ¢.
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We see right away, that there is no z (remember z and & are different variables for the
Lagrangian) in the Lagrangian. So x is ignorable variable. It means, that the corresponding
generalized momentum p, = % is conserved. So we can write one of the equations of motion
as

Pz = (M 4 m)i + mel cos ¢ = const.

This constant should be obtained from the initial conditions.

29.4. Momentum conservation. Translation invariance

Let’s consider a translationally invariant problem. For example all interactions depend only
on the distance between the particles. The Lagrangian for this problem is L(7, ... 7, 7, ... 7;, 1).
Then we add a constant vector € to all coordinate vectors and define

Le(Fy, . P, T 6, = L(FL 46 .. T+ &7, ... T, 1)

It is clear, that in the translationally invariant system the Lagrangian will not change under
such a transformation. So we find

OL.

= 0.
o€

But according to the definition
0L, oL
Wby S 0m

Hence
oL
=0.

%

On the other hand the Lagrange equations tell us that
S OL_ 0L d e
o, dt = oF,  dt "

i

SO
jtZﬁi:O, Z@:const.
i i

We see, that the total momentum of the system is conserved!

29.5. Conservation laws from symmetry. For self-study.

Here I present a simplified version of Noether’s theorem.

Let’s assume that the Lagrangian is invariant under some continuous symmetry. It means
the following: There is a parameter € dependent transformation of the coordinates {¢;} (for
example a rotation around some axis by the angle €, or translation of all coordinates by a
constant vector, as was considered before) such that the Lagrangian has the same form in
the new coordinate as in the old ones.

Let’s consider the parameter € to be infinitesimally small — this way we can keep only
linear in € terms. The transformation from the old {¢;} to the new {¢;} will have the following
form

G=q+efil{n}),
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where f; are some functions that define the transformation. (One can easily see, that these
functions completely define the transformation for any finite €, by simply constructing the
differential equations %“’; = fil{a})-

Our new Lagrangian is given by

L({ah {a)) = L({as + efi{a)}. fas + eq, 2Ly

(The Einstein notations are used.) As by the condition the Lagrangian is symmetric —
independent of €, we can write

8L B aL (9f2({qz}) d 6L oL d oL

= Flla) 5, +is ™ I B = e e+ e lta) = G (Aa g )
where we used the Lagrangian equations of motion. Thus we Conclude7 that there is a
conservation law corresponding to our symmetry

Z p;i fi = const.

<{Qz})

9q;







LECTURE 30
Lagrangian’s equations for magnetic forces.

The equation of motion is
mr = q(E + 7 X é)

This is the equation ma = F , Where F = q(ﬁ + 7 X E) is the Lorenz force. We consider a

particle of mass m and charge ¢ moving in given electric and magnetic fields E and B.
The question is what Lagrangian gives such equation of motion?

30.1. Electric and magnetic fields.

In order to answer the question above we need to know a bit more about electric and magnetic
fields. Classically these fields are completely described by the Maxwell equations. There are
four of these equations and they are written in terms of “physical” fields: the electric field
E(7,t) and the magnetic field B(7,t).

I strongly emphasize that only the fields E (7, ¢) and B(7,t) are physical. This means that
we can only measure these fields. In fact, the Lorenz force is exactly how we measure them.

Out of four Maxwell equations two have the matter (charge and current density) in them
— these are electric Gauss law and Ampere’s law. The other two have no charges or currents
— these are magnetic Gauss law and Faraday’s law. We will need only the later pair.

V-B=0, vxi-_ 98
ot

Consider first magnetic Gauss law. Which is the statement that there are no magnetic

charges.

V-BE=0

This equation is satisfied by the following solution

B =V x ff,
for any (smooth) vector field A(7,¢).
The Faraday’s Law
- 0B
F-_2
V x oy
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then gives V x (E + %—’f) = (0. Remembering that the curl of a gradient of any function is
zero, we find
B=-Vo-",

where ¢ is the electric potential and is again an arbitrary (smooth) function of 7 and ¢, (7, t).

So instead solving four Maxwell equations for the fields E(7,t) and B(F,t), we can use
the vector potential A(r, t) and potential ¢(7,t) and then solve the remaining two equations
(with the boundary conditions!!) to obtain A(7,¢) and ¢(7,t). After that we can reconstruct
the fields E(7,¢) and B(7,t) by

. 0A
E=-V¢— —,
¢ ot
B=VxA.
e The crucial observation: The vector potential A(7,t) and potential ¢(7,¢) are not
uniquely defined.

One can take an arbitrary (smooth) function F(7,¢) and transform the potentials A and ¢
to A" and ¢’ in the following way:

L OF
A=A4VF  ¢=¢-—-

This transformation will not change the physical fields E(7,¢) and B(7,t), as Vx A’ = Vx A
and —V¢' — 8£’ =—-Vo— The other two Maxwell equations contain only electric and
magnetic fields (and not the potentlals) so they will also not fix this freedom.

Moreover, in any experiment we can only measure electric E and magnetic B fields. This
means that the potentials — vector potential A and scalar potential ¢ — cannot be measured
on their own.

The transformation from one set of fields A and ¢ to another A" and ¢’

6, O=o- i
A A=A+ VF

which leaves the “physical” fields E and B invariant is called gauge transformation.

The fields A and ¢ are called gauge fields. The freedom to chose any (smooth) function
F(7,t) is called gauge freedom. The fact that NO PHYSICAL RESULT must depend on
the choice of gauge (physical quantities must be invariant under the gauge transformation)
is called gauge invariance. The operation of changing the gauge results in no change in
any physical observables, this is called gauge symmetry.

Such gauge symmetries are extremely important in physics. A lot of constructions in
modern physics involve some sort of gauge symmetry. The fields A and ¢ are called U(1)
gauge fields. There are many others.

As any continuous symmetry, gauge symmetry leads to conservation laws. In the case of
electromagnetism it leads to the charge conservation law (we will not discuss it any further
in this class).

e Important: If B and E are zero, the gauge fields do not have to be zero.
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For example if A and ¢ are constants, B= 0, E =0. Generally, if
oF
ot’
for arbitrary (smooth) function F(7,t), then B =0 and E = 0. Such ¢ and A that result in
zero electric and magnetic fields are called pure gauge.

A=VF,  ¢=—

30.2. The Lagrangian.

Now we can write the Lagrangian for a particle of mass m and charge ¢ moving through
given electric and magnetic fields.
mi2 - LTS
5 q(o(ryt) — 7 AT, 1))
I note, that this Lagrangian has a simpler and more transparent form in the notations adopted

in the special and general relativity — four dimensional space-time with Minkovskii metric.
Also:

e It is impossible to write the Lagrangian in terms of the physical fields B and E!
e The expression which appears in the action [ Ldt is (I dropped ¢, as it does not
matter for this consideration.)

(6(7,t) — 7+ A(F,1))dt = ¢dt — di - A.

I —

e Last lecture we found that if we have a full differential of a function in the integral
in the action, then this function does not contribute to the equations of motion
A=+ fif dG = -- -+ Gy — G; and the expression G5 — G, is a constant and drops
out under variation.

e Now notice, that the expression ¢dt — dr - A is a full differential if and only if all
“cross” derivatives equal to each other (Lecture 13)

0A
ot’
So if these conditions satisfied, then the term ¢(¢ — P f_f) can be thrown out from

the Lagrangian.
e Notice, that these conditions are exactly the conditions for the physical fields £ and

B be zero! .
e Moreover, if we do a gauge transformation of our fields ¢ and A
o, ¥=0-%
A A =A+VF

the Lagrangian transforms as

or . dF
L— L —+7-VF | =L+q¢q—.
+q<8t+rv> ta g
So the gauge transformation just adds a full time derivative to the Lagrangian. Such

transformation does not change the equations of motion.



140 FALL 2025, ARTEM G. ABANOV, ADVANCED MECHANICS I. PHYS 302

The generalized momenta are

—

Y .

(Notice, that the generalized momentum is not the same as usual momentum. Moreover, it
is not gauge invariant! This is the reason I am using capital P, so it will not be confused
with the usual momentum p)

The Lagrange equations are:

d = 0L

fp_“

dt or
and (I will write it explicitly)

mi?

2
Let’s consider the z component of the Lagrange equation

d oL
— P, == P, = mi + gA
=5 e = ma + qA,(z,y, 2, 1)

L= —qé(x,y, 2, t) + A (z,y, 2,t) + quAy(z,y, 2,t) + ¢2A.(2,y, 2, 1)

We have
ﬁP = mi + qiaAm + qyan + qzan + quI
dat * or dy 0z ot
oL 0¢ 0A 0A L0A,

ox qam a“ ox i ox 9 ox

and

mi 4+ qi e ¢ gy 0 O4e 00 ;0% | 30N 50
oy TW gy T T 9, T T oy T Wy T Wy TGy

. ( dp 0A, ,[3Ay 8Ax] -[OAZ, 8142])
miT=q|——— — + —Zz —

or ot | or oy 92 o

mi = q(E, +yB, — 2B,)
The other components can be obtained either by direct calculation or simply by cyclic per-
mutation. The resulting three equations can be written as one single equation

mr = q(E + 7 x B).



LECTURE 31
Energy conservation. Beltrami identity

31.1. Energy conservation.

We also have the time translation invariance in many systems. It means that the Lagrangian
does not explicitly depend on time. So we have L({q}, {¢}), and not L({q},{q¢},t). However,
the generalized coordinates {¢(¢)} do depend on time. So let’s see how the Lagrangian
on a trajectory depends on time.

Let me clarify the question. We consider the 1D motion. Assume that we have a gener-
alized coordinate ¢ and a Lagrangian L(q,¢). We then write Lagrangian equation of motion
d oL _ L

4 3¢ = 9, With some initial conditions q(t =0) = qo, ¢(t = 0) = vy. For a given Lagrangian

these initial conditions define a trajectory. Using these initial conditions we solve the equation
of motion and obtain ¢(¢; qo, vo) and hence we also obtained (t; qo, vo) = d‘;—g). The last two
arguments in functions ¢ and ¢ are to emphasize that these functions depend on the initial
conditions. These arguments will be dropped in what follows. We then take these functions
q(t) and ¢(t) and plug them into the Lagrangian L(q(t),¢(t)) — this is what it means: the
value of the Lagrangian on the trajectory. Now the Lagrangian becomes a function of time
on the trajectory defined by ¢o and vy. We want to see how it depends on time.

In our standard definition it means that we are interested in the full time derivative of

the Lagrangian.

d o 0L 9L (doL
gL(Q(t%(J(t)) = aq(ﬁ 971 (dt aq)

LoLd. _d(dL,
1 aq'dtq_dt

c(qu

where we used the fact the ¢(t) is the solution of the Lagrange equation so %5 = d%%{;

have

. So we

d (0L N
pm (aqq — L(q, Q>> =0
or oI
a—qq’ — L(q,q) = const = E

Using generalized momentum we can write
p¢g—L=F, Constant on trajectory defined by ¢y and vy.

so the value of the conserved quantity depends on the initial conditions F(qo, vo), but it is
constant during the motion.
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If we have many variables ¢;, then
E=Y pg—L

This is another conserved quantity. This conserved quantity is called energy.
If we perform exactly the same calculation as above, but with the Lagrangian which
explicitly depends on time L(q, ¢,t), then the result will be

dE oL
a ot
e So if you have a Lagrangian, the only thing that you need to check is if it has explicit
dependence on time or not. If there is no explicit dependence on time, then the
energy is conserved!
e [ want to emphasize once more, it will be very important later, the energy F is a

number. This number is a constant on a trajectory, but it is different for different
trajectories.

31.2. Examples:
31.2.1. A particle in a potential field.

e The Lagrangian
-2

L="" U
e The Lagrangian does not have explicit dependence on time ¢, so the energy is con-
served.
e The momenta
oL _ oL . oL .
xzizma’;’ :7:m’ Z:*ZWLZ
b ot Py ay Y b 0z
e The Energy
LQ
. . . mr
E = ip; +gpy + ip: — L= —~ + U(7)
31.2.2. A particle on a circle.
e The Lagrangian
mR? .

L =24t = U(9).

e The Lagrangian does not have explicit dependence on time ¢, so the energy is con-
served.
e Generalized momentum
oL R
= — =mM .

D¢ 96
e The Energy

. mR? .

E=¢p,— L= o> +U(¢)

2
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31.2.3. A cart (mass M) with a pendulum (mass m, length [).

e The Lagrangian:

M .
L= ;_mx'Q + maoil cos ¢ + %ZQQSZ —mgl(1 — cos ¢).

e The Lagrangian does not have explicit dependence on time ¢, so the energy is con-

served.
e The generalized momenta:

oL ) ; oL . 2]
pm_%_(M—km)x—i—mgzﬁlcosgb, p(b—a—é—mxlcosgzﬁ—kml Q.

e The Energy

M+m

E =ip, + ¢py — L = 5

i + moil cos ¢ + %lz(f + mgl(1 — cos @)

31.2.4. A string with tension and gravity.

.
L///I;%?

AN
/{)L(pgy + 1)1+ (y)*dx.

X
\px\
~—
e One can think of it as an Action of some mechanical system. Then for this system
we identify the “Lagrangian”

L= (pgy+T)\/1+(y)*

We also use the letter x to denote the time in that mechanical system. The system is
described by a “generalized coordinate” y and the “trajectory” is given by a function
y(z), which is the solution of the Euler-Lagrange equation with given boundary
conditions. The “generalized velocity” is y'.

e The Lagrangian does not have explicit dependence on “time” x, so the “energy” is
conserved.

e The “generalized momentum” of this system is

P Y,
oy’ 1+ (y)2 '

e The Functional
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e And conserved “energy” (it is called Beltrami conservation law, or Beltrami identity)

E—yp—1L— pgy+T
1+ (y)?
This is now a first order differential equation which can be solved much easier, than
the second order Euler-Lagrange equation.

e This conserved quantity has a physical meaning for the initial problem of the rope.
It is the x component of the tension force.

31.2.5. Shortest time to fall — Brachistochrone.

A

YT
In the Lecture 24 we considered the Brachistochron problem (find a path from A to B in

A
Y x
19 19

fr—

B B
YY

the vertical plane which takes the least amount of time)

e The total time of travel between the points A and B along a given rail is

T:/ﬂ
v

e In lecture 24 we used the system of coordinates with the z axis pointing down and
y axis horizontal, as shown on the left panel of the figure.
For this choice of the coordinates we have

TR 1 7\2
Tly(@)] = | “%)d

We think of this functional as if it is the action of some mechanical system, then x
is time, y is the coordinate, and the “Lagrangian” is

1+ (y')?
L(%y,ax) = T

We notice right away, that the “Lagrangian” does not depend on y, only on 3. So
the Corresponding “momentum” is conserved:
oL 1 y
p = — =
Yoy V291 \/1 + (y')?
This is the first order differential equation which we then solved (see Lecture 24).

e Now lets use the coordinates with x as horizontal axis and y pointing down, as shown
on the right panel of the figure.

= const.
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For the rail given by y(z) the velocity v = 1/2gy and the time of travel now is

o= [,

We think of this functional as if it is the action of some mechanical system, then x
is time, y is the coordinate, and the “Lagrangian” is

1+ (y)?
L "r) = Y——.
(v, @) NeTT
Now the “Lagrangian” does depend on the coordinate y, and hence the “momentum”
is not conserved. However, the “Lagrangian” has no explicit dependence on “time”
x. So the “Energy” is conserved. (This “Energy” has nothing to do with the true
mechanical energy of the original problem. It is just the first integral.)
. oL 1 y'? 1+ (y)? 1
E:pyy—L_a,y—L:\/T - = — = const.
9Y /1 + 2 V29y V29Y /1 + 2
This is again the first order differential equation which can be solved to find y(x).
The result is the same as in Lecture 24 (with switched = and y).

