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Abstract

Empirical tests of strategy-proof mechanisms often demonstrate that agents persis-

tently report non-truthful messages. One possibility is that this behavior is consistent

with equilibrium play, albeit an equilibrium not intended by the mechanism’s designer.

While these undesirable equilibria may exist under many mechanisms, we determine

that the actual, empirical observation of such equilibria is only likely when the under-

lying social choice function violates a non-bossiness condition and information is not

interior. Our analysis introduces and relies upon an empirically-based approach to the

refinement of Nash equilibrium. A survey of experimental and empirical results on

games of this type supports our findings.
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1 Introduction

Strategy-proofness (Gibbard, 1973; Satterthwaite, 1975) requires that truthful reports be

dominant strategies in the simultaneous direct-revelation game associated with a social

choice function (scf). Despite its theoretical appeal (see Barbera, 2010, for a survey),

*Thanks to James Andreoni, Antonio Cabrales, Marco Castillo, Yeon-Koo Che, Cary Deck, Cary Fryman,
Huiyi Guo, Yuval Heller, Mark Isaac, Salvatore Nunnari, Marek Pycia, Utku Unver and seminar participants
in Boston College, NC State U., Ohio State U., UCSD, UT Dallas, U. Zurich, Georgetown/Maryland, UN
San Luis, SAET19, 7th TETC, and North American Meetings ESA 2019, COMID20, GAMES2020 for useful
comments. Special thanks to the authors of Attiyeh et al. (2000); Cason et al. (2006); Chen and Sönmez
(2006); Healy (2006); Andreoni et al. (2007); and Li (2017) whose data is either publicly available or has
been made available for our analysis. All errors are our own.

�rvelezca@tamu.edu; https://sites.google.com/site/rodrigoavelezswebpage/home
�alexbrown@tamu.edu; http://people.tamu.edu/∼alexbrown

mailto:rvelezca@tamu.edu
https://sites.google.com/site/rodrigoavelezswebpage/home
mailto:alexbrown@tamu.edu
http://people.tamu.edu/%7Ealexbrown


experimental and empirical evidence suggests that agents may persistently exhibit weakly-

dominated behavior when a strategy-proof scf is operated. This includes experiments with

a wide variety of mechanisms (Coppinger et al., 1980; Kagel et al., 1987; Kagel and Levin,

1993; Harstad, 2000; Attiyeh et al., 2000; Chen and Sönmez, 2006; Cason et al., 2006; Healy,

2006; Andreoni et al., 2007; Li, 2017; Masuda et al., 2022), survey evidence from matching

platforms (Rees-Jones, 2017; Hassidim et al., 2020), and empirical evidence from school-

choice mechanisms (Artemov et al., 2021; Chen and Pereyra, 2019; Shorrer and Sóvágó,

2022). More strikingly, studies have documented persistent weakly-dominated behavior

that supports the Nash equilibrium hypothesis and produces outcomes that differ from

those selected by the scf (Sec. 5.2). This paper identifies the conditions under which this

type of behavior may plausibly occur.

To understand why some, but not all, suboptimal equilibria of strategy-proof games

are empirically relevant, it is natural to analyze them based on an equilibrium refinement.

The popular tremble-based refinements are not suitable for this purpose. From Selten

(1975), Myerson (1978) and Kohlberg and Mertens (1986) to their most recent forms in

Milgrom and Mollner (2021, 2018) and Fudenberg and He (2021), these refinements discard

all weakly-dominated behavior as implausible (see van Damme (1991) for an early survey).1

We propose an alternative path to refine Nash equilibrium. We partition strategy space

into strategy profiles that are either plausible or implausible. Our partition is validated

by over thirty years of empirical research. Equilibria that can be approximated by profiles

in plausible strategy space are plausible equilibria; the other are not. Thus, our selection

is empirical. Data supporting a plausible equilibrium is compatible with plausible behav-

ior being played. Data supporting an implausible equilibrium rejects the hypothesis that

plausible behavior is being played.

We use a non-parametric theory, weak payoff monotonicity, to determine plausibility

of behavior. This property of the full profile of empirical distributions of play in a game

requires that for each agent, differences in frequency of play reveal differences in expected

utility. That is, between two alternative actions for an agent, say a and b, if the agent

plays a with higher frequency than b, it is because given what the other agents are doing,

a has higher expected utility than b (see Sec. 2 for an intuitive example). Weak payoff

monotonicity is satisfied by monotone noisy best-response models.2 In game experiments

repeated multiple times, where behavior has a chance to converge, monotone noisy best-

1Economic theorists have seldom addressed the plausibility of wekly-dominated behavior. There are
three notable exceptions. Nachbar (1990) and Dekel and Scotchmer (1992) observed that weakly-dominated
behavior can result from the evolution of strategies that are updated by means of simple intuitive rules.
Perhaps the study that is most skeptical of discarding all weakly-dominated behavior is Samuelson (1992),
who shows that it has no solid epistemic foundation in all games.

2These include the exchangeable randomly perturbed payoff models (Harsanyi, 1973; van Damme, 1991),
the control cost model (van Damme, 1991), the monotone structural Quantal Response Equilibrium (QRE)
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response models typically do a good job at predicting final period averages as well as

comparative statics across treatments (Goeree et al., 2018).3

Empirical equilibrium is the refinement that selects each Nash equilibrium for which

there is a sequence of weakly payoff monotone behavior that converges to it. Empirical

equilibria exist for each finite game and may admit weakly-dominated behavior.4 Data

that supports an equilibrium that is not empirical, necessarily refutes all monotone noisy

best-response models. Thus, if the researcher endorses the hypothesis that behavior will

be rationalized by a monotone noisy best-response model, they can confidently discard all

equilibria that are not empirical as implausible.

We can considerably advance our understanding of the direct-revelation game of a

strategy-proof scf by calculating its empirical equilibria. If, on the one hand, we find that

for a certain game each empirical equilibrium is truthful equivalent, then, we may suspect

that should behavior approach equilibrium, we should not be concerned with non-truthful

strategies. On the other hand, if we find that some empirical equilibria are not truthful-

equivalent, this alerts us to the possibility that we may observe persistent behavior that

generates undesirable outcomes and approximates mutual best responses.

We present two main results. First, non-bossiness—i.e., the requirement on an scf that

no agent be able to change the outcome without changing her own welfare—is necessary and

sufficient to guarantee that for each common prior type space, each empirical equilibrium of

the direct-revelation game of a strategy-proof scf in a private values environment, produces,

with certainty, the truthful outcome (Theorem 1). Second, the requirement that a strategy-

proof scf have no bossy dominant strategy characterizes this form of robust implementation

for type spaces with full support (Theorem 2).5

Our results provide sharp predictions on which scfs should and should not reliably

produce their theoretically-intended outcomes when behavior supports the Nash equilibrium

hypothesis. Our theory is silent about the propensity of a mechanism to induce Nash

behavior or dominant strategy play. It is often accepted that agents gain greater strategic

sophistication with experience and repetition of game (e.g., Davis and Holt, 1993; Plott and

model (McKelvey and Palfrey, 1995), and the regular QRE models (McKelvey and Palfrey, 1996; Goeree
et al., 2005).