Notice, that this example gives a hint that the energy and momentum conservation laws are
related. It is indeed so in relativistic physics when there is a geometry (metric tensor) of the
space-time.






LECTURE 32
Hamiltonian.

In this lecture we will construct a function of generalized momenta and coordinates, which
is called Hamiltonian. In this lecture I will not describe how it is used — this will be done
later. Here we just construct this function and consider a few examples. The most important
fact:

e Hamiltonian of a given system is a FUNCTION of the generalized coordinates {g;}
and generalized MOMENTA {p;}! The generalized coordinates and momenta are

INDEPENDENT variables of the function Hamiltonian.
e A Hamiltonian MUST NOT have generalized velocities {¢;} as arguments!

This is in contrast to Lagrangian

e Lagrangian of a given system is a FUNCTION of the generalized coordinates {¢;}
and generalized VELOCITIES {¢;}! The generalized coordinates and velocities are

INDEPENDENT variables of the function Lagrangian.
e A Lagrangian MUST NOT have generalized momenta as arguments!

32.1. Hamiltonian.

In the previous lecture we studied the energy and energy conservation of a system described
by a Lagrangian L({¢:},{¢:})

e Given a Lagrangian L({¢;},{d;}) the energy

oL
"0,

E= ZPiC]z‘ - L,

is a number defined on a trajectory! Ome can say that it is a function of initial
conditions.

Now we construct a function a function!! of p and ¢ in the following way: starting
from the Lagrangian L({¢},{¢:}) of N generalized coordinates {¢;} and N generalized ve-
locities {¢;} (it can also have explicit dependence on time L({¢;},{q;},t)) we first write all
N generalized momenta

oL

"o
We then treat these definitions as a set of NV coupled generally non-linear set of N algebraic
equations for all N generalized velocities {¢;}. We solve these equations with respect to ¢;,
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we then have these functions

¢ = ¢i({q;}, {r;})
and define a function H({¢;}, {p:})

H({qi}, {pi}) = ZpiQi({Qj}7 {pi}) — L@} {d{a} {pi)}),

e Notice, that in this construction we have never used the equations of motion! we
have treated ¢, ¢ and p simply as variables, not as some functions of time.

This function is called a Hamiltonian! The Hamiltonian is a function of coordinates and

momenta! THERE MUST BE NO VELOCITIES IN HAMILTONIAN!

e Hamiltonian is NOT energy. Energy is a number on a trajectory. Hamiltonian is a
function of p and ¢ — it, by itself, knows nothing about trajectories.

e Hamiltonian and energy are related to each other. The value of the Hamiltonian on
a trajectory is energy.

The importance of variables:
e We have three kinds of variables:

generalized coordinates — g;, generalized velocities — ¢;, generalized momenta — p;.

e A Lagrangian is a function of generalized coordinates and velocities: ¢; and ¢;.
THERE MUST BE NO MOMENTA IN LAGRANGIAN!

e A Hamiltonian is a function of generalized coordinates and momenta: ¢; and p;.
THERE MUST BE NO VELOCITIES IN HAMILTONIAN!

Here are the steps to get Hamiltonian from Lagrangian for a given system.

(a) Write down the Lagrangian L({¢;},{q¢;}) — it is a function of generalized coordinates
and velocities ¢;, ¢;.
(b) Find all generalized momenta

oL
04
(c) Treat the above definitions as equations and solve them for all ¢;, so for each velocity

¢; you have an expression ¢; = ¢;({¢;}, {p;})-
(d) Substitute these function ¢; = ¢;({¢;},{p,}) into the expression

Zpiqz' — L({a:} {ai})

The resulting function H({q;}, {p:}) of generalized coordinates and momenta is called Hamil-
tonian.

Di

32.2. Examples.
32.2.1. A particle in a potential field.
e The Lagrangian

52
L= m;“ —U(7)
e The momenta
oL . oL i oL
Dz = o = M, = 5o = my, D, = - =mz
ozx
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e The velocity

.
r = —
m
e The Hamiltonian
-2 -2
. ) ) . P p
H = Ip, ,—L=——-L=—+U
(7', P) = ps + ypy + 2D - v + U(7)

e Check, that there are no velocities in the Hamiltonian.

32.2.2. A particle on a circle.
e The Lagrangian

mR? .
L=""8-u).
e Generalized momentum
= a—L = mRng
e The velocity
b= Dy
mR?

e The Hamiltonian
2

H(9.ps) = 0po— L= 55+ U(9)

e Check, that there are no velocities in the Hamiltonian.

32.2.3. A cart (mass M) with a pendulum (mass m, length [).

e The Lagrangian:

M . .
;_miQ + maoixlcos p + %l%z —mgl(1 — cos ¢).

e The generalized momenta p, = 2 and p, = %g:

L=

Pz = (M +m)i + mal cos ¢,
Py = malcos ¢ + mi%p.
e We treat the above equations as a system of coupled equations for & and é and solve
them. .
e The generalized velocities & and ¢ are then expressed through the generalized coor-
dinates x and ¢, and the generalized momenta p, and py:
1 (M +m)py, —mlip,
ml2 M +msin?¢

. 1ilp, —pgcoso

x_lM+msin2gz5’ ¢ =
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NOTICE: There is no velocities in the right hand sides of these equations!
e The Hamiltonian
1 mi*p? — 2mlip,pscos g+ (m + M)
2mi2 M + msin? ¢
e Check, that there are no velocities in the Hamiltonian.

e The Hamiltonian is a function of the generalized coordinates z and ¢, and the gen-
eralized momenta p, and py only. There is no velocities # and ¢ in the Hamiltonian.

2
H =i&p, + ¢py — L = p¢+mgl(1—cos¢)

32.2.4. A particle in electro-magnetic field.

In the Lecture 30 we derived the Lagrangian for a particle of mass m and charge ¢ moving
through given electric and magnetic fields.

m7r?

9 - Q(QS(F’ t) - 7? A)(’F: t))

We want to find the corresponding Hamiltonian.

I —

e We first find the generalized momenta
L 9L L
P=—=mr+q¢A
or
Important: notice the difference between the generalized momentum P and the “me-
chanical” momentum p'= mr = P — qA.
e Then we express the generalized velocity 7 trough the generalized momenta
1 - .
#=—(P—qA)

m
e Finally we compute the Hamiltonian

—i(ﬁ—q§)2+q¢

H(r, P) = P‘T—L?:%(ﬁ_’_q/f) =5~

e Check that there is no velocities in the Hamiltonian — only the generalized coordi-
nates and generalized momenta!

e It is very tempting to use p'= P - qff and write the Hamiltonian as H = % + qo.
However, this is an incorrect form and WILL lead to many hard to find mistakes.
The Hamiltonian MUST be written as a function of the generalized coordinates and
generalized momental!

32.2.5. Central symmetric potential in 3D.
e We need to write the Lagrangian in spherical coordinates. We know
dr'= €,dr + eyrdf + é,rsin fd¢.
Dividing this by dt we get
Uv=e7r+ 597’9 + é:brgﬁ sin 6,
SO
v? =72 + 1r20% + r?¢? sin? 6.
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The Lagrangian is

L="0p2 My2ge %r%p sin?0 — U(r)

2 2
e The generalized momenta are
oL oL 9 oL 9% . 9
= —— = M7, = — =mr-o, = — =mr-¢sin6.
Pr=5 Po =55 Po =73 J ¢
e The generalized velocities
. Dr A Do y Pe
- mr?’ mr? sin? 0
e The Hamiltonian
2 2 2
H = ip, + py + dpy — L = 20 4 18 P+ U(r)

2m  2mr?2  2mr?sin®0
e Check, that there are no velocities in the Hamiltonian.






33.1.

LECTURE 33
Hamiltonian equations.

Hamiltonian.

Here I just remind the construction we discussed last lecture.

e We start with a Lagrangian L({¢}, {d:}).
e We write ALL the generalized momenta

B oL
b= 9¢,
for ALL variables.

e We treat these equations as equation for ALL ¢;. We solve these equations and

33.2.

find the functions ¢;({¢:},{p;}) which express ALL generalized velocities through
generalized coordinates and generalized momenta.
We construct the Hamiltonian

H({q:},{pi}) = ZPij({Qi}> {pi}) — L@}, g ({ai} {pi})})-

The Hamiltonian is a function of generalized coordinates and generalized momenta
only. There MUST be no generalized velocities in the Hamiltonian.

If Lagrangian explicitly depends on time, then the procedure is exactly the same,
but now time t will enter all the equations as a parameter. The Hamiltonian will
then explicitly depend on time ¢.

Mechanical system — Lagrangian — Hamiltonian. This procedure is well defined,
so there is a Hamiltonian for any mechanical system.

New notations for partial derivatives.

Here I introduce new notation for the partial derivatives. The idea is to make it explicit
what we keep fixed. Both Lagrangian and Hamiltonian have their “native” arguments, it is
generalized coordinates and generalized VELOCITIES for the Lagrangian and generalized
coordinates and generalized MOMENTA for the Hamiltonian. So by default when we take
a partial derivative of a Lagrangian with respect to the velocity we keep all coordinates
and other velocities fixed, the same for the Hamiltonian, if we take a partial derivative of a
Hamiltonian with respect to a momentum, we keep fixed all coordinates and other momenta,
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and so on. The need to specify and keep track of what we keep fixed arises when we start
changing variables.

33.3.

The notation explicitly keeps the notion of what is kept fixed.
The definition of momentum then is

The notation means that we differentiate the Lagrangian with respect to the variable
¢ while keeping the variable ¢ fixed.

In the case of the Lagrangian this notation is overkill, as the Lagrangian only
depends on ¢ and ¢, so the partial derivative with respect to ¢ automatically as-
sumes, that ¢ is fixed. However, these notations become very useful when we start
changing variables — they provide a device to keep track of what is kept fixed at
every differentiation. As a side note these notations are extremely useful when one
studies thermodynamics.

The Lagrangian equation of motion using these notations is:

afory _ (oL
dt aqq* 8qq'

The definition of the generalized momentum is
P=15] -
9q ),

Hamiltonian equations.

etc.

Now we derive the Hamiltonian equations of motion. We will do this in 1D (more precise
for one degree of freedom), but the extension to arbitrary number of dimensions (arbitrary
number of degrees of freedom) will be obvious.

33.3.1.

First Hamiltonian equation.

Let’s differentiate the Hamiltonian H (p, ¢) with respect to momentum p, while keep-
ing the coordinate ¢ fixed.
We will use H = pg — L(q, ¢), but we will remember, that ¢ is the function of p and

q, i.e. 4(p,q).
So we differentiate the function

H(p,q) = p4(p,q) — L(q,4(p, q))

with respect to p.
Notice, that p appears in three places. When we differentiate with respect to p we

need to differentiate over all of them using chain rule. So we will have three terms.

We will also remember, that by definition p = (%) .
q

So we have:

OH ) 0q oL 0q ) 0q dq )
—— | =da+te(5 | — |5 ) |5:) =d+rl5) —pla ) =4
dp . dp . aq . dp . ap . dp .
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This is the first Hamiltonian equation:

. OH

q9= aip
Here I dropped the explicit notion that in this differentiation ¢ must be kept fixed. I
dropped it, because the Hamiltonian depends only on p and ¢, so partial derivative
of the Hamiltonian with respect to momentum p automatically assumes, that q is
kept fixed.

Notice, that deriving this equation we have not used the equation of motion, only
the definition of momentum.

Second Hamiltonian equation.

e Now lets differentiate the Hamiltonian with respect to ¢, while keeping p fixed.
e Again we must remember that ¢(p, ¢) is the function of p and g.
e So using

H(p,q) = pi(p,q) — L(g,d(p, q))
we see, that ¢ appears in three places. When we differentiate with respect to ¢ we
need to differentiate over all of them using chain rule. So we will have three terms.
we have

(5, (&), - (), (), (3), - () - (- (50)) (),

33.3.3.

Using the definition of momentum p = (%) , we see, that the last term is zero. So
q
we have
(aH ) B <8L>
dq » dq i
. . . . aL o d aL o
According to the Lagrangian equation of motion <a—q>q = & (8—4)(1 = p. The last

equality comes from the definition of momentum. So we have the second Hamiltonian
equation:
OH
dqg
Again, I dropped the explicit notion that in this differentiation p must be kept fixed.
I dropped it, because the Hamiltonian depends only on p and ¢, so partial derivative
of the Hamiltonian with respect to momentum ¢ automatically assumes, that p is
kept fixed.
Notice, that deriving this equation we DID use the equation of motion.

Both equations.

The two Hamiltonian equations together are

~oH oH
q = ap ’ q;i = ap7,’
For many degrees of freedom H({p;},{qi}):
_ o L on
p - aq p’L - aqz
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e Notice the minus sign in the second equation! This minus sign is very significant!
Without this minus sign these are NOT Hamiltonian equations!

e Notice, that the equations are “self-contained” there is no notion of the generalized
velocities. Everything is written in terms of the coordinates, momenta and their time
dependence.

e If we have many degrees of freedom, then this pair of equations is written for each
degree of freedom.

e So each degree of freedom gives us a pair of FIRST order differential equations
(coupled, non-linear) So the number of initial conditions must be twice for each
degree of freedom — the initial coordinate and the initial momentum. The same as
for the Lagrangian formulation, where it was initial coordinate and initial velocity
for each degree of freedom.

33.4. Examples.
33.4.1. A particle in a potential field.

e Lagrangian—Hamiltonian.
— The Lagrangian

— The momentum

— The velocity

— The Hamiltonian

e The equations of motion:
— The Lagrangian equations of motion

oU
or-
— The Hamiltonian equations of motion

. OH p . OH oUu
r=—F2>= " P=—"F>= "%

op  m

mr = —

— Taking the time derivative of the first equation we find p = m#. Using this in
the second equation we find

mit = —

or

— We see, that the Hamiltonian and Lagrangian equations give the same 7(t)!
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33.4.2. Energy conservation.

33.4.3.

e Energy is the value of the Hamiltonian on the trajectory!!!!
e What it means, is that we take a Hamiltonian, write the Hamilton equations, solve

them for some initial conditions ¢(t = 0) = qo, p(t = 0) = po (and so forth if we have
more degrees of freedom). We then have two functions ¢(t) and p(t).
We now substitute these functions into the Hamiltonian H(p, ¢,t) and obtain a func-
tion of time E(t) = H(p(t), q(t),t).
Now lets differentiate this function with respect to time. This is a full derivative now
dE OH ., O0H . OH OHOH O0OHOH O0H OH
at ' ot T pog ogop ot o
where we used the Hamilton equations for the functions p(t) and ¢(¢).
So we see, that if the Hamiltonian does not explicitly depend on time — time trans-
OH

lation invariance (in less words % = 0), then

dH
— =0.
dt
or the value of the Hamiltonian on a trajectory F is constant, for arbitrary H!!
Notice the importance of the minus sign in the second of the Hamilton equations!

Velocity.

e In many cases the Hamiltonian is the starting point.
e The dependence of the velocity on momentum is then given by the Hamilton equation

. OH
In particular if we have a normal “kinetic energy” F(p) = %, then this equations
gives

._OE_/
x—ap—pm.

This is the usual p = mw.

e The kinetic energy as a function of momentum FE(p) is called dispersion relation.
e [t is the dispersion relation which gives the relation between the velocity and mo-

mentum, by the Hamilton equation.

There are cases where this is very nontrivial. For example in liquid Helium the
dispersion of “exitations” is similar to the one shown in the picture. One can see,
that at p = po the momentum is not zero (it is pg), but the velocity is zero!

roton

§p0

S







LECTURE 34
Hamiltonian equations. Examples

The Hamiltonian and Lagrangian formulations of mechanics are equivalent to each other.
Namely, if we know the Lagrangian we will know the Hamiltonian and if we know the Hamil-
tonian we will know the Lagrangian.

34.1. Lagrangian—Hamiltonian, Hamiltonian— Lagrangian.
34.1.1. L - H

e We are given a Lagrangian L({¢;},{¢:}) as a function of coordinates {¢;} and veloc-
ities {¢;}. There are no momenta in the Lagrangian!
e We write the definition of momenta

oL
Od;-

e We treat these equations as equations for all velocities {¢;} and solve them with
respect to the velocities

Di

4 = ¢i({pi}, {ai})-

e We construct the Hamiltonian

H({p:},{a:}) = ijq'j({pa}, {ar}) — LHqp b {dy (o}, {a })})-

The Hamiltonian thus constructed is the function of all coordinates {¢;} and all momenta
{p:}. There are must be no velocities in the Hamiltonian!

34.1.2. H— L

e We are given a Hamiltonian H({p;},{¢:}) as a function of all coordinates {¢;} and
all momenta {p;}. There are no velocities in the Hamiltonian!

e We write the definition of velocity for each momentum

_OH

~ Opi’

e We treat these equations as equations for all momenta {p;} and solve them with
respect to the momenta

di

pj = pi{ai} {di}).

159
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e We construct the Lagrangian

L({gi},{di}) = Z(ijj({qi/}, {ar}) — H{py (g}, {dr })} e })

The Lagrangian thus constructed is the function of all coordinates {¢;} and all velocities {¢; }.
There are must be no momenta in the Lagrangian!

34.1.3. Equations of motion.

If we have a Lagrangian and a Hamiltonian which are connected by the procedures described
above, then the Lagrangian and Hamiltonian equations are equivalent — they describe the
same motion!

L({a}, {4:}) = H({pi}, {a:})

4oL oL g = 1
_ — — . Di
dt dg;  Jg; pi = —‘35
¢t =0) = qo, ¢(t=0)=wyp — ¢t =0) =qo, pi(t=0)=Dpip.

Given equivalent initial conditions these equations will give exactly the same ¢;(t)! Equiv-
alent means that pio = p;({gio}, {dio}), or Gio = ¢({Gio}, {Pio})-

34.2. Examples.
34.2.1. A particle in a potential field.

e Lagrangian—Hamiltonian.
— The Lagrangian

L7 ) = 5~ U(F)
— The momentum
_ 0L :
= — =mr.
P="or
— The velocity
L P
==
m
— The Hamiltonian
: P
Hpr)=p-7—L=—4+U(
(p,7)=p-7 5 T U
e Hamiltonian— Lagrangian.
— From the Hamiltonian
., OH p
= = —
op  m
— The momentum
p=mr.
— The Lagrangian
L(F7) =7 F—H=""—U(
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e We found the Hamiltonian from the Lagrangian and then from Hamiltonian we found
the same Lagrangian.

e The equations of motion:
— The Lagrangian equations of motion

.
o
— The Hamiltonian equations of motion
. OH p . OH ou
r=—_as =, P=—F%7= "33
op  m or or

— Taking the time derivative of the first equation we find ]5' = m#. Using this in

the second equation we find
mi= U
or

— We see, that the Hamiltonian and Lagrangian equations give the same 7(¢)!

34.2.2. Rotation around a fixed axis.

e Lagrangian—Hamiltonian.

_

L(9, 9) - U(9).
— The momentum
Py = 10.
— Velocity
| _ Po
¢ = I

— The Hamiltonian

2
H(py0) = pod = L = 35 + U(@).

e Hamiltonian—Lagrangian.
— The velocity

_O0H  py
opy I
— The momentum
ps = 1¢.

— The Lagrangian
) . I¢?
L(¢,¢) =ps¢p — H = T—U(@

e The equations of motion
— Lagrangian equation
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— The Hamiltonian equations
. OH  py _ 0H ou
"1 T o5 o
Differentiating the first equation with respect to time and using the result in
the second equation we get
Ié:—@f
99
— We see, that the Hamiltonian and Lagrangian equations give the same ¢(t)!

An example of the system considered above is a pendulum.

34.3. Example: Relativistic particle.

Consider Maxwell equations in vacuum — this means that there are no charges or currents,
p=0,7=0

Gauss’s law: V-E=0
Gauss’s law magnetic: V-B=0
Faraday’s law: V x E + %—f =0
Ampere’s law: V x B — Mo%%? =0

e There are no static solutions.
e However, there are dynamical solutions. Let’s find out how these solutions look like
Acting by Vx on Faraday’s law and using the standard formula from vector
caleculus VX V x E = V(V - E) — AE we get

o - OVxB
V(V-E)-AE=_-2Y 22
ot
Using the Gauss law V - E =0 and the Ampere’s law V x B = ,uoeo%—f: we get
- E
AFE — NOEOW =0

Acting by Vx on Ampere’s’s law and using V x V x B = V(V- é) — AB and
the magnetic Gauss and Faraday’s laws we get the same equation for the magnetic
field

< B
AB — — = 0.
Ho€o 912
o Maxwell equations show the dynamics of the fields F and B themselves, independent
of the dynamics of the sources/charges/currents.

34.3.1. Wave equation, 1D.

To simplify the discussion we consider the situation in 1D. What it means is that we look
for a solution E(x,t) which is independent of y and z coordinates.

e The equation becomes

PE 1 0%E . 1
— - —=—= c= .
ox?  c2 Ot? ’ Ho€o
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— Boundary condition: E(t,z — £00) — 0.

— Initial condition: E(t = 0,2) = Eg(z) — it can be thought as a boundary
condition in time.

— This is not complete set of initial conditions. We need to solve the full set of
Maxwell equations, so we also need to have the initial condition for the magnetic
field. However, for what follows it will not be needed.

e General solution of the wave equation.

E(x,t) = Ey(z + ct).

According to the Gauss magnetic and Ampere’s laws magnetic field will also be
generated. The plus or minus sign or the linear combination of both is set by the
initial condition for the magnetic field.

e The above solution shows, that initial field configuration will simply propagate to
the left or to the right (or both, depending on the initial condition for the magnetic
field) with the speed c.

e Speed of light.
1

\/,UOGO.

I want you to marvel at the following thing: The Maxwell equations were “derived” by
considering experiments (Coulomb force, Faraday’s, Amperes) none of which suggested any
idea of light. It is only after all these experiments were understood as a set of Maxwell
equations we are able to see light.

The existence of these configurations/waves propagating in vacuum with constant ve-
locity was first recognized by Maxwell in 1865, then demonstrated and carefully measured
experimentally by Hertz in 1886-88.

CcC =

34.3.2. Lorenz transformation.

The question we want to pose is: What are the space-time transformations that leave the
Maxwell equations invariant?
Let’s start with the Newtonian mechanics in 1D.
P d*x
=ma=m-_;.
As it has only acceleration in it the equation is invariant under the Galilean transformation
which is typically written in the following form

de =da' + Vdt'
dt = dt’

At this point V is just a parameter. We identify it with the velocity of the frame of reference
by considering the physical realizations of such transformation.

Notice what we have done. We took the equation of motion and found which transforma-
tion of space and time leaves this equation invariant. Then we interpret this transformation
in physical terms.

The Maxwell equations are the equations of motion for electric and magnetic fields. We,
then pose the same question for the Maxwell equations. Which transformation of space and
time leaves the Maxwell equations invariant?

e This transformation will change both space and time and electric and magnetic fields.
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e However, as Maxwell equations are linear and so is the wave equation and the wave

equation for electric and magnetic fields are identical, we can simplify the problem by
asking: what transformation of space and time will leave the wave equation invariant?
If we answer this question then we can perform this transformation on the full set of
Maxwell equations and find out how E and B transform.

We write the wave equation in the form

0? 1 0%\ =
2 2 )E=o.
<0$2 028252) 0

Here we see, that the equation has the following form: an operator &

1 0°
522 T 2o acts
on the electric field £ and gives zero.
We want to find the transformation x(2’,t’), and t(z’,#') which leaves the operator
invariant
0? 1 0? R 0? 1 02
0z 2otz " ox? 2ot
We write the transformation z(z’,t'), t(z,t') in from of the differentials
ox Ox ot ot
dr = —da’ + —=dt’, dt = —da' + —dt’
ox' ot’ ox' ot’
we assume (this assumption is not needed, but it makes the calculations simpler)
that all the partial derivatives are just constants.
ox ox ot ot

%:B’ %:A, %:D, %:C

so that
dx = Adt' + Bdx', dt = Cdt' + Ddz’.
Now we use the chain rule and write
0 oxr 0O ot 0 0 0
or —ovor Towai Por P
0 0z 0 ot 0 0 0

5% " ovor Tovor “as S

So that
& o o\ [(.0 0 & & &
——=|B—+D-||B=—+D~ |=B*--+D>- +2BD
R ( or &5)( or 875) o2 7 o TP o
& o oN(.,0 .0 P, &
T (2l vl (Al rol) =2 L2 4 aa
at” ( oz " Cm) ( Bz +08t> o2 ¢ e T2 G
and

Oz 2or? 0 o> 2 ) oxot
In order for the wave equation not to change its form we must have
1 1 1 1
B?— S A* =1, D?— =C% = —, BD — S AC =0
c c c c
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We have three equation with four unknowns. The solution depends on one parameter
v and can be written as (|y| < 1).

1
A gL p_ e

and hence the transformation which leaves the wave equation invariant is:

~yedt! dz’ cdt! ~vdz'

dt = ,
T VT

N A e
This is called Lorentz transformation.

e At this stage v is an arbitrary parameter. These transformation rules do not have
any physical content. It is so far just a mathematical statement that Lorenz trans-
formation with arbitrary v will leave the wave (in fact Maxwell) equations invariant.

e In order to understand the physical meaning of these transformations we need to
figure out what ~ is.

e In order to do that, let’s assume, that v is small, but ¢ is not small. Then the
Lorenz transformation becomes

dr = yedt' + dx’, cdt = cdt’.

e Comparing the Lorenz transformation to the Galileo transformation we find that
~v = V/c and then

Vat da’ cdt’ Vda'/c
= + 9 Cdt = + )
SV i Jiove s

e Now the Lorenz transformation has physical content! It tells us how to go from one
frame of references to another! This is the essence of the special theory of relativity.

dzx

Both Lorenz and Galileo transformations can be thought of as the transformations of space
and time. Surely the space-time is the same for electromagnetic waves and the normal
particles and thus must transform the same way if we consider electromagnetism or mechanics.
However, for large enough V' the Lorenz transformation is different from the Galileo’s.

It means that Maxwell equations are not compatible with Newtonian mechanics.

34.3.3. Relativistic particle dynamics.

We understand, that instead of the Galilean invariance we must demand the Lorenz invari-
ance. So we want to write the dynamics of a particle in the Lorenz invariant way. For that
we need to derive the Lorenz invariant Hamiltonian.

It can be done in the following way:

e We demand that the Action A = [ Ldt = [(pi — H)dt = [(pdx — Hdt) be invariant

under Lorenz transformation
Vvat dx’ cdt’ Vdx'/c
= + , cdt = ,
\/1—‘/2/02 \/1—V2/02 \/1—V2/02 \/1—V2/02
e In order to do that we substitute dz and dt from above into the Action A =

[(pdx — Hdt) and present it is the form A = [(p'da’ — H'dt") by collecting the
terms proportional to dz’ and dt'.

dx
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e We then find how the momentum and energy transform under the Lorenz transfor-
mation:

/ p HV/C2 Hl

H Vp
p = —_ 5 = - .
JI-V2/e L\ 1-v2)e J1=V2eE L J1-v2e
e Then we notice that under this transformation the expression H? — ¢?p? is invariant
H”? — p? = H2 — 2p®. So H? — ¢®p? = const.
e The value of this constant is obtained from demanding that H = \/ (const)? + ¢2p?

becomes the Newtonian kinetic energy at small p, H ~ cons + %. Using the

Taylor expansion we then find H ~ const + Qiit. This implies that the constant is
const = mgc?.

e As a result we have H(p) = cy/p? + mdc2.

So we found the form of the Hamiltonian which is consistent with Lorenz transformations,
reconciling the electro-magnetism with mechanics.
Now we are in position to consider the dynamics of the relativistic particle. We do not
consider any field so the Hamiltonian does not depend on .
e Equations of motion.
OH
— =

_OH cp

op /p2 + m2c2

So we see, that the momentum is conserved, but the velocity has a nontrivial depen-
dence on momentum. In particular if p — oo we have & — ¢. Moreover, the velocity
can never exceed c!

e The momentum. From the last equation

D= 0, T

mgi'
p=——
V1 —32/c?
s : : «“ ’ — mo — s
Notice, if we introduce a “mass” as m et then we have p = ma — the usual
formula.
e If we use this p, substitute it into the Hamiltonian, and use our notation for m, then
we get
2
moc
E=—2__ —nm

1 —32/c? a
L(t,x) =ip— H = —mgycV ? — 32

e Action. It is very instructive to write the Action for this problem
S = —moc/\/ 2 —i2dt = —moc/ v/ (cdt)? — (dz)?.

34.3.4. Geometrical meaning of Action.

e Lagrangian.

e Notice, that the expression (ds)? = (cdt)?* — (dx)? is Lorenz invariant: after Lorenz
transformation (cdt')? — (da')? = (cdt)? — (dx)>.

e The ds introduced above is called (infinitesimal) interval — it is “length” in Minkowskii
space
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e The action above is the total length of the interval in the space-time (ct, z) with the

i (10,
metric 0 —1 :

2 ]_ 0 Cdt
(ds)* = (cdt, dzx) ( 0 1 ) ( d >
The Action then is
A= —moc/ds

e One now can easily extend this construction to the full 3 + 1 space by using the
Minkovskii metric

1 0 0 O
0 -1 0 0
0 0 -1 0
0 0 0 -1

e Moreover, one is not restricted to the flat Minkovskii space and can write the Action
for a particle in a curved space-time — the space-time with Einstein’s gravity.
34.3.5. Motion in a central symmetric field.

e Lagrangian— Hamiltonian.
— We need to write the Lagrangian in spherical coordinates. We know

dr' = €,dr + eprdf + €,r sin 0d¢.
Dividing this by dt we get
U= @1 4 Eyrb + Eyrdsin,
o) _ _
v: =72 4 1r%0? + r?¢p*sin? 6.

— The Lagrangian is

L=tz Mg Er%z sin?6 — U(r)
2 2 2
— The momenta:
= — = mr, = — =mrb, = — = mr¢sin 0.
Pr=5 Po =55 Py = J o

— The velocities

. Pr A Do y Dy

" m’ mr?’ ¢ mr2 sin? 0
— The Hamiltonian

P D P

- 2m + omr?  2mr2sin?0

H = p, + 0py + épy — L +Ulr).

e Hamiltonian— Lagrangian.

— The velocities
r_@H:& 6-_8H_p9 ¢:8H_ Do

Ip. m’ " Opp mr?’ Opy  mr2sin?6’
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— The momenta

oL : oL 2 oL 2
= — = mT, = — =mr-0, = — = mr¢sin 0.
Pr= 5 Po = 55 Do 90 ¢
— The Lagrangian
L = ip, +0py + dpy — H = %7"2 + %739.2 + %TQQ.Q sin 6 — U(r)

e The equations of motion
— The Lagrangian equations of motion
. . oU
mit = mré* + mr¢®sin® 6 — —
or
mr?6 + 2mri = mr¢?® sin 6 cos 0
maer? sin® 0 + merisin® 0 + 2r2¢ sin @ cos = 0

— The Hamiltonian equations of motion

2
F=29H _p p:_iaH:pg Py _ou
Opr  m " or  mrd3  mr3sin®6  Or
2
) _ oH _ po __OH _ pjcost
RZO PO =700 T 2 sin® 0
. OH
_ 9H _ — _
¢_@_mr2ps(?n29' p¢__8¢ =0

— You are welcome to check that these equations are equivalent to the Lagrangian
equations.