3Goeree et al. (2005) argue in favor of a stronger form of weak payoff monotonicity that requires frequen-
cies of play be ordinally equivalent to expected payoffs, to discipline unrestricted noisy best-response models
that are not falsifiable (Haile et al., 2008). Our construction can be equivalently founded on this stronger
non-parametric theory (Velez and Brown, 2020b).

4Indeed, the limits of logistic QRE (as the noisy best responses converge to best responses) are empirical
equilibria (McKelvey and Palfrey, 1995). It is known that for each finite game these limits exist and that
they may admit weakly-dominated behavior (McKelvey and Palfrey, 1995).

5A strategy is bossy if for some report of the other agents it changes the outcome compared with the
truthful report and keeps the payoff of the agent constant.
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Zeiler, 2005; Goeree et al., 2016), so our theory is more applicable for experienced rather

than initial play, although we do not endorse or require use of any particular model of

equilibrium dynamics.

The Top Trading Cycles mechanism (Shapley and Scarf, 1974), the median voting rules

(Moulin, 1980), the Uniform rule (Benassy, 1982; Sprumont, 1983), and all securely imple-

mentable mechanisms (Saijo et al., 2007) are all non-bossy. Thus, if we operate these scfs we

should not expect frequencies of play be close to an equilibrium that produces unintended

outcomes. Another category of scfs are all bossy but have no bossy dominant strategy.

For these scfs, as long as there is enough uncertainty we can still expect the same. They

include the second-price auction, the Pivotal mechanism (see Green and Laffont, 1977),

and Student Proposing Deferred Acceptance (Gale and Shapley, 1962; Abdulkadiroğlu and

Sönmez, 2003). Outside of a few specific theoretical thought experiments (see e.g., Repullo,

1985), there are few scfs that fall outside of these first two categories. This is good news

to mechanism designers: such scfs would always have open the possibility of undesirable

equilibria where agents play weakly-dominated strategies.

The sharp predictions of our theorems are consistent with experimental and empirical

evidence on strategy-proof mechanisms (Sec. 5). Indeed, they are in line with some of the

most puzzling evidence on the second-price auction, a strategy-proof mechanism that vi-

olates non-bosiness but has no bossy dominant strategy. Consistent with our predictions,

consequential deviations from truthful behavior producing undesirable outcomes are persis-

tently observed when this mechanism is operated but only when agents’ types are common

information (Andreoni et al., 2007).

Our results have important consequences for robust mechanism design. Robust full im-

plementation requires mechanisms produce the right outcomes in each and every predicted

behavior for a rich family of information structures (Bergemann and Morris, 2011). We char-

acterize robust full implementation based on the empirical equilibrium prediction (Sec. 4.3).

Full implementation theory has been limited to two extremes. In one extreme, the researcher

uses Nash equilibrium as prediction. This leads mainly to impossibility results that depend

crucially on all Nash equilibria being plausible (Saijo et al., 2007; Adachi, 2014; Bochet and

Sakai, 2010; Fujinaka and Wakayama, 2011). Thus it is not clear that these are hard con-

straints of design. On the other extreme, the researcher uses undominated equilibrium as

prediction. This imposes no restrictions (Jackson, 1992). Some weakly dominated equilibria

are empirically relevant, however. Thus, the current state of the art in full implementa-

tion theory is either unnecessarily pessimistic or unrealistically optimistic. Our proposal,

designing mechanism based on empirical equilibrium, bridges these two approaches with a

tractable prediction that is informed by the accumulated empirical evidence.

All in all, our study finds meaningful differences among strategy-proof scfs that explain
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to a great extent why unwanted Nash equilibria are empirically relevant only for some of

these scfs in only some information structures. It is not the first to note differences be-

tween strategy-proof scfs. Besides the work on robust implementation, a growing literature

searches for mechanisms with simple dominant strategies (Li, 2017; Pycia and Troyan, 2022;

Mackenzie, 2020).6 With only few exceptions (e.g., Arribilaga et al., 2020), these simplicity

requirements are only satisfied by priority-like scfs in problems of interest that admit more

symmetric strategy-proof scfs that are non-bossy (c.f. Ashlagi and Gonczarowski, 2018;

Bade and Gonczarowski, 2017; Troyan, 2019). Even though we share the common objective

of identifying subclasses of strategy-proof mechanisms that perform better in practice, our

emphasis is on behavior among experienced players (Nash behavior), and not on identifying

conditions that foster dominant strategy play.

Our work belongs to the growing literature on behavioral mechanism design, which aims

to inform the design of mechanisms with regularities observed in laboratory experiments

and empirical data. These papers can be classified in two different approaches. First,

Cabrales and Ponti (2000), Healy (2006), and Tumennasan (2013) study the performance

of mechanisms for solutions concepts defined by a convergence process.7 They identify prop-

erties of mechanisms that guarantee their convergence to desired allocations under certain

dynamics. These conditions turn out to be strong and essentially require implementation in

strict equilibria. The second approach in this literature is to analyze the design of mecha-

nisms accounting for behavior that is not utility maximizing for specific alternative behavior

models (c.f., Eliaz, 2002; de Clippel, 2014; de Clippel et al., 2018; Kneeland, 2022). Our

work bridges these two approaches. It informs us about the performance of mechanisms

when behavior satisfies a weak form of rationality and also is approximately in equilibrium.

Note that even though we assume that relevant behavior is in the proximity of a Nash

equilibrium, we are not assuming that agents are approximate utility maximizers. Agents

may seem as utility maximizers because indeed they are, or because the behavior of the

other agents makes them look as if they were utility maximizers. Thus, when we design

mechanisms based on empirical equilibrium, we are implicitly evaluating the system based

on a theory of boundedly rational behavior.8

6Bo and Hakimov (2019, 2020) have also indentified mechanisms that may perform better than direct-
revelation mechanisms of strategy proof scfs in experimental environments.

7Tumennasan (2013) defines implementation as the conjunction of two phenomena. First, all limits of
logistic Quantal Response Equilibrium behavior are optimal, a requirement similar in nature to implementa-
tion in empirical equilibrium. Second, at least one of these sequences exhibits a strong form of convergence.
This second requirement implies the existence of a strict equilibrium. Thus, the game forms associated with
most strategy-proof social choice functions do not satisfy this requirement.

8In this sense we share part of the philosophy of analysis of strategic behavior with misspecified models
(Esponda and Pouzo, 2016).
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Agent c
L R

Agent r
T 1,1 0,0
B 0,0 0,0

Agent B
other own

Agent A
other uA(hB), uB(hA) 0,0
own 0,0 0,0

Table 1: Identical normal form of games. Basic example game for demonstrating empirical equilibrium
(left). The equivalent game in a house-trading game under TTC (right); ui(hj) > 0 is agent i’s utility from
trading with j. Though both agents have one weakly dominant strategy, there are two Nash equilibrium in
pure strategies.

Figure 1: Weakly payoff monotone profiles (shaded area) and empirical equilibria in basic coordination
game (a) and equivalent TTC game with complete information (b). Agents coordinate with probability
one in the unique empirical equilibrium: the only Nash equilibrium that is in the closure of weakly payoff
monotone behavior.