LECTURE 35
Special theory of relativity. For self-study.

What we have done so far:

e Intuition: Translation, time translation invariance, and universality of time —
Galilean inviriance — Newtonian mechanics. Experiments to check the validity.

e Experiments with magnetic and electric fields: Lorenz force, Gauss laws (both),
Faraday’s law, Ampere’s law + writing it all in the form that makes sense —
Maxwell equations. Experiments to check the validity.

e Comparing the Newton’s dynamics and Maxwell equations — conundrum —
Lorenz transformation.

e Time is NOT universal — Galilean inviriance is only approximate — Newtonian
mechanics is only approximate, it works only if speeds are much less then the speed
of light (whether we can use the Newtonian mechanics or not depends on the prob-
lem and on the accuracy we need. The Newtonian mechanics will always have the
corrections of the order of (v/c)?. In many cases these corrections are beyond the
resolution of our experimental devices.)

Lorenz transformation:

e Lorenz transformation. There are two frames of references. The second frame is
moving with respect to the first with velocity V along the = direction. The time
interval dt’ and the space interval dz’, dy’, and dz’ for some process are measured in
the moving frame (frame #2), then in the stationary frame (frame #1) the time and
space intervals for the SAME process are related by the Lorenz transformation:

cdt’ Vdx'/c vat dx’

+ ) dr = + )
\/1—V2/c2 \/1—V2/02 \/1—V2/C2 \/1—‘/2/02
e The inverse of the Lorenz transformation has the same form:

cdt Vdx/c , Vdt dx

Ji—ve Jimvye = = V2/c2+\/1 — vz’

with V' — —V, as expected, as from the point of view of the frame #2, the frame
#1 is moving along z direction with the velocity —V'.

e These transformations tell us that our space-time has a very different structure than
what was thought before.

cdt =

dy = dy/, dz = dz'.

cdt’ =

dy' = dy, dz = dz,

Interval:

169
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e Lorenz transformation is the transformation that leaves the interval ds DEFINED
as

(ds)* = A(dt)* — (dx)?

invariant.

5)? = cdt! Vidz'/c 2_ vat dz’ i = 2(d2— (da )
“ <\/l_v2/62+\/1_‘/2/02) (\/1—V2/62+\/1—V2/c2> (dt')”—(dz")".

e Consider that an observer who measures time in his/her OWN frame of reference.
So one has a watch and simply looks at this watch. In this process the watch is not
moving, so dr = dy = dz = 0, then the interval ds = cdt. So the interval is simply
time in ones own frame of reference. The interval is also called PROPER TIME.
Remember that the interval is the same in every frame of reference.

Space-time:

e A point of space-time is called Event. You specify the position/location and time.

e The interval/distance between two neighboring events ds* = c?dt? — dz* — dy? — dz*
gives the metric of space-time! — this interval is independent of observer!

e A space (space-time) with such metric is called Minkowski space https://en.wikipedia.
org/wiki/Minkowski_space. The metric is called Minkowski metric.

e Interval ds is the “distance” between the Events in Minkowski space.

e This “distance”/interval between the events is computed the same way in all inertial
frames of references and is independent in which inertial frame of reference it is
computed in — the same as in our normal space the distance between two points is the
same in any system of coordinates. The distance/interval between two points/events
is independent of the observer.

e One can work this story backwards. Find all linear transformations that leave interval
invariant. The subset of transformations which involves both space and time will give
the Lorenz transformations (there other, “obvious” transformations — translations
in space, translations in time, and normal rotations in space.)

e Lorenz transformation is a “rotation” of the space-time. (remember, rotation is the
transformation which leaves the distance between any two points unchanged.)

e GPS, LHC.

AY 22
o 5 y° — x° = const
Yy + x° = const

AN s Ny
N

35.1. Consequences.

We want to introduce two frames of references: “primed” and “un-primed”. The primed frame
moves with velocity V' as observed from un-primed frame. All quantities such as distances
and times in primed frame will have prime: da’, dt’, etc. All quantities in un-primed frame
will not have primes: dx, dt, etc.


https://en.wikipedia.org/wiki/Minkowski_space
https://en.wikipedia.org/wiki/Minkowski_space
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I want to very strongly emphasize, that in order to figure out all these consequences one
MUST very carefully specify what experiment is being performed. Without doing that, our
normal intuition will fool us at every step.

I want to compare Galilean and Lorenzian worlds. So here are both Galilean and Lorenz
transformations.

Galilean, Lorenz

o , __ vat dz’
dv=dd/+Vat,  dv=_pEnmt

dt = dt, cdt = Ll 4 Vizje

V1-V2/e2 -\ /1-V2/c2

35.1.1. Restriction on causality.

Light cone for the event A

/Here & Now .
>

Figure 1

Look at the space-time x, ct depicted on the figure. The origin (event A in the picture)
is “here and now” point. The red lines are the world lines of light — it travels with the speed
of light either to the left or to the right © = +ct, so these are lines at 45 degrees in the z, ct
plane. If we consider more than one space dimension, then it will be “light-cone”.

e Any two events on a red line have interval ds = 0.

e For any event inside the cone, say point B, for the interval between the events A and
B we have (ds)? > 0, so the interval between the events A and B is real.

e As interval is invariant under the change of frame of reference, this interval will be
real in any other frame of reference.

e However, when the other event, say point C, is outside of the cone, then for the
interval between the events A and C' we have (ds)? < 0, so the interval between the
events A and C' is imaginary.

e As interval is invariant under the change of frame of reference, this interval will be
imaginary in any other frame of reference.

Imaginary interval cannot happen for any physical process.

e Interval is the “proper time” — time measured in ones own frame of references.
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e It cannot be imaginary for any physical process.

What it means is that events A and C' cannot be parts of the same physical process. Or
in other words the events A and C' cannot have causal relation: one cannot be the cause of
another, even though one (the event C' on the picture) is later in time than the other (the
event A on the picture).
This is what it means that nothing can travel faster than light.

However, both event A and event C' can be consequences of an event A’. So the events A
and C can be correlated!

35.1.2. Universality of the speed of light.

The speed of light is the same in all frames of references, in striking contrast to the Galilean
world.

In the Galilean world if in the primed frame of references a body is moving with the
speed of light then measuring its position after time dt’ our primed friend finds that the
position has shifted by dz’ = cdt’. The un-primed observer in the Galilean world finds that
dx = da’ + Vdt' = (¢4 V)dt', and dt = dt’. So in the un-primed frame the velocity of the
body is & = ¢+ V # c.

This is not so in the Lorenz/Minkowski/Einstein/our world.

Again in the primed frame we have the body’s velocity ¢ = dx’/dt’, so da’ = c¢dt’. Then
in un-primed frame we have

Vdt' dx’ V+ec ,
dr = + = dt
Sivije imvie  Ji-vie
!/ /
cdt — cdt Vdx'/c c+V g

\/1 —V2/c? " \/1 —V2/e? N \/1 —V2/c?

The right hand sides of the two equations are identical, so we have in the un-primed frame
dx = cdt, or the velocity v of the body which the un-primed observer observes v = z—f =c.
So if a body moves with the speed of light in one frame of reference, it moves with the
speed of light in ALL frames!
Notice, that this statement is obvious from the fact that the interval ds is the same in all

frames of references, so if it is 0 in one frame it is zero in any other.

dr’ = cdt', (ds)*> = (cdt')* — (d2')? = 0 = (edt)? — (dx)?, dx = cdt.

35.1.3. Simultaneity is not absolute.

Events that are simultaneous in one frame of reference are not necessarily simultaneous in
another, in striking contrast to the Galilean world.

In the Galilean world dz = dx’ + Vdt', and dt = dt’. Consider two events that happen
simultaneously at distance [ to one another in the un-primed frame. Simultaneously means
that dt = 0. At distance [ from one another means that dz = [. Then in the primed frame
we have dt’ = dt =0, and do’ = doe — Vdt' = dz =1

dt' = dt = 0, dr' = dv —Vdt' = dx = 1.

So your primed friend sees the two events also happening simultaneously and also at distance
[ from one another.
This is not so in the Lorenz/Minkowski/Einstein /our world.
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dt jP “’P ,g% §

Figure 2

e The experiment is the following:

e Two events happen simultaneously a distance [ from one another in our un-primed
frame of reference.

e Simultaneous means the time between the events is zero d¢t = 0. For this case we
have

dt =0, dr =1

e We use the Lorenz transformation to find dt’ and I’ = da’ — the time interval and

the distance between the events in the primed frame.

N Sy S R R Sy

1—V2/e2 V1—=V2/c?
e So our primed friend sees the two events as not simultaneous (dt’ # 0) and happening
at different distance to one another (I # 1).

(Notice also that events at finite distance form one another, that are simultaneous in at
least one frame of reference cannot have causal relation, (ds)? < 0.)

35.1.4. Velocities in different frames.

In Galilean world if the velocity of an object in the primed frame is " and the velocity of the
primed frame with respect to un-primed frame is V. then the velocity of the object in the
un-primed frame is v = v + V.

This is not so in the Lorenz/Minkowski/Einstein/our world.

Figure 3

The experiment is the following:
e A person in the primed frame is measuring the velocity of some object.
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e For this the primed person measures the distance dx’ the object travels during time
dat’.

e Both dz’ and dt’ are valid for the primed frame of references. The velocity of the
object in the primed frame is v = da’/dt’.

e Another observer in the un-primed frame measures the velocity of THE SAME object
by measuring the distance dx the object travels during time dt.

e The velocity of the object that un-primed observer measures is v = dz/dt.

Galilean world:

We use Galilean transformations.
The Galilean transformation for time gives dt = dt’.
The Galilean transformation for coordinate dz = dx’ + Vdt'.

/ / !
So v =4 = drtVdtl — drl 4 — o/ 4 V.

Lorenz/Minkowski/Einstein/our world:

e We use the Lorenz transformation and dx’ = v'dt’ and find dx and dt in the un-primed

frame.
vt "dt’ V 4+
dx = + - S -~
Jiovie L isve Jisve
!/ !/ / /
et — cdt Vi'dt'fe ¢+ V' /e gt

+ —=
\/1—V2/02 \/1—V2/c2 \/1—V2/02
e The velocity in the un-primed frame is v = dz/dt.
e So we find:

V 4+
V= ———.
1+ 2
e If both v/, V <« ¢, then v = V 4+ ¢’ — our usual Galilean result!
e If v/ = ¢, then v = ¢! The e-m. wave indeed travels with the same speed in all
frames of references!
35.1.5. Time change.
In the Galilean world, where dt’ = dt, the time between two events is the same for all

observers.
This is not so in the Lorenz/Minkowski/Einstein/our world.

dt’

dt =7
® t 'Qﬂ_o vV

o.e

Figure 4

e The experiment is the following:
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e In the moving (primed) frame the two events happen at the same place/coordinate,
so dz’ = 0.

e In the moving (primed) frame the two events have the time interval dt’.

e So the time interval dt in the frame of reference at rest is:

dat’
dt = ——— > dt’.

e So the time interval dt for the un-primed observer is longer, than the time interval
for the primed observer.
e This also can be seen from the invariance of the interval.
— As d2’ =0, dt’ is the proper time for the primed frame, so the interval between
two events is (ds)? = 2(dt')%.
— The same two events in the un-primed frame happen at time dt and distance
dx = Vdt (as the primed frame moves with velocity V') from one another. So the
interval between the same events is (ds)? = ¢2(dt)? — (dx)* = *(dt)*(1 - V?/c?).
— As the interval between the same events must be the same in all frames of
reference we have ¢?(dt')? = ¢*(dt)*(1 — V?/c?), or

t/
gi—

V1 —=V2/c?

e From the point of view of the un-primed observer the time in the primed frame of
reference slows down. As un-primed observer sees that all processes in the primed
frame slow down, including chemical processes such as aging.

e Notice, that from the point of view of the primed observer it is the un-primed observer
who is moving with velocity —V'.

e Then from the point of view of the primed observer the time slows down in the
un-primed frame of reference.

e [t may seem counter-intuitive, but it must be so, otherwise we would be able to tell
who is moving and who is standing.

e Twin’s paradox.

35.1.6. Length change.

The length of the objects measured in different frames are also different. In Galilean world
dr = dx’ + Vdt', and dt = dt’. When one measures the length of a stick, one must check
the positions of both ends of the stick simultaneously. So if one measures the length of the
stick in the un-primed frame, then dt = 0, but in Galilean world it means dt’ = dt = 0. So
dr = dz’ and the length of the stick is the same.

This is not so in the Lorenz/Minkowski/Einstein/our world.

e The experiment is the following:

e A stick in the primed frame of reference is measured by a person in the same primed
frame of reference (so the stick is not moving with respect to this person)

e The result is dz’.

e The length of this stick is now measured in the un-primed frame of references.

e In order to do that the researcher must note the positions of the ends of the stick at
the same moment of time in his un-primed frame!
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Figure 5

e So for this measurement dt = 0.
(Notice, that from the primed frame the un-primed researcher is doing it wrong, as
in the primed frame he/she is not taken the position of the both ends simultaneously.)
e From the Lorenz transformation for dt we see that this means cdt’ = —%dw’ :
e Using this in the Lorenz transformation for dz we find:

2/.2
— 1

dr = Mdm’ =da'\/1—=V?/c2.
V1—V?/c?

35.1.7. Doppler effect.

There is no Galilean version of Maxwell equations.

We already know, that the speed of light is the same for every observer. However, different
observers see this light differently.

This effect exists only in the Lorenz/Minkowski/Einstein/our world.

I want to emphasize, that this is very different from the Doppler effect for the sound
waves. The Doppler effect for the sound waves only exists because there is media (air, water,
etc.) through which sound propagates. There is no such media for the light. It propagates
through the vacuum.

de =c/f

dt=1/f da’ = c/f!

dr' =1/F

(&

e Yo

Figure 6

The experiment is the following
e The light source of frequency f’ is stationary in the primed frame.
e The primed frame moves with respect to the un-primed observer with velocity V'
directly away.
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e The un-primed observer observes the light from the same light source.
e The question is: what frequency f of the un-primed observer will measure/observe?

Light is a wave. The distance between two wave fronts is called wavelength A. The time
between the arrival of the two wave fronts is called period 7. The frequency is f = 1/T.
Consider two wave fronts

e In the primed frame the distance between two wave fronts is da’ = X = ¢/f’, the
time between them is just one period dt’ =T" =1/f.
e Using the Lorenz transformation we find that in the un-primed frame
V ! / / V /
S 77 . UV S ¢/
JI-v2/e 1-vz)e JI=V2/e L\ 1-v2)e
e First we notice, in the un-primed frame that cdt = dx as it must be — the speed of
light is the same for both observers.
e Second, we notice, that for the un-primed observer the frequency of the light is 1/dt.
1 c=V ,
/= dt \e+ Vf '
e So the frequency (color for the visible part of the spectrum) of the light is different
for different observers.
e This is Doppler effect.

dx

There are special mathematical notations that make it much easier to work in Minkowski,
(or any other) space.






LECTURE 36
Hamiltonian equations. Examples. Phase space.

36.1. Examples.
36.1.1. General example in Newtonian mechanics.

e In the typical case of a mechanical problem in Newtonian world the kinetic energy
is quadratic in generalized velocities. The reason for that is two-fold:
— When all velocities are zero the kinetic energy is zero.
— Under the time reversal the generalized velocities change sign, but the kinetic
energy must stay the same.
It means that very generally the Lagrangian in generalized coordinates {¢;} and
generalized velocities {¢;} can be written in the following form.
1, :
L= §QiMi'(q)Qj - Ula),
(Einstein notations are assumed) where M;;(q) is a symmetric q-dependent positive
definite (kinetic energy must be positive for any set of nonzero velocities) matrix and
I use q to denote the collection of all generalized coordinates {q;}
e The momenta
pi = aiqz = M;;(q)q;-
e The velocities (matrix M is positive definite, so it has an inverse M -1

6= (M), py-

e The Hamiltonian

. 1 Sr—1
H(p,q) = (pigi — L)q‘i:(]\;[—l(q))ijp]. = ipi (M (q))ij p; +U(q)
(Notice that the Hamiltonian is the function of generalized coordinates and momenta.
There are no velocities in the Hamiltonian!)

e The Hamiltonian equations

C0H .
i =5 = (M), 2

o1 9(@),  au(g)
b gy, ol oqy. bs o

179
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o(M~Y(a))

Oqx R
is the derivative of the original matrix elements (M _1(q))

Derivative of a matrix “ means simply the matrix where each matrix element

ij
36.1.2. A cart and a pendulum

As an example lets consider the cart (mass M) with a pendulum (mass m, length [) as before.
e The Lagrangian:
M+m
2
Notice, that the dependence of the Lagrangian on the velocities is indeed quadratic.

So this is a particular case of the example above.
e The generalized coordinates are x and ¢. For generalized velocities we use

¢
e The Lagrangian then can be written as

in(i,gﬁ)( M +m mlcos¢><£>—mgl(l—cos¢)

mlcosp  mi?

I —

i + maoil cos ¢ + %l%z —mgl(1 — cos ¢).

e The matrix M

i = M +m mlcos¢
"\ mlcos¢p  mi?

e The inverse M ~! (an inverse of a 2 x 2 real symmetric matrix A= ( Z ZC) > Is
A,l - 1 C _b
AT = det A < b a >)
-l - 1 1 mil? —ml cos ¢
ml2 M +msin?¢ \ —mlcos¢ m+ M

e The Hamiltonian

1= (pepy )51 ( b ) + mgl(1 - cos )

or
1 ml*p? — 2mlip,pycos ¢ + (m + M)

2
Py
2mi? M + msin? ¢ +mgl(1 = cos 9)

e ctc.

36.2. Phase space. Hamiltonian vector field. Phase space trajecto-
ries.
Hamiltonian equations are the first order differential equations! We double the number of

variables and the number of equations, but each equation is now the first order differential
equations. We still need two initial conditions for each degree of freedom.

e The space of all ¢ and all p is called a phase space of the Hamiltonian system.
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e The Hamiltonian is just a function on the phase space.

e Notice that we have inverted the story. The phase space comes first, only then we
define a Hamiltonian as a function on the phase space. This change of perspective
allows one to study the properties of the phase space itself, without referring to any
Hamiltonian.

Let’s consider a one dimensional problem with time independent Hamiltonian. So we have

only one generalized coordinate q. The phase space is then two dimensional: (g, p). For a
given Hamiltonian the equations of motion are

. OH
. OH
P= "%

e If we solve these equations with some initial conditions (qo,po), we will have the
functions ¢(t) and p(t). These functions define a line in the space (¢, p) in parametric
form (¢ is the parameter).

e This line is called phase space trajectory.

Let’s assume that a system had a phase space coordinates (g, p;) at time t. The equations
of motion show that at time ¢ 4 dt the system will be at the point

oH

Qirar = Q¢ + ?dt
P
oH

Piydt = Pt — a—dt
q

Let’s now define the Hamiltonian vector field by

B oH
H:(_%).
9q

Then we see, that a point (g, p;) after time dt shifts to

<Qt+dt ) —<Qt>+ﬁdt
DPi+dt Dt

So the vector H is a vector of velocity in the phase space.

e We can compute the vector H for any number of degrees of freedom.

e We can plot the vector field H at every point of the phase space.

e Notice, that we do not need to solve any differential equations for that. We just need
to differentiate the Hamiltonian!

e This vector field will show the wvelocity in the phase space at every point of the phase
space of our system.

The trajectories of the system in the phase space are simply the lines which are tangential
to the Hamiltonian vector field at every point of the line. Different trajectories correspond
to different initial conditions.
This construction is very similar to the electric field and electric field lines.
e Motion in the phase space: we can consider the motion of a system in the phase

space: we start from an initial point (g;,p;) and continue along the Hamiltonian
vector field — along phase space trajectories.
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e Trajectories do not intersect (except in isolated singular points). This is the same
as for electric field lines. The phase space trajectories (electric field lines) can have
one tangential vector at each point, except the points where H =0 the singular
points — all the derivatives of the Hamiltonian are zero.

e On the phase trajectories the Hamiltonian is constant — the energy is conserved!

These simple rules allow one to construct the phase space trajectories for many (especially
in 1D) systems. Here are the couple of examples.

e Harmonic oscillator. The generalized coordinate is the coordinate x, the generalized
momentum is p. The phase space is the collection of points (z, p).
— The Hamiltonian of the Harmonic oscillator is

2 2.9
P MW=
H=-"—

2m+ 2

— On the phase space trajectories the Hamiltonian is constant. The lines in (x, p)
space are given by

2m N 2
are ellipses with the semiaxes v2mFE and /2F /mw?. (The area of these ellipses

is 2nFE /w = ET, where T is the period.)
— The Hamiltonian vector field is

e

momentum

coordinate

e Pendulum. The generalized coordinate is the angle ¢, the generalized momentum is
ps- The phase space is the collection of points (¢, py).

— When energy is small the pendulum is a harmonic oscillator, so for small energies
the trajectories are ellipses.

— When energy grows the ellipses grow.

— Eventually the ellipse must hit a singular point — this is when the energy of the
pendulum is enough to reach the highest point.

— If we increase the energy further the pendulum starts to rotate instead of oscil-
lating.
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LECTURE 37

Liouville’s theorem. Poincaré recurrence theorem.
Area law.

e Student evaluations: 11-20-2025 until 12-10-2025
Before we discuss the Liouville’s theorem I want to make a simple observation.

e As the Hamiltonian equations are the first order equations, any point of the phase
space can be considered as the initial point of a trajectory.

e For any trajectory, any point of this trajectory can be taken as the initial point for
the rest of the trajectory.

e What it means is that we do not need to know the motion in the phase space in the
past in order to predict the motion in the phase space in the future.

e Compare this to the motion in the real (coordinate) space.

37.1. Liouville’s theorem.

For a system of arbitrary number of degrees of freedom, at time t;,;; consider a chunk $2;.;
of the phase space which has a volume A;,;;. Let’s take every point of this chunk €2;,;; as the
initial condition for the Hamiltonian equations with the Hamiltonian H. After some time ¢
every initial point of the chunk €2;,;; will flow to some “final” point of the phase space. The
collection of all these “final” points will make a chunk €2, of the phase space. This new chunk
will have the volume A,.
init

t+dt

> Qt—|—dt

Linit

Theorem: The phase space volume is conserved under the Hamiltonian flow. In other words
At = Ainit for any t.
185
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Proof: I show the proof for the case of one degree of freedom. But the theorem works for
any number of degrees of freedom. The proof for the arbitrary number of degrees of freedom
is almost identical to the one presented below.

As the trajectories do not intersect, we can consider the Hamiltonian flow as a map of the
phase space on itself: any initial point (g, Pinit) 1S mapped to a point (qo, po) = (q(t), p(t))
after time ¢, where ¢(t) and p(t) are the solutions of the Hamiltonian equations with (ginit, Pinit )
as initial conditions. At this stage the initial chunk $2;,;; became €2;. Let’s consider what
happens to the chunk €; after a small additional time interval dt.

After the small time interval dt:

e The chunk €, is mapped to the chunk €2; 4.
e The boundary of the chunk €2; is mapped to the boundary of the chunk €, 4.
e A point (qo, po) from the chunk €2, is mapped to a point (¢i,p;) in the chunk Q4.

This map (qo, po) — (g1, p1) is given by:

oH OH
¢ = qo + =—dt, p1=po— 5 —dt
dpo dqo
e Notice, that in the linear in dt order, the derivatives on the right hand sides must be
computed at the point (qo, po), the derivatives above mean g—H = %—H , etc.
po P lp=po,q=qo0

e So in this picture in the linear is dt order, we fix t and dt and consider the above equa-

tions as the equations for the change of variables from (g, po) to (¢1(q0, Po), P1(q0, Po))-

e All points (qo, po) make up the chunk €2;. All points (g, p1) make up the chunk €, 4.

Consider a piece of volume at time t: A; = [, dgodpo. After time dt, this volume becomes
Aprar = thMt dqidp;.

0q1 Opy 0q1 Ops
= [ dgdp, = / InIP GNP ood
Apyat /Q . adpr= | ( 360 0p0 ~ Bpo D qodpo

where
_9n0p _ 0910p
~ 090 9po  Opo Oqo
is the Jacobian of the change of variables (qo, po) — (¢1(qo, Po), P1(qo, Po))-
Using the formulas for our change of variables we find

Iq O*H 0o O0*°H
g dt, ey 1

Jqo Opo0qo and Opo 8p3

op _ _O°H op _ ) O°H
dqo o5 Ipo Ipodqo

e Notice the minus sign in the bottom expression on the right.
We can now compute the Jacobian
g (8@0@_%%) o ( 0?’H 0*H B 82H82H> (dt)?
090 Ipo  Opo Oqo Ipodqo Opodqo apg Oq3 .
e Notice that the Jacobian has no term linear in dt!!!
e We used our equations of motion only up to a linear in dt terms.

e This means, that the quadratic in dt term is computed incorrectly, but the statement
that the linear in dt term cancels out is exact.
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So we can only write
J =1— D(po, q)(dt)?,
where D(po, qo) is some unknown function (there might also be higher order terms like (dt)3,
(dt)*, ...). The only statement is that there is no linear in (dt) term. The mathematical
notation for this is J = 1+ O((dt)?).
Then we have

Aitar :/Q dgodpoy — (dt)2/9 D(po, q0)dgodpo,

The first term in this expression is the volume A; of ;. So the change of this volume
dA = Ay 4 — Ay during the infinitesimally small time increment dt is

dA=Apyar — Ar = —(dt)z/Q D(pO, QO)dQOdpo-

What is important in this expression is that d.A ~ (dt)? (more precisely dA = O((dt)?)), or
in other words, there is no linear in dt term, so that dA starts with the quadratic in dt term
at best! It means, that % ~ dt, so when we take the limit dt — 0 we get

d
d“:‘ —0 at ANY ¢l so A = const.

(Calculus is great!!l) (It also means that if we manage to compute the terms of the second
order in dt, or any other order, they will all be identically zero.)

e This is the Liouville’s theorem. It states, that the volume of phase space is unchanged
under the map on itself induced by the equations of motion for ANY Hamiltonian!

e [t is also correct for any number of degrees of freedom.

e Notice the importance of the minus sign in the Hamiltonian equations.

37.2. Poincaré recurrence theorem.

Let’s assume that the available phase space for the system is finite (for example, gas in a box).
Let’s start the motion at some point of the phase space. Let’s consider the time evolution
of some finite but small neighborhood of this point. The volume of the neighborhood is
constant, so eventually as time progresses it will cover all of the available volume. Then the
tube of the trajectories must intersect itself. But it cannot, as trajectories do not intersect.
It means that it must return to the starting neighborhood (or intersect it at least partially.)

It means that under Hamiltonian dynamics the system will always return arbitrary close
to the initial starting point.

The time it will take for the system to return is another matter. This time also strongly
depends on the volume of the neighborhood, or, in other words, how close you want the final
point to be to the initial point in the phase space.

37.3. Area law.

This law is valid only in 1D. This is unlike Liouville’s theorem which is correct for any
number of degrees of freedom.

Let’s consider a Hamiltonian motion in 1D. We will assume, that the motion is periodic
—in 1D the motion is either periodic, or unbounded. In the phase space picture the periodic
motion means that the phase space trajectory is a closed loop (without self-crossings). We
then can compute the area of the phase space A = [dpdq of the loop inside the phase
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space trajectory of a motion with energy E. This area will depend on the energy E on the
trajectory. We thus will have a function A(E).

(24.4B, 22dE)

E+dE

If we solve the equations of motion we will get the trajectory in the phase space as
functions ¢(¢, ') and p(t, E') — the trajectory depends on the energy E.

e As the trajectory is closed and we only interested in the enclosed area, any point on
the trajectory can be chosen as the initial point of the trajectory.

If we change the energy by dF the area will change. Consider two trajectories one with
the energy E and the other with the energy E + dE. We want to compute the difference
between the areas for the two trajectories d.A.

The vector along the trajectory is (dq,dp) = (¢,p)dt. The vector from a point of the
trajectory E to the trajectory E + dF is <8q dE, gng) (gg, gg)dE.

The area of the small shaded parallelogram (see figure) is given by the vector (cross)

product of the two vectors (¢, p)dt and (%, g—g)dE . The small shaded are is then given by

dq . Op
—dFE dt
<8E or! >
The change of the area d.A is then the sum of all these parallelograms along the trajectory:

dp
dA_—dE]{< Pt 8E>dt

where the integral is taken along the trajectory of energy E.
Using the Hamiltonian equations of motion ¢ = aH and p =

OH 0qg OH Op
_ E?{ i1 o9q
dA=d <8q8E+8p8E>dt

where the integral is taken along the TRAJECTORY of energy E.

The Hamiltonian is the function of coordinate ¢ and momentum p. The Hamiltonian in
the last formula is the Hamiltonian on the trajectory. The trajectory depends on the energy
E, so we have H(q(t, E),p(t, E)). This function does not depend on time ¢, as it is conserved.

_37H

ag Ve get
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Moreover, the value of the Hamiltonian on the trajectory is energy! So
E = H(q(t, E),p(t, E))
Differentiating the above equation with respect to E using the chain rule we get
_ dH(q(t, E),p(t,E)) OH 0q OH Jp

! dE " 9q OE ' 0p OF

So we get
dA = dEfdt _ TdE.

where T is time which it take complete the closed trajectory — this is the period of motion!
Thus we have our Area Law: A

= =T(B).

e In particular for oscillator we saw that A = 27FE/w = ET.
Notice, that all the theorems/laws considered in this lecture are valid for ANY Hamilton-
ian! They are not a consequence of some properties of some particular Hamiltonian. They
are consequence of the Hamiltonian mechanics itself.






LECTURE 38
Adiabatic invariants. For self-study.

We want to consider the following problem:

e We have a conservative 1D system with slowly varying parameter.

e The system is described by a Hamiltonian H (p, q; \), where X is a parameter, say a
spring constant, etc.

e The system undergoes a periodic motion with some period 7" which depends on
energy E and the value of the parameter \.

e We now start to slowly change the parameter A\ as a function of time.

e What can we say about the motion?

Before we do anything we need to understand what does it mean to change the parameter
“slowly”. The natural definition is that the change of the parameter A\ during one period
T is small in comparison to the value of the parameter itself:

d\
7% <
ar S

Rewriting this as

T < \A

we see, that there are two vastly different time scales: T'— typical time for the motion; A/ A
— typical time of change of the parameter \.
What do we expect:

o If the parameter is a function of time the energy is no longer conserved.

e The rate of change of the energy averaged over the period of the motion will be very
slow. ' '

e The averaged rate of change of the energy will be proportional to A. If A =0 — the
parameter is constant — then the energy does not change, it is conserved.

So we have rapid oscillations and slow change of the parameter. Let’s compute how the
energy is changing. Energy is the value of the Hamiltonian on a trajectory.
dE (OH _ (OH dA
dt  \ ot oA dt’
P.g P.g

Where in the RHS in (%—Ij) we must substitute the solution of the equation of motion p(t)
P
and ¢(t). The p and ¢ are changing rapidly with time — the typical time of change is the

period T. We want to average the above expression over the period 7. As % almost does

dt
191
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not change during the period we can take it out of the averaging
dE  d\ (OH
o d (m) q
While A in % is changing just a little during the period we can do the averaging in %j{{
assuming A to be constant.

e So from now on we can consider the Hamiltonian system with constant \. Which
also means constant energy F.