2 The intuition: empirical equilibrium, TTC, and second-

price auction

A basic game illustrates empirical equilibrium (Table 1(left)). Consider a pair of agents

{r, c} who have action spaces Ar = {T,B} and Ac = {L,R}. If they coordinate on (T, L)

they get one dollar, otherwise they get zero. Let σrT be the probability with which r chooses

T , and so on. Behavior in this game is represented by the pair (σrT , σ
c
L) ∈ [0, 1] × [0, 1]

(Fig. 1(a)). There are two Nash equilibria in this game. They either coordinate, (σrT , σ
c
L) =

(1, 1); or they miscoordinate, (σrT , σ
c
L) = (0, 0). Nash equilibrium (0, 0) is not empirical.

The closure of the weakly payoff monotone distributions in this game is the north-east

quadrant of the strategy space. Indeed, in a weakly payoff monotone distribution no agent

plays the miscoordinating action with probability greater than one half. This action is

weakly dominated by the coordinating action, so it will never have a higher payoff. Thus,

if one were to have data supporting (0, 0), that data would reject each noisy best response

model satisfying weak payoff monotonicity. Once can easily see that (1, 1) is an empirical

equilibrium of this game.

Two mechanisms illustrate how empirical equilibrium informs us about the performance

of dominant strategy mechanisms: The top trading cycles (TTC) mechanism for the real-
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location of indivisible goods from individual endowments (Shapley and Scarf, 1974); and

the second-price auction. For simplicity, we consider two-agent, stylized versions of these

market design environments.

Consider two agents, A and B, with strict preferences over the houses they each own.

TTC is the mechanism that operates as follows. Each agent points to a house. They swap

houses if each agent points to the other agent’s house; they remain in their houses otherwise.

It is a dominant strategy for each agent to point to her preferred house. Thus, if one predicts

that truthful dominant strategies will result when this mechanism is operated, one would

obtain efficient trade. Other Nash equilibria exist. Consider the strategy profile where each

agent unconditionally points to her own house. Regardless of information structure, these

strategies are mutual best responses for expected-utility-maximizing agents. They do not

produce the same outcomes as the truthful profile when trade is efficient. Simple analysis

reveals an identical structure to our example game (see Table 1(right) and Fig. 1(b)).

The second-price auction is a mechanism for the allocation of a good by a seller among

some buyers. We suppose that there are two buyers, A and B, who may have a type

θi ∈ {L,M,H}. The value that an agent assigns to the object depends on her type: vL = 0,

vM = 1/2, and vH = 1. Each agent has quasi-linear preferences, i.e., assigns zero utility to

receiving no object, and vθi −xi to receiving the object and paying xi for it. In the second-

price auction each agent reports his or her value for the object.9 Then an agent with the

higher valuation receives the object and pays the seller the valuation of the other agent.

Ties are decided uniformly at random. Truthfully revealing types is weakly dominant for

each agent under this mechanism. In its truthful, dominant-strategy equilibrium, it obtains

an efficient assignment of the object, i.e., an agent with higher value receives the object.

Moreover, the revenue of the seller is the second highest valuation. Other Nash equilibria

exist. Suppose that agent A has type M , agent B has type H, and both agents have

complete information of their types. Table 2 presents the normal form of the complete

information game that ensues. There are infinitely many Nash equilibria of this game. For

instance, agent B reports her true type and agent A randomizes in some arbitrary way

between L and M . In these equilibria, the seller generically obtains lower revenue than in

the truthful equilibrium.

We intend to determine which, if any, of the sub-optimal equilibria of TTC, the second-

price auction, or any other strategy-proof mechanism, should concern a social planner who

operates one of these mechanisms. We proceed by calculating the empirical equilibria of

the games induced by the operation of these mechanisms. The properties of the Nash

equilibria of the TTC and the second-price auction differ significantly. No sub-optimal

9We use the term “second-price auction” to denote the scf defined by the dominant-strategy outcomes of
the mechanism in which agents bid for the good and the winner pays the second highest bid.
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Agent B
H M L

Agent A
H -1/4,0 0,0 1/2,0
M 0,1/2 0,1/4 1/2,0
L 0,1 0,1 1/4,1/2

Table 2: Normal form of second-price auction with complete information when θA = M and θB = H.

Nash equilibrium of the TTC game is an empirical equilibrium. By contrast, for some

information structures, the second-price auction has empirical equilibria whose outcomes

differ from those of the truthful ones. Note that the sub-optimal equilibria of the TTC

that we exhibit are prior free, i.e., they are strategy profiles that constitute equilibria

independently of the information structure. However, as our analysis unveils, this property

turns out to be unrelated to the empirical plausibility of equilibria.

First, consider the TTC game in a complete information environment in which both

agents prefer to trade. This game is equivalent to the basic game we used to illustrate

empirical equilibrium where the coordinating action is to point to the other agent (Fig.1(b)).

If behavior can be fit satisfactorily by a model satisfying weak payoff monotonicity, the only

equilibrium that has the chance to be approximated by empirical distributions is the efficient

equilibrium.

This argument does not depend on the assumption of complete information. Consider

the TTC game when information is summarized by a common prior.10 Since revealing true

preferences is a dominant strategy, agents, regardless of type, must reveal their truthful

preferences with probability at least 1/2 in each weakly payoff monotone profile. Thus, in

any limit of a sequence of weakly-payoff-monotone strategies, each agent reveals her true

preference with probability at least 1/2. Consequently, in each empirical equilibrium there is

a lower bound on the probability with which each agent is truthful. Given the realization of

agents’ types, each agent always believes the true payoff type of the other agent is possible.

Then, in each empirical equilibrium of the TTC, whenever trade is efficient (for the true

types of the agents), each agent will place positive probability on the other agent pointing

to her. Consequently, in each empirical equilibrium of the TTC, given that an agent prefers

to trade, this agent will point to the other agent with probability one whenever efficient

trade is possible. Thus, each empirical equilibrium of the TTC obtains the truthful outcome

with certainty.

For the second-price auction, consider the complete information structure whose associ-

ated normal form game is presented in Table 2. Let ε > 0 and σ := (σA, σB) be the pair of

probability distributions on each agent’s action space defined as follows. Agent A places ε

10This can be relaxed to some extent. See Sec. 3.
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Figure 2: Weakly monotone distribution in the second price auction with complete information for agents
M and H. As ε vanishes the distributions converge to a Nash equilibrium in which the lower value agent
randomizes between L and M .

probability on H, 1/2 on M and 1/2−ε on L. Agent B places 1−2ε probability on H, and

ε on each of the other two actions. For small ε this profile is weakly payoff monotone. This

can be easily seen in Fig. 2. Starting at the top left of the figure is σB. This distribution

induces the expected payoffs for agent A shown at the top right of the figure. Since M is the

unique weakly dominant strategy for agent A and σB is interior, the highest payoff for agent

A is achieved by M . Between L and H, agent A obtains a higher payoff with L, because

with H she ends up buying the object for a price above her value with positive probability.

Thus, expected payoffs for agent A are ordered exactly as σA, which is shown at the bottom

right of Fig. 2. If agent A plays σA, agent B’s expected utility is that shown at the bottom

left of Fig. 2. Agent B’s utility is maximized at her unique weakly dominant strategy. Thus,

differences in σB reveal differences in expected utility. More precisely, agent B playing H

with higher probability than both M and L is consistent with H having higher expected

payoff than both M and L. As ε vanishes, this profile converges to a Nash equilibrium in

which agent A randomizes between M and L with equal probability.11

The concept of empirical equilibrium differentiates TTC and the second-price auction.