8H T/ <6H (8))\(),/\)> i

PgE
According to the Hamiltonian equation (remember A is fixed)

H d
g = <8> , or dt= c
QA (

The averaging means

op OH/Op),\p
so we have
T OH /oA
S P SR L PR
8H/(9p) AE 0o O\ (aﬂ/ap)q’)\ﬂ

where § means integrating there and back. We thus have:

_ (0H/OX), .

dE _d\ Y Qs . da

dt dt ¢ (8H/3p)q/\

In the RHS the integrals must be taken on some particular trajectory. The trajectory
depends on the energy E and on the parameter .

e This is an important point. All the integrals in the RHS are taken along a trajectory
at fixed F and fixed \!
e So we solve the Hamiltonian equations for some fixed £ and A, and find p(t; F, \) and
q(t; E,\) — this is a parametric form (¢ is a parameter) of a phase space trajectory
for given £ and .
e On this trajectory the momentum p can be considered to be a function of the coor-
dinate ¢. The phase space trajectory is given by p(q; E, A).
Also on a trajectory, at fixed A the energy is conserved and F = H(q,p(q; E, ), A) Taking
the derivative of this equation with respect to A for fixed £ and ¢ we find

(90),,, " (@), (%), =
ON ) o O ) yap \ON) ’

(OH/ON), .5 (Op
(aH/ap)q,)\,E a (8)\> E.

‘95 . So together we have

or

Also on a trajectory % 6H

B af (&),

a3,

q,A
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) dE 0 d\
f(2), (2, 2)a-
oF L O\ op 4
Again, considering p as p(q; E, \), where the dependence of p on ¢ comes from the solution
of the Hamiltonian equations at FIXED E and A we can write (for fixed q) dp(q; E,\) =

(@)(M dE + (%)%E d\. (As energy is conserved, there is no distinction between E and F

or

oF
in this procedure.) The above equation then is

d
= “E. Ndg=0.
dty{p(q, , A)dgq

So the quantity

1
szf d
o paq

is called adiabatic invariant. This quantity does not change during the adiabatic change of
the parameters.
Let me repeat the story:
e We have a conservative 1D system with.
e The system is described by a Hamiltonian H(p,q; \), where X is a parameter, say a
spring constant, etc.
e The system undergoes a periodic motion.

e The Hamiltonian equations of motion for FIXED parameter A conserve the energy
E

e From the equation £ = H(p,q,\) we find p(q; E, \)
e We compute the quantity

1 1
I(E,\) = gfpdq = gfp(q; E, N)dq

Notice, that all this is done at FIXED E and A — we are solving the equations for
a purely conservative system!

e If we now start to slowly change the parameter A with time, the energy of the system
will be changing in such a way, that

I(E(t), A(t)) = const.

will remain constant.

38.1. Examples.
38.1.1. A particle in a box.

e A free 1D particle in a box of length L.

e We want to see how the energy of the particle depends on L if we slowly change L.
Namely, we start with the particle of some particular energy F at some length L.
We then slowly change the length L. How the energy of the particle will change?

We start at fixed E and L. At fixed £ the momentum of the particle is p = v2m#FE. The
adiabatic invariant then is

1
1= o §vamdg = Y2 fdg = Y21,
™ ™

21
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So the combination v/EL will remain constant if we slowly change L. So will remain the
combination EL2.

In particular, lets assume, that we slowly changed L to L + dL. As EL? = const.,
differentiating this with respect to L we find

dEL* +2FELdL =0,

or 5
dE = —2—dL.
L
Notice, that this also can be written as (£ = m;ﬂ = 1pv)
v 2p
dE = —2p—dL = ——dL.
Por T

but 2p/T is the average change of the particle’s momentum during one period, so it is an
average force f which the particle exerts on the wall. Then fdL is work which the system
did while the wall was moving from L to L + dL. Accordingly, the energy of the particle has
decreased by exactly the work the particle has done.

38.1.2. Oscillator.

The Hamiltonian is ) )
P mw”
H=-"—4+ —2z°.
2m 2

We want to see how the energy changes if we slowly change the frequency w.
Considering the motion at fixed E and w we write

p = +V2mE — m2w?a?

The adiabatic invariant is (zp = Tsz)
1, [=° E
[=—2 V2mE — m*w?a?dr = —.
27T —TE W

So if we slowly change w the energy will always stay proportional to the frequency
E~w.



LECTURE 39

Poisson brackets. Change of Variables. Canonical
variables.

e Students’ evaluations 11-20-2025 until 12-10-2025.

39.1. Poisson brackets.

To avoid the curly brackets clutter I will use the boldface letters to denote the collection of
variables: q = {¢;} etc., and restore the indexes when needed.

We want to know how some property of a system changes with time. For example one
can ask how the energy of a subset of particles changes with time as the full set is evolved
according to some Hamiltonian. Or, say, we know how to compute the magnetization of the
system if we know the momenta and coordinates of all particles in a system and we want to
know how this magnetization changes with time, etc.

So generally the problem is we have a function of all momenta p, all coordinates q, and
time t: f(p,q,t). We want to know how the value of this function changes with time on
the solutions of the equations of motion. Namely, we have a Hamiltonian H(p,q) and the
Hamiltonian equations of motion

oH . OH
api’ b= a%.

We want to solve them with some initial conditions and find the functions ¢;(t) and p;(t). We
then plug these functions in the function f and get f(p(t),q(t),t), which is now a function of
time — the value of the function f on the trajectory. We want to see how this value changes
with time.

So we want to compute %

a _ gf+z<af fp'):W@(GMH—WGH):ZHHJ}

¢ =

dt t op; " ot dq; Op;  Op; Og;

where we defined the Poisson brackets for ANY two functions g and f
dg of 09 Of

0.y =2 5,50 dam )
7 \0pi 0q;  9q; Op;

e Notice, that the Poisson brackets are defined for any two functions f and g.
195
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In particular we see, that

{pivpj} = 07 {Q’L?q]} = 07 {pwq]} = 51’,]’-
According to the definition Poisson brackets are

e Antisymmetric.
e Bilinear.
e For a constant ¢, {f,c} = 0.

o {/if2.9} = fi{f2. 9} + f2{ 1, 9}
e Jacobi’s identity. (we will talk about it later.)

39.2. Change of Variables.

We want to answer the following question. What change of variables will keep the Hamil-
tonian equations intact? Namely, we have our original variables p and q and the original
Hamiltonian H(p, q). The Hamiltonian equations are

0H . OH
Ipi’ b 9q;
We want to find the new variables P and Q (this means that the new variables are the

functions of the old variables P(p,q), Q(p,q)), such that the form of the Hamiltonian
equations for the new variables is the same:

. 0OH : OH
Q’L = a0 -Pz = — .
0P, 0Q;
Let’s consider an arbitrary transformation of variables: P; = Pi(p,q), and Q; = Q;(p,q).
We then have

i =

or

0H 0P, 8£ oP,
32% Oqr, 0q;; Opy,

P = Z

(the same for Q;) At this point I want to make the change of variables in the Hamiltonian.
For that I invert/solve the equations for the change of variables to get p; = p;(P,Q) and
¢; = ¢;(P, Q) and substitute these functions into the original Hamiltonian H(p, q)

H(p(P,Q),q(P,Q)) = H(P,Q),

and, of course, the opposite is also true

H(P(p,q),Q(p,q)) = H(p,q),

we then have by the chain rule

OH <8H8Pj+ o an> o Z(&H@P Lo aQ]->
Opr OP; Op, ~ 0Q); Opy, O, OP; Oq, ~ 0Q); Oqi

J

Substituting this into our equation for P, we get

b > KaH or, _oH an> or, <8H or, o an> apﬂ
OP; Opy, 5@;‘ Opr ) Oqy OP; Oq,  0Q); Oqi ) Opy,
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Collecting all terms with % and % and using our definition of Poisson brackets we obtain
J J

. OH oH

P = Z [8P{Pj’ P} + W{Qjaﬂ}] :
Analogously,

: OH OH

Qi = Z [W{Qﬁ Qi} + @?{Pja Qz}]

We see, that the Hamiltonian equations keep their form if

e So in order for the Hamiltonian equation to have the same form in the new variables

the Poisson brackets of the new variables must be the same as the Poisson brackets
of the old variables.

e Notice, that this statement DOES NOT depend on the Hamiltonian.

39.3. Canonical variables.
The Poisson brackets

{P“PJ} =0, {leQJ} =0, {P“Q]} :5i,j'
are called canonical Poisson brackets.

The variables that have such Poisson brackets are called the canonical variables, they are
canonically conjugated. Transformations that keep the canonical Poisson brackets are called
canonical transformations.

e Non-uniqueness of the Hamiltonian.

e Coordinates and momenta obtained from Lagrangian are always canonically conju-
gated.

e L. =pg¢— H only if p and ¢ are canonical variables.

e Canonical Poisson brackets are encoded in the pg term.






LECTURE 40

Poisson brackets structure. How to compute Poisson

40.1.

brackets for arbitrary functions.

Students’ evaluations 11-20-2025 until 12-10-2025.
Thanksgiving. Reading day.

Hamiltonian mechanics

The Poisson brackets are property of the phase space and have nothing to do with
the Hamiltonian.

e The Hamiltonian is just a function on the phase space.
e Given the phase space p;,q;, the Poisson brackets and the Hamiltonian, we can

construct the equations of the Hamiltonian mechanics:

Notice, that in this formulation there is no need to distinguish between the coor-
dinates and momenta. The equations for both are exactly the same. The only
difference between them is in the canonical Poisson brackets:

{pupj} =0, {%q]‘} =0, {mej} = 0i-

So for N degrees of freedom we can use & ...&y instead of q;...qny and p;...py,
with given Poisson brackets {&;,;}, which do not have to be canonical.
The equations of motion are then

Time evolution of any function f({{},t) is given by the equation

i of
%_a+{]{,f}.

difference between the full and the partial derivatives!

40.2. New formulation of the Hamiltonian mechanics.

Here is the new formulation of mechanics:

We have a phase space with coordinates &;, where ¢ = 1...2N for N degrees of
freedom.

199
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e This phase space is equipped with Poisson brackets: {&;,&;}. What it means is that
for any two coordinates ; and §; we know a function {&;,{;} which depends on two
indexes ¢ and 7 and of all the coordinates.

e These functions, the Poisson brackets, must satisfy the following axioms

— Antisymmetric.

— Bilinear.

— For a constant ¢, {f,c} = 0.

—{fifo, 9} = fillfe, g} + oA 1, 9}

— Jacobi’s identity. (we will talk about it later.)

e Notice, that the axioms are formulated for ANY /arbitrary functions on the phase
space. So they are the property of the phase space itself.

e Any function on the phase space H(€,t) can be a Hamiltonian (which function you
take as a Hamiltonian depends on the problem you are solving.)

e Time evolution of any function f(&,t) is given by the equation

daf _of
dt ot LT
In this formulation the phase space and the Poisson brackets play the major role. They are
independent of Hamiltonian (the are defined before the Hamiltonian even introduced) If we
know the Hamiltonian we can also construct the Hamiltonian equations of time evolution of
any function.
In particular the time evolution of the Hamiltonian itself is given by

dH _9H OH

R s

as {H, H} = 0 due to antisymmetry of the Poisson brackets. So if the Hamiltonian does not
explicitly depend on time, then it is conserved on the trajectories.

e In this formulation we separated the properties of the phase space (the Poisson
bracket structure) from the Hamiltonian itself.

e Canonical Poisson brackets is just one example of the possible Poisson bracket struc-
ture. (In some sense, this is analogous to the statement that the Euclidean geometry
is just one example of all possible geometries.)

e The Jacobi identity puts a very strong restriction on all possible Poisson brackets
structures.

40.3. How to compute Poisson brackets for any two functions.

In order to use our new formulation we need a way to compute the Poisson bracket {f, g} of
any two functions f and g on the phase space if we know all {;,&;}.
We know how to do that if the Poisson brackets are canonical

_ 1 v _~N~(999f 99 0f
{pzap]} - 07 {QMQJ} - 07 {pqu} - 61,]7 {g7f} - ; <apz aqz aqz ap’L)

However, in general the Poisson bracket {¢;,§;} is the function of all the phase space coor-
dinates. We only require that all the properties listed in definition hold. We do not assume
that the Poisson brackets are canonical!
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The answer is: 95 0
_ 9799 ;¢ ¢
{f’g}_ 851 agj{glvgj}

(summation over the repeated indexes is implied.) Notice the order of indexes. It is impor-
tant.

e Notice, that in case of canonical Poisson brackets this formula give the expected
result.
Let’s prove this formula.
e We start with the Poisson bracket of {;, g}, where g is an arbitrary function on the
phase space (for simplicity we take that g does not depend on time explicitly).
e In order to compute it we consider {; as our Hamiltonian. This Hamiltonian then

gives the time evolution
dg
I {& 9}

On the other hand, by the chain rule
dg  9gd&  Og

at =g at g S
e Comparing the two results we see, that
dg
{é'jug} - ai&{gjagz}
e To compute the Poisson bracket {g, f} we consider the function g as the Hamiltonian,
then if
e On the other hand, by the chain rule
df _ofde _df, ., 0f oy
dt — 0g dt 04 o8 = 9¢; 3&{5”&}
so that of 0
_ 91 99 ¢ ¢
{fa g} - 65] afz {537 é-z}

(take notice of the order of indexes, it is important as the Poisson brackets are
antisymmetric. )
e Using this rule we see, that if all the requirements for the Poisson brackets are
satisfied for all {¢;,¢;}, then these requirements are satisfied for any functions f and
g.
There is one more identity the Poisson brackets must satisfy — the Jacobi’s identity.






LECTURE 41
The Jacobi’s identity.

e Students’ evaluations 11-20-2025 until 12-10-2025. (5)

In this (and the next) lecture we discuss the last axiom: the Jacobi’s identity.
Our new formulation of the Hamiltonian mechanics is:

e We have phase space with coordinates &;.
e The phase space equipped with the Poisson brackets structure {;,&;}. The Poisson
brackets are functions on the phase space.
e The Poisson brackets must satisfy a set of axioms discussed before.
— Antisymmetric.
— Bilinear.
— For a constant ¢, {f,c} = 0.
= A{fifos g}t = filfr g} + Lol f1, 9}
— Jacobi’s identity. (we will talk about it later.)
o If we know the Poisson brackets for the phase space coordinates {;,{;} we can
compute the Poisson brackets of any two functions on the phase space

af Oy
{fag} - 675]651{53751}
(Einstein notations are assumed. Take notice of the order of indexes, it is important
as the Poisson brackets are antisymmetric.)
e Any function on the phase space (and time) can be a Hamiltonian. (Which function
you use for a particular problem depends on the problem.)
e In order to define mechanics (time evolution) we MUST have both: the phase space
with the Poisson brackets! and the Hamiltonian.
o If the Hamiltonian H(&,t) is given and the Poisson brackets are defined, then for
any function g(&,t) we can write the equation for time evolution of this function
dg _ 9g
— =—+41{H,g}.
il G
e In particular the Hamiltonian equations of motion in the phase space are

I emphasize again that in order to define the Hamiltonian time evolution we MUST have two
pieces:

e Phase space with the Poisson brackets structure.
203
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e Hamiltonian.

41.1. Sequential evolution by two Hamiltonians.

Here we will start the discussion of the Jacobi’s identity. This axiom is formulated as follows:

e The Poisson brackets must be such, that for ANY three functions f, g, and h, the
following must be true

{f {9 h}y +1{9.{h, [}} +{n.Af . g}} = 0.