11Note that we can easily modify our construction to have interior profiles that are ordinally equivalent
to expected payoffs. This is always possible. That is, each empirical equilibrium of a finite game is the limit
of interior distributions that are, agent-wise, ordinally equivalent to expected payoffs (Velez and Brown,
2020b). Note also that we could easily modify our construction so agent A places probability 1/2 +α on M
and 1/2 − α on L for any 0 ≤ α ≤ 1/2.
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Suppose that agents’ behavior is weakly payoff monotone. Then, if these mechanisms are

operated, one will never observe that empirical distributions of play in TTC approximate

an equilibrium producing a sub-optimal outcome. By contrast, this possibility is not ruled

out for the second-price auction.

It turns out that these differences among these two mechanisms can be pinned down to

a property that TTC satisfies and the second-price auction violates: non-bossiness, i.e., in

the direct-revelation game of the mechanism, an agent cannot change the outcome by lying

without changing her welfare (Theorem 1).

For strategy-proof mechanisms that do violate non-bossiness, it is useful to examine

which information structures produce undesirable empirical equilibria. For strategy-proof

mechanisms in which no agent can be bossy with a dominant strategy (e.g., the second-price

auction) undesirable equilibria cannot be an empirical equilibrium under interior informa-

tion structures (Theorem 2). Thus, our previous example was dependent on the type of

information structure we used (i.e., complete information).

Together, Theorems 1 and 2 produce sharp predictions about the type of behavior that

is plausible when a strategy-proof scf is operated in different information structures. Our

review of the relevant experimental and empirical literature is largely consistent with these

predictions (see Sec. 5).

3 Model

There is a group of agents N := {1, . . . , n} and an arbitrary set of alternatives X. Agents

have private values, i.e., each i ∈ N has a payoff type θi, determining an expected utility

index ui(·|θi) : X → R. The set of possible payoff types for agent i is Θi and the set of

possible payoff type profiles is Θ :=
∏
i∈N Θi. We assume that Θ is finite. For each S ⊆ N ,

ΘS is the cartesian product of the type spaces of the agents in S. The generic element of ΘS

is θS . When S = N \ {i} we simply write Θ−i and θ−i. We concatenate partial profiles, as

in (θ−i, µi). We use this notation consistently when operating with vectors (as in strategy

profiles). We assume that information is summarized by a common prior p ∈ ∆(Θ).12 For

each θ in the support of p and each i ∈ N , let p(·|θi) be the distribution p conditional on

agent i drawing type θi.
13

12For a finite set F , ∆(F ) denotes the simplex of probability measures on F .
13Our results can be extended for general type spaces à la Bergemann and Morris (2005) when one requires

the type of robust implementation in our theorems only for the common support of the priors. We prefer
to present our payoff-type model for two reasons. First, it is simpler. Second, since our theorems are robust
implementation characterizations, they are not stronger results when stated for larger sets of priors. By
stating our theorems in our domain, the reader is sure that we do not make use of the additional freedom
that games with non-common priors allow.
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A social choice function (scf) selects an alternative for each possible state. The generic

scf is g : Θ→ X. Three properties of scfs play an important role in our results. An scf g,

1. is strategy-proof if for each θ ∈ Θ, each i ∈ N , and each τi ∈ Θi, ui(g(θ)|θi) ≥
ui(g(θ−i, τi)|θi).

2. is non-bossy if for each θ ∈ Θ, each i ∈ N , and each τi ∈ Θi, ui(g(θ)|θi) =

ui(g(θ−i, τi)|θi) implies that g(θ) = g(θ−i, τi).

3. has no bossy dominant strategy if for each θ ∈ Θ, each i ∈ N , and each τi ∈ Θi, if

ui(g(θ)|θi) = ui(g(θ−i, τi)|θi) and g(θ) 6= g(θ−i, τi), then there is τ−i ∈ Θ−i such that

ui(g(τ−i, θi)|θi) > ui(g(τ)|θi).

The first property is well-known. The second property, first introduced by Saijo et al.

(2007), requires that no agent, when telling the truth (in the direct-revelation mechanism

associated with the scf), be able to change the outcome by changing her report without

changing her welfare. It is satisfied by TTC, the Median Voting rule, and the Uniform rule.

It is violated by the Pivotal mechanism, the second-price auction, and SPDA.

Starting from Satterthwaite and Sonnenschein (1981), a variety of related axioms, usu-

ally referred to as non-bossiness, have played a role in mechanism design, implementation,

and social choice theory. Thomson (2016) surveys the definition and the normative content

of these different notions of non-bossiness.

The third property requires that any consequential deviation from a truthful report

by an agent can have adverse consequences for her. Restricted to strategy-proof scfs, this

property says that, in the direct-revelation game associated with the scf, for each agent,

all dominant strategies are equivalent. This property is satisfied whenever each agent type

has a unique weakly dominant action, as in the second-price auction. It is not necessary

that weakly dominant actions be unique for this property to be satisfied. A student in a

school choice environment with strict preferences and in which Student Proposing Differed

Acceptance is operated, may have multiple dominant strategies (e.g., a student that each

school ranks first). However, any misreport that is also a dominant strategy for this student,

cannot change the outcome (see Online Appendix for a formal argument).

A finite mechanism is a pair (M,ϕ) where M := (Mi)i∈N are finite message spaces and

ϕ : M → ∆(X) is an outcome function. Given the common prior p, (M,ϕ) determines a

standard Bayesian game Γ := (M,ϕ, p). When the prior is degenerate, i.e., places proba-

bility one on a payoff type θ ∈ Θ, we refer to this as a game of complete information and

denote it simply by (M,ϕ, θ). A strategy for agent i in Γ is a function that assigns to each

θi ∈ Θi that happens with positive probability under p, a function θi 7→ σi(·|θi) ∈ ∆(Mi).
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We denote a profile of strategies by σ := (σi)i∈N . For each S ⊆ N , and each θS ∈ ΘS ,

σS(·|θS) is the corresponding product measure
∏
i∈S σi(·|θi). When S = N we simply write

σ(·|θ). We denote the measure that places probability one on mi ∈ Mi by δmi . With a

complete information structure, we simplify notation and do not condition strategies on an

agent’s type, which is uniquely determined by the prior. Thus, in game (M,ϕ, θ) we write

σi instead of σi(·|θi).
Let θi ∈ Θi be realized with positive probability under p. The expected utility of agent i

with type θi in Γ from playing strategy µi when the other agents select actions as prescribed

by σ−i is

Uϕ(σ−i, µi|p, θi) :=
∑

u(ϕ(m)|θi)p(θ−i|θi)σ−i(m−i|θ−i)µi(mi|θi),

where the summation is over all θ−i ∈ θ−i and m ∈ M . A profile of strategies σ is an

(Bayesian Nash) equilibrium of Γ if for each θ ∈ Θ in the support of p, each i ∈ N , and each

µi ∈ ∆(Mi), Uϕ(σ−i, µi|p, θi) ≤ Uϕ(σ−i, σi|p, θi). The set of equilibria of Γ is N(Γ). Given

an scf g, we say that a strategy profile σ implements g if for each θ in the support of p and

each profile of reports m in the support of σ(·|θ), ϕ(m) = g(θ).

We say that mi ∈Mi is a weakly dominant action for agent i with type θi ∈ Θi in (M,ϕ)

if for each ri ∈ Mi, and each m−i ∈ M−i, ui(m|θi) ≥ ui(m−i, ri|θi). A dominant-strategy

mechanism is that in which each agent type has at least one weakly dominant action.

Our basis for plausibility of behavior is the following weak form of utility maximization.

Definition 1. A profile of strategies for Γ := (M,ϕ, p), σ := (σi)i∈N , is weakly payoff

monotone for Γ if for each θ ∈ Θ in the support of p, each i ∈ N , and each pair {mi, ni} ⊆Mi

such that σi(mi|θi) > σi(ni|θi), Uϕ(σ−i, δmi |p, θi) > Uϕ(σ−i, δni |p, θi).

We then identify the Nash equilibria that can be approximated by plausible behavior.

Definition 2. An empirical equilibrium of Γ := (M,ϕ, p) is an equilibrium of Γ that is the

limit of a sequence of weakly payoff monotone strategies for Γ.

In any finite game, firm equilibria, approachable equilibria, and the limits of logistic

Quantal Response Equilibrium (as the sophistication parameter converges to infinite so-

phistication) are empirical equilibria. Thus, at least one empirical equilibrium exists for

every finite game (see van Damme, 1991; McKelvey and Palfrey, 1995).

4 Results
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4.1 When are all empirical equilibria optimal?

Our first result is a characterization of the social choice functions whose direct-revelation

game obtains, for all common-prior information structures and for each possible state, the

scf’s optimal outcome.

Theorem 1. Let g be an scf. The following statements are equivalent.

1. For each common prior p each empirical equilibrium of (Θ, g, p) implements g.

2. g is strategy-proof and non-bossy.

We divide the proof of our characterization results, Theorems 1 and 2, in five lemmas

of independent interest that we discuss in Sec. 4.2.

Theorem 1 states that the robust performance of a direct-revelation mechanism of an

scf, evaluated with the empirical equilibrium prediction, depends exclusively on two of

its properties: strategy-proofness and non-bossiness. Our examples in Sec. 2 illustrate it.

TTC is both strategy-proof and non-bossy. In the TTC game, regardless of the information

structure, none of the sub-optimal equilibria survive the empirical equilibrium refinement.

The second-price auction is strategy-proof, but violates non-bossiness. In this auction,

there are information structures for which some sub-optimal Nash equilibria are empirical

equilibria.

It is somehow unexpected that the differences in performance of the TTC and second-

price auction can be traced down to simple properties of the scfs that can be articulated in

any private-values model. Each of these mechanisms operates in structured environments.

For instance, some of the strategic properties of TTC crucially depend on particular assump-

tions on preferences. This scf selects the unique core allocation (existence and uniqueness

of core allocation is rare on allocation environments). These further features of the housing-

market model are not essential for the empirical equilibrium robustness of TTC. Similarly, a

violation of strategy-proofness or non-bossiness is sufficient to find an information structure

for which the direct-revelation game of an scf g has an empirical equilibrium that does not

implement g. The particular additional features of our example (e.g., a specific number of

agents, quasi-linear preferences) are not essential.

Our second result is a characterization of the social choice functions whose direct-

revelation game obtains, for all interior common-prior information structures and for each

possible state, the scf’s recommended outcome.

Theorem 2. Let g be an scf. The following statements are equivalent.

1. For each interior common prior p, each empirical equilibrium of (Θ, g, p) implements g.

12



2. g is strategy-proof and has no bossy dominant strategy.

Theorem 2 reveals a connection between the information structure in which an scf g is

operated and its performance. If, conditional on her type no agent can rule out a profile of

types of the other agents, a direct-revelation game of g can have empirical equilibria that

do not implement g only if g has bossy dominant strategies. The second-price auction, for

instance, has no bossy dominant strategy. Thus, it is not by chance that our example in

Sec. 2 of an empirical equilibrium with low revenue for the seller is in an environment with

complete information.

Theorems 1 and 2 together allow us to better understand the Nash equilibria of the

direct-revelation games of a strategy-proof scf g. If at least one agent has a bossy weakly

dominant action, there are Nash equilibria in weakly dominant actions that do not imple-

ment g. One of these equilibria is empirical. If the scf has no bossy dominant strategy

but violates non-bossiness, there could be empirical equilibria that do not implement g

depending on the information structure in which the scf is operated. On the one hand, if

information is interior, all empirical equilibria implement g. On the other hand, one can

always find a non-interior information structure for which there is an empirical equilib-

rium that do not implement g. Finally, if g is non-bossy, then all empirical equilibria of a

direct-revelation game of g implement g.

Our analysis articulates a folk wisdom about the performance of strategy-proof scfs:

(some) dominant-strategy mechanisms should perform better when agents face enough un-

certainty.14 By contrast, refinements that discard Nash equilibria that involve weakly-

dominated strategies produce a single prediction as long as a strategy-proof scf has no

bossy-dominant strategies: only truthful equilibrium is plausible independently of the in-

formation structure.

4.2 Five basic lemmas

We divide the proof of the theorems in the previous section into five lemmas. First, let us see

why under the conditions in the theorems each empirical equilibrium of the direct-revelation

game of a strategy-proof scf g implements g.

We start with a key lemma. It states that, in each empirical equilibrium of a direct-

revelation game of a strategy-proof scf, truthful reports are played with at least the fre-

quency of uniform random play. We present the proof of all lemmas in the Appendix.

14For instance, it is commonly accepted within the experimental economics literature that private rather
than common information of values may be beneficial for market outcomes (e.g., Smith, 1994). The general
justification is that when more information is available about others’ valuations, individuals may strive to
deviate from the single-shot Nash equilibrium in order to capture more economic rents.
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Definition 3. Let g be an scf and p a common prior. A strategy profile in (Θ, g, p), σ,

is baseline-truthful if it prescribes each agent be truthful with a frequency that is at least

that of uniform random play. That is, for each i ∈ N and each θi ∈ Θi that happens with

positive probability under p, σi(θi|θi) ≥ 1/|Θi|.

Lemma 1. Let g be strategy-proof, p a common prior, and σ an empirical equilibrium of

(Θ, g, p). Then, σ is a baseline-truthful strategy profile in (Θ, g, p).

The intuition behind Lemma 1 is simple. Truthful reports are weakly dominant strate-

gies for each agent in a strategy-proof game. Thus, in a weakly-payoff-monotone distribu-

tion, truthful reports should have the highest frequency, which is always at least as great as

under uniform-random play. This property is inherited by any limit of these distributions.

In particular, it is inherited by all empirical equilibria.

With our next two results we show that a baseline-truthful equilibrium of the direct-

revelation game of a strategy-proof scf always implements g when the conditions in our

theorems are satisfied. In the next lemma, we identify the defining characteristic of a

baseline-truthful equilibrium that does not implement g.

Lemma 2. Let g be strategy-proof, p a common prior, and σ a baseline-truthful equilibrium

of (Θ, g, p). Suppose that σ does not implement g. Then, there are θ ∈ Θ in the support

of p, τ in the support of σ(·|θ), and i ∈ N such that ui(g(τ)|θi) = ui(g(τ−i, θi)|θi) and

g(τ) 6= g(τ−i, θi).