As with any axiomatic definitions the main requirement is that the set of axioms was
minimal and self-consistent. An addition of one more axiom (Jacobi’s identity in this case)
must be strongly justified by showing that without it the requirement of self-consistency will
not be met. Self consistency of the set of axioms means that if we compute the same quantity
in two different ways following the axioms we will always come to the same result. So in
order to show that the Jacobi’s identity is needed I will show that it ensures that a certain
calculation done in two different ways gives the same result.

The calculation we need to consider is the change of a function ¢ due to sequential
evolution by two different Hamiltonians.

Let’s consider a function g(£). We start at some time ¢, then we evolve the function g(&)
with time in two steps: first we evolve it for small time dt; with a Hamiltonian H;; after
that, starting from time ¢ + dt; we evolve it for small time dt, with the Hamiltonian Hy,. We
want to compute g(t + dt; + dty) up to the SECOND order in dt;, dt,.

g(t) B gt + dty) 22 g(t + dty + dt,)

e The calculation up to the SECOND order is required, as only in the second order
we may have terms proportional to dt;dty — these are the terms which “couple” the
two evolutions with different Hamiltonians. As dt; always comes with H; and dt,
with Hs, the first order terms will have H; OR Hs, but never both together.

Before we proceed I want to point out that in the case we considering the phase space with
its Poisson brackets is defined, but there are two Hamiltonians. The time evolution, which

means full time derivative, depends on the Hamiltonian. So instead of writing % I will use

the notation % . to keep the notion of which Hamiltonian gives the time evolution.

Step 1: We use the Taylor expansion up to (dt;)?
(dt))* d

2 dt

a
dt
1

gt +dtr) = gt) +dts L g(t) +

g(t)
dt|,,

H H,

where % ,, neans the full time derivative induced by the Hamiltonian H;. Using
1

the rule for the Hamiltonian time evolution of ANY function we find

(dt;)?
2

where the subscript ¢ of the Poisson bracket means that the bracket must be com-
puted at time ¢ — this is what the Taylor expansion demands.

g(t+dty) = g(t) + dt:{H1,g}¢ +

{Hi,{H1,9}}
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Step 2: After time t + dt; we need to use the Hamiltonian H, for the time evolution. Using
the Taylor expansion over dt, at time t 4+ dt; we have

(dt2)* d
2 dt

d

d
g(t +dty +dty) = g(t +dty) + dty —|  g(t+dty) + o
Hs

dt|,,

Hoy

Now I use our result of Step 1 for g(¢+dt;) and keep only the terms up to the second
order in time increments dt; and dt,.

(dt;)?
2
(dts)?
2

{Hlvg}t

g(t +dty +dty) = g(t)  +dt {Hy, g} +

{Hh {Hlag}}t

+dto{Hy, g} +

{Hz-/ {HQ, 9}}L

d
dtidty —
+at, th

Notice, that the blue terms in the right hand side have only H; and dt;, the red terms have

only dty and Hs, so they do not reflect the fact that the time evolution was done sequentially
by two different Hamiltonians. Only the very last term % . {H1, g}+ depends on both H;
2

and Hy — this is the term we want to concentrate on. I want to compute it in two different
ways.

H>

Way 1: Using the Hamiltonian rule for the time evolution under the Hamiltonian H, we find

a {Hl,g} = {H2,{H1,9}}-

Hs

dt

Way 2: As we consider everything at THE SAME time ¢ and the Poisson brackets are bi-
linear, I must be able to write

d d
H =< —| H H, —
{ 179} {dt i lag}+{ 1 dt

The result for g(t + dt; + dty) must not depend on how I do the computation, so we must
have

4
dt

g} — ({Ho )0} + (s, {Hayg})

Hs

{{H27 Hl}a g} + {Hla {H27 g}} = {H27 {Hb g}}a
or using antisymmetry of the Poisson brackets we rewrite the above in a more symmetric
way:
{H1,{Ha, g}} + {H2, {9, H1}} + {9, {H1, H2}} = 0.
As ANY function on the phase space can be considered as a Hamiltonian, this rule MUST
be satisfied for ANY three functions.

41.2. The axiomatic definition of the Poisson brackets.

Given a 2N dimensional phase space & the Poisson brackets must satisfy:
Antisymmetric.

Bilinear.

For a constant ¢, {f,c} = 0.

For any functions fi, f2, and g the following is true {f1f2, 9} = fi{f2, 9} + fo{f1,9}-
e Jacobi’s identity: for ANY three functions f, g, and h, the following must be true

{f g h}}y +{9.{h, f}} +{n.{f. g}} = 0.
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The statement is that if the axioms are satisfied by the Poisson brackets of the phase
space coordinates {;,&;}, then they will be satisfied for arbitrary functions.

If we know the Poisson brackets {;,&;}, we can compute the Poisson brackets of any two
functions f and g:

of 0
(1.9} = g2 s (6}

(Einstein notations are used, summation over repeated indexes is implied.)

41.3. Commutation of Hamiltonian flows.

C{Hl Ho)

For a Hamiltonian H we can introduce the operator 5 g of the Hamiltonian flow by the
following definition: for any function g

Cug = {H, 9}
Using this definition for one of the coordinates (plugging &; instead of g) we see, that f & =
{H,&} = % So this Hamiltonian flow induces the Hamiltonian vector field we considered

earlier.
Let’s now consider two Hamiltonians H; and Hs and compute the commutator of their
flows. Namely, for any function g we have (using Jacobi’s identity)

éH15H29 - 6H2€H1g = {Hh {H27g}} - {H2’ {Hlag}} = {{HhHQ}?g} - é:{Hl,HQ}g'

As this is true for any function g we have

Cr, Qo — CraCrry = Gy Ha) -
So the commutator of the Hamiltonian flows is also a Hamiltonian flow.
On the figure
e The red dashed lines show the flow ¢ 1, , the blue dashed lines show the flow ¢ Hy-
e The operator sz éHl shifts the point A along ABD path.
e The operator (Hl <H2 shifts the point A along AC'D’ path.
e So the operator Cg, Ca, — Ca,Car, shifts point D’ to point D.
e This shift can be described by another Hamiltonian flow C{ Hy,Ha)-
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Thus the space of the Hamiltonian vector fields is closed under the commutator — the
commutator of two Hamiltonian vector fields is a Hamiltonian vector field.






42.1.

LECTURE 42
The Jacobi’s identity. Proof.

Students’ evaluations 11-20-2025 until 12-10-2025. (8)

Formulation of the Hamiltonian mechanics.

We have phase space with coordinates &;, ¢ = 1...2N, where N is the number of
degrees of freedom.
The phase space equipped with the Poisson brackets structure {¢;,&;}. The Poisson
brackets are functions on the phase space.
The Poisson brackets must satisfy a set of axioms discussed before.

— Antisymmetric.

— Bilinear.

— For a constant ¢, and any function f(&€,¢) on the phase space: {f,c} =0.

— For any three functions f1(&,t), f2(€,t), and g(&, t) on the phase space: {f1f2, g} =

fi{fos g}t + ol frs g}
— Jacobi’s identity: For any three functions f(&,t), g(&,t), and h(&,t) on the phase
space the following identity holds {f,{g,h}} + {g,{h, f}} + {h, {f,9}} =0

If we know the Poisson brackets for the phase space coordinates {§;,¢;}, we can
compute the Poisson brackets of any two functions f and g:
RS
9&; O€;
(Einstein notations are used, summation over repeated indexes is implied.)
Any function on the phase space (and time) can be a Hamiltonian. (Which function
you use for a particular problem depends on the problem.)
In order to define mechanics (time evolution) we MUST have both: the phase space
with the Poisson brackets! and the Hamiltonian.
If the Hamiltonian H(&,t) is given and the Poisson brackets are defined, then for
any function g(&,t) we can write the equation of Hamiltonian time evolution

dg Og
2L IH g).
i 8t+{ .9}

In particular the Hamiltonian equations of motion are

209
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Using the definition of the Poisson brackets in the canonical coordinates p and q
of 9g  0f dg
U9y =250 00~ a0.0m
~ \0p;i 0q;  Oq; Op;

it is easy, but lengthy to prove, that for any three functions f, g, and h and canonical Poisson
brackets:

{f7 {ga h}} + {ga {h7 f}} + {h, {f,g}} =0

As it holds for any three functions this is the property of the phase space and the Poisson
brackets.

e However, we do not want to restrict ourselves to use the canonical Poisson brackets.

42.2. Proof of the Jacobi identity.

First we need to establish what we want to prove, after all the Jacobi identity is the part
of the axiomatic definition of the Poisson brackets. The statement we want to prove is the
following:

o If the Jacobi identity is satisfied by the Poisson brackets of the phase space coordi-
nates, then it is satisfied for any three arbitrary functions.
e So we want to proof that if for any 7, j, k

(& A& &3+ {& {6 &3+ {& {6,631 =0
then
{f {9, 3} +{g.{h, [} + {h.A{f.9}} =0
for any functions f, g, and h.

We will prove this statement in two steps.

We have the phase space coordinates & ... &y and their Poisson brackets {¢;, &;}.

Consider the first term in the Jacobi’s identity {f,{g,h}}. According to our rule of
computing the Poisson brackets for arbitrary functions we have

dg Oh
g, h} = f 752
{ } aé-] agl{ J }
e Remember, we are using the Einstein notations!

Using this rule first for the Poisson brackets of functions f and {g,h}, and then again the
Poisson brackets of functions g and h we get

(o = 51 (petad) ey = 322 (816,63 ) (6
9 (g oh of dg oh
o = 2 (o) Jiened it + o T (206,63 (66,

e Notice the essential difference between the two terms in the RHS of the above ex-
pression.

e The first term contains the second derivative of one of the functions g or h.

e The second term contains only the first derivatives.

e As the functions f, g, and h are arbitrary, the two terms cannot cancel each other.
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e It means that we can consider all the terms in the full expression {f,{g,h}} +
{9, {h, f}}+{h,{f, g}} with the second derivatives separately from the terms without
second derivatives.

Notice also, that the second term contains the derivative of the Poisson brackets of the
coordinates. So if the coordinates Poisson brackets are constant (as it is in canonical Poisson
brackets, for example), then the second term is zero.

e Also notice, that if the coordinates Poisson brackets are constant, then the Jacobi’s

identity for the coordinates {&;, {&;, &k} 4+ {85, {6k, &} +{&k, {&, &} = 0 is satisfied
trivially: all inner Poisson brackets are constants, so each term is zero.

So in the first step we consider the first term and in the secon step the second term.

42.2.1. The first term in {f, {g,h}}.

Taking the derivative in the first term we find

of 0%g Oh df dg O*h
¢, 06,06, 0¢; ¢, 0€; 06,06

Cycle permutations of the functions f, g, and h gives the other two terms

{g.{h, [}} = .
{hAf 93} =

(I specifically do not write these expressions explicitly, as we will not need them!)
We want to show that the sum of all these terms is zero for arbitrary functions f, g, and
h. In order to simplify the calculations we notice the following:

{f{g,n}} —

{6 & H& & +

{6, & HEp: &}

e FEach term has one second derivative of one of the functions.
e The second derivatives come from the inner Poisson brackets in each term.
e The second derivative of each function f, g, and h appears two times in the sum

{f {9, h}} +{g.{h, f1} +{h{f. 9}}

For example, the second derivative of the function i comes one time from the term {f, {g, h}}
and and the other time from the term {g, {h, f}}, and does not come from the term {h, {f, g}},
as in this term A is not in the inner Poisson bracket. So in the whole sum of Jacobi’s identity
the second derivative of the function A will appear twice. The same is true for the functions
f and ¢g. As the functions f, g, and h are arbitrary and independent form each other, in
order for the Jacobi’s identity to hold the terms that have the second derivative of the same
function must cancel each other!

In order to find this other term with the second derivative of h we simply take the first
term in the expression for {f,{g,h}} and cyclically permute the functions f, g, and h. We
then get

dg 0*h Of
08 06,06, O€;
This sum MUST be zero.

e Remember, we are using the Einstein notations!

e The summations of all the indexes is assumed.

e It does not matter which latter we use to label the indexes, as we sum over all their
possible values anyway.

af dg 0*h
0§, 0€,; 0€;0¢;

{6, §HEp & + {6 & HE &)
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e So we can relabel the indexes in the first term in such a way that all the derivatives
in the first and the second term become the same.
e Then take the first term above an relabel the indexes according to the scheme

p—i, J—p, =1l =7

We get
dg O0*h Of af g 0°h
852 a&agj aﬁp{&’gp}{&’&} + agp a& 8&85 {fz,fj}{fp,fl}

We see, that now the only difference between these two terms is that the first one has
{&, &y}, while the second has {&,,§}. As the Poisson brackets are antisymmetric the two
terms are the same, but with the opposite sign. So the sum of the two terms is zero.

The other terms are obtained by a simple cyclic permutation of the functions f, g, and
h. So if the second derivative terms of h cancel each other the other terms will also cancel
each other. Then the total sum of all therms is zero, as it should be by Jacobi identity.

So we proved, that in the case {§;,{;} = const the Jacobi identity is satisfied for any three
functions f, g, and h.

e Notice, that in this step we did not need the Jacobi identity for the coordinates.
e On the other hand if {¢;,§;} = const the Jacobi identity for the coordinates are
satisfied automatically, as the inner Poisson brackets are constant.

42.2.2. The second term in {f,{g,h}}.

We computed before

of & (g oh Of dg Oh
Ul = 52 (200) (6 oMo + 9L 22 2L (266} (66,

We showed, that the first terms (all the terms in the full expression {f, {g,h}}+{g,{h, f}} +
{h,{f,g}} that contained the second derivative of one of the functions) cancel each other.
We did not even needed the Jacobi’s identity for the coordinates to prove that.

Now we consider the second term.

e The second term does not have a second derivative of any of our functions f, g, and
h.

e So this second term does not change the mechanism by which the first terms cancel
one another.

Let’s write the sum of all three of these terms obtained by cyclic permutation of the functions
f, g, and h.

Of 0g oh 0{&:, &5} dg Oh Of d{&, €} Oh Of 8g 9{&, &}
85p 857, afj 85 —e {gp’gl} afp 85@ 85] 85 — {gpagl} agp 651 85] 85 —I {5}27&}

e We relabel the indexes in the last two terms in such a way, that all terms have the
same derivatives.
e [t means, that in the second term we relabel

J =Pt = J,p—>i.
e In the third term we relabel

L= p,J = Lp—]
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We get

3{@7 5p 9{&” §i

df dg oh (0{&,&;} } }
875},8518753 ( (95 {61%5 } + {gzafl} + {gjvfl}>

As the functions f, g, and h are arbitrary in order for the above to be zero the expression in
the brackets must be zero. Let’s then concentrate on the term in the brackets. In this terms
we still need to sum over the index /.

To start with we take a hard look at the first term in the brackets

ats 5]}{& 6.

Remember, that the Poisson bracket {§p, F } = a—&{gp, &} for ANY function F' on the phase
space. So treating {;,{;} as some function on the phase space we get

8{5275 }
— {gpagl} = {€p7 {gz,gj}}
Applying this trick to every term in the brackets we get

{6661 + {648, & 16 {6, &3 )

But this is zero by the Jacobi identity for the Poisson brackets!
So we proved, that if the Jacobi identity is satisfied by the Poisson brackets of the phase
space coordinates, then it is satisfied for any three arbitrary functions.
e As it holds for any functions this is the property of the phase space and the Poisson
brackets themselves.