Let g be strategy-proof and consider an equilibrium of its direct-revelation game. Lemma 2

states that if the equilibrium does not implement g, at least one agent ends up being bossy

with respect to the reports of the other agents. Thus, the conditions that guarantee there

is no bossy best-response to a baseline-truthful strategy in g’s direct-revelation game also

guarantee these equilibria all implement g. The following lemma identifies two of these

conditions.

Lemma 3. Let g be strategy-proof, p a common prior, and σ a baseline-truthful strategy

profile in (Θ, g, p). Assume that at least one of the following conditions holds:

1. g is non-bossy.

2. g has no bossy dominant strategy and p has full support.

Let θ ∈ Θ in the support of p, τ−i in the support of σ−i(·|θ−i), i ∈ N , and τi ∈ Θi such that

g(τ) 6= g(τ−i, θi). Then, τi is not a best response to σ−i for i.

Lemmas 1–3 allow us to complete the proof that Statement 2 implies Statement 1 in

our theorems (see Appendix).
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We now prove that the conditions in Statement 2 in our theorems are necessary for the

robustness property in the corresponding Statement 1. We start with the second theorem,

whose robustness requirement is weaker and thus admits a larger class of scfs.

Lemma 4. Let g be an scf. Suppose that for each interior prior p each empirical equilibrium

of (Θ, g, p) implements g. Then, g is strategy-proof and has no bossy dominant strategy.

The necessity of strategy-proofness in Lemma 4 is closely related to Bergemann and

Morris (2005, Proposition 3). These authors show that for each interior common-prior

information structure the direct-revelation game of an scf g has a pure strategy equilibrium

that implements g only if g is strategy-proof. Since there are games in which no empirical

equilibrium is in pure strategies, our result does not immediately follow as a consequence

of the earlier result. The argument advanced by these authors can be easily modified to

prove our result, however. We present it in the Appendix for completeness.

Finally, it is necessary that an scf be non-bossy for it to satisfy the robustness property

in Statement 1 in Theorem 1. (Strategy-proofness is already implied by Lemma 4.)

Lemma 5. Let g be strategy-proof. Suppose that for each common prior p each empirical

equilibrium of (Θ, g, p) implements g. Then, g is non-bossy.

Our proof of Lemma 5 is by contradiction. We show that it is impossible for an scf

to satisfy the robustness property in the lemma and also violate non-bossiness. If the scf

violates non-bossiness, then there is some state θ at which at least one agent is bossy. That

is, if all other agents report truthfully, the agent can change the outcome by lying without

changing her payoff. We prove that one can always construct an empirical equilibrium in

which the agent is bossy with positive probability for the complete information game for

state θ. This proves the lemma because the equilibrium we construct does not implement g.

It is worth noting that we prove this equilibrium is empirical by constructing a sequence

of weakly payoff monotone distributions based on noisy best-response distributions that

are popular for the analysis of experimental data (Goeree et al., 2016). The equilibrium

play of the bossy agent in our construction is approximated by Logistic Quantal responses.

The equilibrium play of all other agents are approximated by uniform perturbations of

equilibrium play. The detail in our proof consists on carefully selecting the equilibrium and

the speed at which the noisy best-responses move towards their limit. This construction

guarantees these sequences converge to equilibrium and maintain weak payoff monotonicity

along the way.

The proof of Lemma 5 relies on uniform perturbations, perturbations where agents play

actions that have different expected utility with the same frequency. This is compatible with

weak-payoff monotonicity. Indeed, this property only requires that between two actions that
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are played with different probability, the one with higher frequency has higher expected

utility. It is possible to modify the construction and approximate the equilibrium by means

of interior distributions in which frequencies of play are ordinally equivalent to expected

utility. This is a consequence of a more general result. Each empirical equilibrium is the limit

of behavior generated by a sequence of monotone noisy best-response operators (regular

quantal response functions as defined by Goeree et al., 2005) that are utility maximizers in

the limit (see Velez and Brown, 2020b, Theorem 2).

Our lemmas have independent substantive content. Lemmas 1–3 inform the mechanism

designer that it is enough for behavior to be baseline-truthful for the robust performance

of an scf satisfying Statement 2 in either Theorems 1 or 2. They also inform the empirical

economist that when the conditions in Theorems 1 and 2 are satisfied, one can confirm be-

havior is not approaching a sub-optimal Nash equilibrium by simply checking that behavior

is baseline-truthful. Importantly, baseline-truthfulness is an easily testable property that is

overwhelmingly supported by experimental data (Sec. 5).

Additionally, Lemma 3 gives us a powerful shortcut for the analysis of experimental

data from strategy-proof games. Suppose that one finds subjects in experimental games are

truthful at least as frequently as uniform-random play. Additionally, subjects also play best

responses with high probability. Then, if any of the conditions in the lemma are satisfied, the

mechanism is necessarily performing well even when behavior stays persistently away from

the truthful equilibrium. The reason is that under these conditions, any “consequential”

lie is not a best response. (A consequential lie is one that, conditional on what the other

agents are reporting, ends up changing the outcome of the game.) Thus, if one observes

most agents are playing best responses, but a considerable share of these are lying, their

lies cannot be consequential.

If our theorems’ requirements on an scf are violated, then one cannot rule out weakly

payoff monotone behavior can be close to mutual best responses that produce undesirable

outcomes. Our proofs of Lemmas 4 and 5 reveal that this risk does not disappear even if

one requires frequencies of play be ordinally equivalent to expected utility, or be generated

by some of the most popular models for the analysis of experimental data.

4.3 Secure and robust implementation

It is informative to compare our results with secure implementation and robust implementa-

tion of scfs (Saijo et al., 2007; Bergemann and Morris, 2011). A mechanism fully-implements

an scf g in a given solution concept for a set of information structures, if each predicted

behavior in each game induced by the mechanism for each admissible information structure

implements g.
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Secure implementation requires the existence of a dominant-strategy mechanism that

fully-implements the scf in Nash equilibrium for all complete information priors. This

requirement is equivalent to the existence of a mechanism that fully-implements the scf in

Bayesian Nash equilibrium for all common-prior information structures (Adachi, 2014). This

later form of implementation is also referred to as robust implementation. The following

theorem states necessary and sufficient conditions for secure/robust implementation in our

environment.

Theorem 3 (Secure/robust implementation). Let g be an scf. The following are equivalent.

1. There is a finite mechanism (M,ϕ) such that for each common prior p, each equilib-

rium of (M,ϕ, p) implements g.

2. There is a dominant-strategy finite mechanism (M,ϕ) such that for each complete

information prior θ, each equilibrium of (M,ϕ, θ) implements g.

3. For each common prior p, each equilibrium of (Θ, g, p) implements g.

4. (i) g is strategy-proof and non-bossy, and

(ii) g satisfies the outcome rectangular property, i.e., for each pair of payoff types

{θ, τ} ⊆ Θ, if for each i ∈ N , g(θi, τ−i) = g(τ), then g(θ) = g(τ).

A parallel result to Theorem 3 is due to Saijo et al. (2007) (2⇔ 4 and 2 & 4⇒ 3⇒ 1)

and Adachi (2014) (1 ⇒ 4) in an environment in which they restrict to pure-strategy

equilibria and they consider implementation for type spaces larger than our payoff-type

space. Our statement includes mixed-strategy equilibria and does not make any requirement

for type spaces in which payoff types can be “cloned.” Thus, Saijo et al. (2007) and Adachi

(2014)’s results do not trivially imply Theorem 3 by means of Bergemann and Morris

(Sec. 6.3, 2011)’s purification argument. The proof of Theorem 3 can be completed by

adapting the arguments in these papers, however. We include it in an online Appendix.

In the language of full implementation, Theorem 1 states that an scf is fully imple-

mentable in empirical equilibrium for all common-prior information structures by its direct-

revelation mechanism if and only if it is strategy-proof and non-bossy. Theorem 2 states

that an scf is fully implementable in empirical equilibrium for all interior common-prior

information structures by its direct-revelation mechanism if and only if it is strategy-proof

and has no bossy dominant strategy. Theorem 3 implies that an scf is fully implementable

in Bayesian Nash equilibrium for all common-prior information structures by its direct-

revelation mechanism if and only if it is strategy-proof, non-bossy, and satisfies the outcome-

rectangular property.
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Secure/robust implementation and our empirical equilibrium analysis pursue a similar

objective. We all identify mechanisms that perform well independently of informational

assumptions based on the Nash equilibrium prediction. Secure/robust implementation

guarantees optimal performance for each equilibrium of the system. We only make this

requirement for the empirical equilibria of the games.

Since each empirical equilibrium is an equilibrium, the properties that characterize

the forms of implementation in our theorems are necessary for secure/robust implemen-

tation. They are not sufficient, however. Besides strategy-proofness and non-bossiness,

secure/robust implementation also requires that the outcome rectangular property be sat-

isfied. Remarkably, several prominent environments that admit non-dictatorial, strategy-

proof and non-bossy scfs, only admit (serially) dictatorial securely implementable scfs (Saijo

et al., 2007; Bochet and Sakai, 2010; Fujinaka and Wakayama, 2011). Table 3 presents

some of the most prominent scfs that satisfy the conditions in our theorems, but are not

securely/robustly implementable.15 Thus, all these scfs are not securely/robustly imple-

mentable because of equilibria that are not empirical.

Experimental studies show us that behavior in strategy-proof games may approximate

equilibria in weakly-dominated strategies that obtain outcomes not intended by the mecha-

nism designer (see Sec. 5). Thus, similar to the secure/robust implementation literature, we

find that it is indeed justified to evaluate these systems with a prediction beyond dominant

strategy equilibrium. We do not think that each possible Nash equilibrium of a system poses

a real risk to it, however. Instead of making a blanket requirement for all Nash equilibria,

as secure/robust implementation does, we refine these equilibria by requiring proximity to

specific behavior. Recall, this specific behavior is in the empirical content of some of the

most prominent theories that have been successful in fitting data and replicating compar-

ative statics in experiments. Since the experimental data is the one alerting us about the

shortcomings of the dominant strategy equilibrium prediction, we let this data guide us in

the selection of the equilibria that are relevant in these games.

Bochet and Tumennassan (2020) provide an alternative characterization of secure/robust

implementation. Their basic definitions are resilience and group resilience, two properties

of an scf. The former property requires that for any profile of reports that leads to an

outcome not intended by the scf, at least one agent benefits by deviating to the truthful

report. The later property extends the requirement to groups of agents. On the one hand,

an scf satisfies resilience if and only if it is securely implementable. Thus, interestingly,

reversion to truthful reports without cooperation does not generate the same refinement

15Note that the secure/robust implementation theorem guarantees a revelation principle holds for this type
of implementation. Thus, if an scf violates the outcome-rectangular property, it cannot be securely/robustly
implemented by a general mechanism.
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scf (preference domain)
Strategy-
proofness

Essentially
unique
dominant
strategies

Non-
bossiness

outcome
rectan-
gular
property

TTC (strict) + + + −
Uniform rule (single peaked) + + + −
Median voting (single peaked) + + + −
Second price auction (quasi-linear) + + − −
Pivotal (quasi-linear) + + − −
SPDA (strict) + + − −

Table 3: Strategy-proof scfs and the outcome rectangular property; + indicates that the property labeling
the column is satisfied by the scf, and − the opposite. These statements refer to the usual preference spaces
in which these scfs are defined.

as approximation by weakly-payoff-monotone behavior. On the other hand, an scf satisfies

group resilience if and only if it is strategy-proof and non-bossy. Thus, in environments in

which communication and cooperation is feasible, the undesirable equilibria of a strategy-

proof and non-bossy scf are refined away by coalitional incentives. At a conceptual level,

our approach differs in that our basis to refine equilibria, weak-payoff monotonicity, is an

equilibrium property that requires no cooperation. At a technical level our results differ in

that these authors restrict their model to pure strategy equilibria and complete information.

Thus, our work is the first to establish a meaningful connection between the information

structure in which a strategy-proof scf is operated and its performance.

5 Empirical evidence on dominant strategy mechanisms and

policy-relevant conclusions

The purpose of our paper is to make a theoretical contribution to mechanism design and

implementation theory that is both empirically motivated and empirically supported. This

section substantiates this empirical motivation and support.

Ideal experiments for our purpose are those which (1) evaluate whether subject play

is baseline-truthful in strategy-proof games; (2) compare two, largely equivalent direct-

revelation games with complete information, one under a strategy-proof scf that is bossy

and one that is non-bossy; (3) compare bossy mechanisms with no bossy dominant strategies

under interior and non-interior information; (4) evaluate whether subject play obeys our

assumption of weak payoff monotonicity and thus when data approximates mutual best

responses it is consistent with empirical equilibrium.

Experiments fulfilling these objectives are readily available in the literature (Coppinger

et al., 1980; Kagel et al., 1987; Kagel and Levin, 1993; Harstad, 2000; Attiyeh et al., 2000;
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Chen and Sönmez, 2006; Cason et al., 2006; Healy, 2006; Andreoni et al., 2007; Li, 2017).

We review them and categorize general findings as empirical results.16

5.1 Data is consistent with the properties identified by our theorems

precluding undesirable equilibria

There is no evidence of a strategy-proof scf producing subject behavior approximating un-

desirable equilibria when the conditions in at least one of our theorems are satisfied. Indeed,

we can find no evidence in any study of subject play resembling an undesirable equilibrium

under a non-bossy mechanism or a mechanism with no bossy dominant strategies under

interior information (i.e., Andreoni et al., 2007; Attiyeh et al., 2000; Cason et al., 2006;

Chen and Sönmez, 2006; Healy, 2006; Kawagoe and Mori, 2001; Li, 2017). In other words,

we observe no evidence of undesirable equilibria that are not empirical.

We show an additional level of robustness: in all the studies that we have surveyed,

dominant strategy play is higher than the corresponding probability under uniform-random

play. Using Lemmas 1–3, if this condition is satisfied, it means subjects will encounter

significant disincentives to deviate whenever their actions lead to outcomes different from

the social planner’s objective. In other words, if subjects were to play strategies that produce

the outcomes of an undesirable equilibrium, they would not be playing best-responses to

empirical frequencies of play to the other agents.

In appendix table A.1, we survey the literature for experimental results with dominant

strategy mechanisms. We find ten studies across a variety of mechanisms. In every ex-

periment, rates of dominant strategy play exceed the threshold of uniform play. A simple

binomial test—treating each of these ten papers as a single observation—rejects any null

hypothesis that these rates of dominant strategy play are drawn from a random distribution

with median probability at or below these levels (p < 0.001). Thus one would reasonably

conclude that rates of dominant strategy play should exceed that under uniform support.