LECTURE 43
Integrals of motion. Angular momentum.

e Students’ evaluations 11-20-2025 until 12-10-2025. (12)

43.1. Hamiltonain dynamics.

e For N degrees of freedom we have 2N dimensional phase space &, 1 =1...2N.
e Phase space means that it is equipped with Poisson bracket structure {&;,§;} with
the following properties
— Antisymmetry.
— Bi-linearity
— Zero for constant.
— Leibniz rule.
— Jacobi’s identity.
e Any function on the phase space can be a Hamiltonian.
e For a given Hamiltonian H, the time evolution of any function f(&,¢) on the phase
space is given by

df  of
o T {H, [}
including .

e We can compute the Poisson brackets for any two functions on the phase space f(¢,t)
and ¢(&,t) using
af 9y

{f.9} =

43.2. Time evolution of Poisson brackets.

Consider two arbitrary functions f({{},t) and g({{},t). We want to compute the full time
derivative of their Poisson bracket

d

It means, that

e we have a phase space with Poisson brackets.
e We also have a Hamiltonian.
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e We solve the Hamiltonian equations of motion
subject to some initial conditions, and find ;(¢) for all is (we do not distinguish
between coordinates and momenta)

e We compute the Poisson bracket for some known functions on the phase space f and
g which also may depend on time explicitly: {f, g} — it will be some function of all

¢ and time.
e We substitute the solutions £() in this function and then take the time derivative.

d

Before we do that I want to compute a much simpler

0

This is partial derivative. So we just consider the explicit dependence of {f, g} on time. This
explicit dependence comes from the explicit time dependence of f and g.

As it is only a partial derivative, we keep fixed all other variables except ¢, so I will leave
them out to shorten the formulas. According to the definition of partial derivative we need
to compute:

{ft+ A1), g(t +At)} —{f(t),9(t)}
={ft+At),g(t+ At)} —{f (1), g(t + At)} +{f(t), g(t + At)} = {f(£),9(t)}
= {f(t+ A1) = f(t),g(t + At} +{f(2), g(t + At) — g(£)}.

Dividing this by At and taking the limit At — 0 we get

0 of dg
Notice

e The only property of the Poisson brackets which we used is its bi-linearity.

Now Let’s compute the full time evolution of the Poisson bracket { f, g} under the Hamil-
tonian H.

U0 = oy () = { S+ {1 G4 (0 ) + U0

of 9y
= H H
{at +1 ,f},g}+ {f, 5 1 ,g}}
Notice, that in this derivation we used

e the Jacobi’s identity,
e the antisymmetry,
e and the bi-linearity
of the Poisson brackets.
So we get

d df dg

e Notice, that these are the full derivatives, not partial!!
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43.3. Integrals of motion.

A conserved quantity is such a function f(€,¢), that % = 0 under the evolution induced by
a Hamiltonian H.
The Hamiltonian time evolution of any function on the phase space is given by
df _of
T Yy
It means, that the function f(&,t) is a conserved quantity if and only if

of
ot
Notice, that we may not need to solve any equations in order to check if a function f(&,1t)
is conserved! If the function does not have explicit time dependence, then the check is
{H, f} = 0 (In quantum mechanics the analog of this rule is the operator of a conserve
quantity must commute with the Hamiltonian).
Examples:

+{H,f} =0

e Energy.

If the Hamiltonian does not explicitly depend on time, then Energy is conserved,

as {H, H} = 0 by antisymmetry.
e Generalized momentum.

If we start generalized coordinates ¢; with the Lagrangian L(q, q), then the gen-
eralized momenta are given by p; = %' The phase space of all coordinates and mo-
menta is then equipped with the canonical Poisson brackets {¢;,q;} =0, {p;,p;} =0,
and {pi, q;} = 0.

we can compute the Poisson bracket of the momentum p; with the Hamiltonian

oOH oOH

79 H = A5 i dir = S

{p:;, H} aqj{p a4} 94,

So if the Hamiltonian does not explicitly depend on a coordinate g; (‘g—i = 0), then
the corresponding momentum is conserved p; = const.

Consider now two conserved quantities f(&,t) and g(€,t), then

d (df dg\

So if we have two conserved quantities we can construct a new conserved quantity! Sometimes
it will turn out to be an independent conservation law!

43.4. Angular momentum.

This is an example of a case where the Poisson brackets do not have a global canonical form.

43.4.1. Poisson Brackets.

—

Let’s calculate the Poisson brackets for the components of angular momentum: M = 7 x p.
Coordinate 7 and momentum p are canonically conjugated so

{p', 1’y =65, Py ={rr}=0.
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As our coordinates and momenta are canonical, we can use the definition of the Poisson
brackets through derivatives — the way they were introduced from the very beginning. How-
ever, I will show that we can compute the Poisson brackets between the angular momentum
components algebraically — using only the properties of the Poisson brackets.

Using M = ekripF we write

(M, M7} = R mnfptph pmpr} = e (P ph et 4 pR i rmpty) =
ek emn (rlp{ph, vy el {pk, pm 4 php ey () =
cilk cgmn (Tlpn(5km B pkrm(;zn) _ (ez‘lksejkn o Eiknejlk) pnrl _ pz'Tj B rz’pj — ik prk
(T used ekeink = §id§in — §in5li). In short the result is
(M, M7} = —€ikpr*
Notice:

e The components of the angular momentum construct their own phase space closed
under the Poisson brackets!

e Unlike the usual phase space this phase space looks odd (3) dimensional!

e This puzzle is resolved by the following observation:

{M?, M?} = {M, M*M*} = 2{M*, MFYM* = —26™ M7 M*F = 0,

e So for any Hamiltonian H on this “angular momentum phase space” which means

that H depends on the components of M only, the M? will be conserved!

dM? . oH . -
={H, M?*} = —{M*' M?*} =0.
=1 Y=gt }

e So in 3D space of M all motion will happen on the spheres M? = const..
e The sphere is 2D — even dimension.
e There is no way to construct global canonical coordinates on this space.

43.4.2. Spin in magnetic field.
We can now consider a Hamiltonian mechanics, say for the Hamiltonian
H=h-M=h;M.
In this case
M= {H, M} = h{M?, M"} = —h;e?™* M*,
or '
M =hx M.

Notice:

o M2=2M - M =2M - [h x M| =0.

e Energy is conserved, so h-M = const. (one can check, that h-M = 0). The projection

of M on the direction of h does not change with time.

e This equation (Bloch equation) describes a vector M rotating with constant angular
velocity around the direction of h.
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43.4.3. Euler equations

Consider a free rigid body with tensor of inertia I. The Hamiltonian is just the kinetic energy.
1. . :
H= 5J\W(I—l)ijzw.
The equations of motion then are
. 1 . N . | A ) ) ~ )
M* = {H, M} = S{M", MU )i M7 4 S MAT )i { M7, MP} = M (1) M7
Let’s write this equation in the system of coordinates of the principal axes of the body. Then
the tensor of inertia is diagonal, and for M, component we get

M*® = ML MY — MYI_'M?.
or, using that M* = [,,Q)* etc we get
1..Q% = (I, — I,))¥QY,
and two more equations under the cyclic permutations.

e Three degrees of freedom. We must have three second order differential equations
for complete description. We have only three first order equations. Three more first
order equations are missing.

e The equations are written for the components of Q) in the non-internal system of
coordinates which is rotating with 0.

e In order to find the orientation of the rigid body as a function of time we need to

write and solve three more first order non-linear differential equations.
e We will do it at some point next semester.






LECTURE 44
Hamilton-Jacobi equation.

e Students’ evaluations 11-20-2025 until 12-10-2025.

This is the last lecture for the class. In this lecture we will tie together the concepts of
Action, Lagrangian, and Hamiltonian.

44.1. Action on trajectory.

We have N degrees of freedom and N generalized coordinates ¢;, t = 1... N (we will denote
them collectively as q). Consider an action

t1
S = L(q,q,t)dt, ¢(to) = qio,  @(t1) = qin-

to

Consider the value of the action on the trajectory as a function of ¢;; and ¢;. What it means
is the following:

e We have an action and thus we have a Lagrangian.
e We write the Lagrangian equations of motion with the boundary conditions: ¢;(to) =

gio and q;(t1) = gia-
e We solve these equation of motion (with the boundary conditions)

doL oL
dtdg;  0q;

0, q(to) =qo, a(t1) =qq.

and find the functions q(¢; o, qo, 1, q1) — those are coordinates as function of time,
the boundary conditions are the parameters the function depends on.

e We substitute those functions q(t; g, qo, t1,q1) into the action and take the integral
over time t.

e The result will be a FUNCTION S(to, qo, t1,q1) — the value of the action on the
trajectory. This FUNCTION will depend on tg, qo, t1, and q;.

e We are interested in how this function depends on q; and ¢; with all other parameters
fixed.

221
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44.2. Momentum. Dependence on q;.

y <~

e To simplify the calculation I will consider only the case of one dgree of freedom. If
we have N degrees of freedom the calculation is almost identical. I will simply give
the general result at the end.

We want to see how the value of the Action changes when we change the ¢;, while keeping
t1 (as well as gy and tg) fixed.

If we change the upper limit from ¢; to ¢; + dq; the trajectory will also change from ¢(t)
to q(t) + 0q(t), where dq(ty) = 0, and 6q(t1) = dg;. The change of the action then is

oL oL

t1 t1 t1
dS = | L(qg+68q.4+6¢.)dt — | L(q.q.t)dt = “ZSq(t) + ==64(t) | dt =
S \ (q+dq, ¢+ dq,t) /to (¢,¢,1) /to (aq Q()+8q. q( ))

n (0L  dOL oL _ | oL |"
— — —— | dq(t)dt + —=dq(t)| = —=dq(t)| = p(t1)dq:.
[0 (G - %5 ) o+ St = Sestv)] = o
where we used ‘g—s — %g—éf =0, as ¢(t) is the solution of the equation of motion. So we have
05 _
dqg b

This is the result for the case of one degree of freedom. If we have N degrees of freedom,
then

s
aql _p’by

t=1...N.

e | want to emphasize ones more: S here is not a functional! We already substituted

the solution in. It is here the function of the upper (and lower) boundary conditions.

e The momenta p; thus obtained are the canonical momenta, as we used p; = g—;.
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44.3. Energy. Dependence on ;.

oq(t1) dtl

—q(ty)dt;

t

e To simplify the calculation I will consider only the case of one dgree of freedom. If
we have N degrees of freedom the calculation is almost identical. I will simply give
the general result at the end.

We want to see how the value of the Action changes when we change t;, while keeping ¢;
(as well as gy and tg) fixed.
Consider an action
t1

S= [ L(gqt)dt, q(to) = qo0, q(t1) = q.

to

Consider the value of the action on the trajectory as a function of t;.

Notice, that ¢; is there in two places: as the upper limit of integration and in the boundary
condition. We do not change the value of ¢ = ¢; at the upper limit! but the trajectory changes!.
So we have

t1+dt t
St +dty) = / U L(q 4 8q, G+ 8, )dt = L(t))dt; + / " L(q+ 84, + 8¢, t)dt.
to

to

Using the usual trick we will get
dS = L(t1>dt1 + p(5q|i; = L(tl)dtl —i—p(t1)5q(t1) = L(tl)dtl - p(tl)q(tl)dtl,

where I used dq(t1) = —q(t1)dt; — see picture.
So we have

95 _

ot

In the case of N degrees of freedom the result is exactly the same.

—H.

e Again, I emphasize, that S is not the functional here. It is the value of the functional
on a trajectory. As such it is the function of the initial and final conditions.

e Notice, that this is all on a trajectory. So in the right hand side it is the value of the
Hamiltonian on the trajectory, the energy at time t;.

Putting the results of this and the previous sections together we can write

where § is the value of the action as a function of the final coordinates ¢; and time .
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44.4. Hamilton-Jacobi equation

We have on a trajectory

oS
——=H ) 7t )
5 (g, 1)
but on a trajectory we also have p = %, SO we can write

oS oS
= og(= .

This is a partial differential equation for the function S(g,¢). This equation is called Hamilton-
Jacobi equation.

We have derived it for 1D, however, the derivation works exactly the same way for
arbitrary number of degrees of freedom.

where the bold letters mean the collection of all degrees of freedom. The solution of this
equation S(q,t) depends on N coordinates {¢;} and time t.

The function S(q,t) at any moment of time defines a N — 1 dimensional hypersurface
S(q,t) = const. in the N dimensional coordinate space — the space of all coordinates. With
time this surface changes. Omne can imagine these as propagation of wave fronts — the
Hamilton-Jacobi equation then is the non-linear wave(!!!) equation.

The momentum is the gradient of S, so it is perpendicular to the surface of S = const..
For a standard Newtonian world, where velocity has the same direction as momentum, the
rays correspond to the trajectories.

44.4.1. How to get trajectories from S(q,t). For self-study.

Let’s imagine, that we solved this equation and found the function S(q,t, ay ... ay), where

N is the number of the coordinates and «; are N arbitrary constants. Let’s see how gfi
depends on time.

108_,.828 +988_,.82S+0078_“828_8H878 ;

dtoa; Y aq00; | 0tda;  Uogda; | 0o; 0t Uogoa;  Oaq \oq ¥

. 0°S 0OH 0°S . 0°S . 0°S
=G5 90 . = q; —qj = 0.
QjaOéi 8pj 8qj8ai 8qj8al- 8qj80zi
OH

Where we used the Hamilton-Jacobi equation and the canonical Hamiltonian equation ooy =
J
¢; - So we see, that
d 08
fal -0
dt (%m

So all % do not change with time and are constants. Then the N equations
oS
80@

are implicit definitions of the solutions of the equations of motions g;(t,{a;}, {8;}) that
depend on 2N arbitrary constants, which are given by initial conditions.

=5
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44.5. Connection to quantum mechanics.

The quasiclassical approximation of quantum mechanics A — 0 transfers the Schrodinger
equation into the Hamilton-Jacobi equation. We start with the Schrodinger equation.

P .
hZ v — v
ot

The Hamiltonian operator H is constructed in the following way:

e H(p,x) is a polynomial of p.

e Substitute p — p = —iha% into the Hamiltonian and obtain the operator H =

H(p,z). This operator is called Hamiltonian operator.
Now we want to take the classical limit A~ — 0 in the Schrodinger equation. We cannot
simply put A = 0 in the left hand side of the Schrodinger equation, as h is also inside the
Hamiltonian and hence will be inside the function W.
The limit A — 0 is done in the following way:

e Consider a function U = e#S@H)_ So far S(x,t) is just some function of = and ¢.

e We first compute how the momentum operator p acts on this ¥, namely p¥ =
_Zhaj S(wt)as \1185
oz

2
e We also compute p2\IJ = —zhg PSS 4 (%) erS = —zhazs\ll + ( ) v,

- 2 2s\?
e Notice, that at h — 0 we have p°¥V — W (%) .
e It is clear, that the same will happen for any (positive integer) power of p, namely
An as\"

ath—>0wehavep\lf—>\lf<%). )
e As H(p,z) is a polynomial of p we will have HV = VH (%, ZL‘)
e Also ih%llf = —\II%—‘E.
e Consider now the Schrodinger equation.

0 ~
h—WV = HU
ot

in the limit 7 — 0 we substitute ih%llf — —\Il%‘tg and HU — UH (g—‘;, x), and obtain

oS oS
_E =H (axax> )

which is the Hamilton-Jacobi equation.

e What we have shown is that in the classical limit 4 — 0 the Schrodinger equation
turns into the the Hamilton-Jacobi equation. So the quantum mechanics becomes
classical mechanics in the limit & — 0. _

e We also notice, that the quantum mechanical wave function ¥ = e#°. For i — 0 the
main contribution to ¥ comes from the trajectories that minimize & — this is the
Hamilton principle! — the classical trajectory is the trajectory which minimizes the
Action! The origin of the Hamilton’s principle is in quantum mechanics.

Closing remarks:

e That’s it.
e Students’ evaluations 11-20-2025 until 12-10-2025.
e How much you have learned.
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