It is evident then that the accumulated experimental data supports the first policy

relevant conclusion of our theory. It is worth noting that the simplicity and cleanness of

our analysis is possible because our the strength of our results. Our lemmas transform the

problem of testing whether behavior does not approximate a bad equilibrium into a single

basic statistic test.

Policy-relevant conclusion: It is “safe”—in terms of the existence of strict incentives

against undesirable behavior and no documented evidence of the persistence of that behavior—

to operate a strategy-proof scf when the conditions in at least one of our theorems is satisfied.

16Given the extensive experimental evidence we have available, we feel that replicating some of these
experiments or performing equivalent ones would not produce additional insights.
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5.2 The risks identified by our theorems are substantiated by data

Evidence exists of behavior approximating undesirable equilibria in a variety of experimental

studies. In all cases, the experimental environment does not satisfy the conditions of either

of our theorems.

If the conditions on our theorems are not satisfied, we cannot rule out agents’ play

approximating an undesirable equilibrium for a strategy-proof scf in its direct form. Our

survey of existing experimental literature reveals this possibility is substantive. Among the

experiments we surveyed, Cason et al. (2006), Healy (2006), and Andreoni et al. (2007)

involve the operation of a strategy-proof scf that violates non-bossiness in an information

environment in which information is not interior. These are the only conditions for which

our theory predicts the possibility of observing Nash equilibria that are not intended by the

mechanism designer.

Andreoni et al. (2007) provide an excellent example for convergence to an undesirable

equilibrium when a strategy-proof scf is operated. In their experiment, groups of four sub-

jects play second-price auction games, simultaneously, for 30 rounds. Groups are rematched

each round and play with the same private values across all different games. One game in-

volves no information about the other players’ valuations beyond the distribution from

which they are drawn. A second game involves complete information. As Appendix figures

Fig. A.1 and A.3 demonstrate, frequencies of play in both games converge toward mutual

best response. However, in the complete information game these Nash equilibria have out-

comes that are inconsistent with the intentions of the mechanisms designers, namely, bids

deviate far more from their truthful valuation, inefficiency is possible and the tendency of

low-valuation bidders to report zero persists under complete information.

Cason et al. (2006) provide a nearly ideal experiment comparison between a bossy

and non-bossy mechanism in comparable table-game formats. Their conclusion is that in

the bossy mechanism they cannot rule out unwanted Nash equilibria. Their non-bossy

mechanism also satisfies rectangularity, thus unwanted Nash equilibrium does not exist for

this game. Healy (2006) also provides similar conclusions.17

Policy-relevant conclusion: There are substantive risks—in terms of agents’ play resem-

bling an undesirable equilibrium—to operating a strategy-proof scf when the conditions on

both our theorems are violated.

17In both Cason et al. (2006) and Healy (2006) agents do not know the structure of payoffs of the other
agents, but know their payoffs are fixed throughout the experiment. Thus, when play stabilizes agents are
responding to a conjecture of behavior of the same type of agent, a corner information structure. At the
cost of notation and formalism our results can be extended to this environment.
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5.3 Information matters

For strategy-proof scfs without a bossy dominant strategy, undesirable equilibria are gen-

erally not observed under an interior information structure. By contrast, undesirable equi-

libria are observed under complete information. That is, the observance of undesirable

equilibria is dependent on whether the information structure allows undesirable empirical

equilibria.

Andreoni et al. (2007)’s experiment gives us an ideal window to observe this phe-

nomenon. As seen in Sec. 5.2, behavior in the complete information environment is char-

acteristic of undesirable Nash equilibria. The second-price auction has no bossy dominant

strategies: when information is interior, behavior cannot approximate an undesirable Nash

equilibrium provided dominant strategy play is frequent enough. As Sec. 5.1 demonstrates,

dominant strategy play is sufficiently frequent. Thus, if behavior approximates a Nash

equilibrium in this informational setting, the outcomes obtained are necessarily close to the

ideal, intended, equilibria of the second-price auction.

Behavior in Andreoni et al.’s second-price auction experiment approximates a Nash

equilibrium under incomplete information. As in the complete information treatment, by

the second half of the experiment, virtually all agents are playing best responses. Unlike

in the complete information treatment, agents’ deviations from their dominant strategies

do not produce outcomes that differ greatly from the truthful equilibrium outcomes. As

Fig. A.2 shows after the initial five rounds, median bids are the agents’ own values, outcomes

generally truthful and efficient, i.e., such that a highest valuation agent wins the auction at

prices very close to the second valuation. The mechanism is achieving the social planner’s

objectives.

Our theory explains the differences in behavior between treatments in Andreoni et al.’s

experiment. Under incomplete information, there is a penalty for a player to deviate too

much from their dominant strategy. There is no corresponding penalty under complete

information. In the complete information case, the highest valuation agent persistently

overbids and the other agents persistently bid on a wide range under the highest valuation

agent’s value. As long as these behaviors are essentially separated, they are mutual best

responses. Thus, the penalty from playing a weakly-dominated action is negligible given that

all agents stick to these patterns of play. On the other hand, in the incomplete information

treatment, for each bid, there is a positive probability that at least one agent bids her

valuation. Since agents bid their values with high probability (68.2% on average), there

is a non-trivial chance that a significant deviation from truthful behavior is suboptimal.

Together, these experiments reveal that agents do react to pecuniary incentives and use
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information and observed frequencies of play of the other agents in a meaningful way. They

do not preemptively react to a hypothetical tremble of the other agents, however.18

Policy-relevant conclusion: Performance of a strategy-proof scf that has no bossy dom-

inant strategy is affected by the information structure in which it is operated. A designer

should focus on operating such mechanisms only when it is plausible that information is

interior.

5.4 Weak payoff monotonicity

Though a direct test of weak payoff monotonicity is impractical, the success of empirical

models satisfying this property to fit data provides suggestive evidence of the applicability of

this commonly-held assumption. A weaker test shows, across a wide variety of experiments,

that frequency of subject play is highly correlated with expected payoffs. Violations of

weak payoff monotonicity generally involve preferences unrelated to the numerical payoffs

“induced” on subjects within an experimental game.

In experiments with games repeated for a number of periods with the same population

and in which behavior becomes stable, weakly payoff monotone models typically do a good

job at predicting final-period averages and comparative statics across different treatments.

Experimental economists usually arrive at this conclusion by calculating maximum likeli-

hood estimates of these models like the logistic Quantal Response Equilibrium (QRE).19

Goeree et al. (2016) catalogue several hundred experiments, all which have successfully

calibrated QRE models on their data.

To our knowledge there has been no formal econometric analysis of the specification

of weakly payoff monotone models.20 There are two main issues that one encounters to

rigorously evaluate weak payoff monotonicity in a game. First, the empirical content defined

by the closure of this theory is not a convex set. So it cannot be expressed as the intersection

of linear inequalities, an essential feature for the application of most econometric approaches.

18Since the first experiments on the second-price auctions with private values of Coppinger et al. (1980)
and Kagel and Levin (1993), experimental economists have observed that even though agents do not play
their dominant strategy in these games, the probability with which they would have ended up disciplined by
the market given other subject strategies is very low. Our analysis goes beyond this observation by showing
that as predicted by empirical equilibrium analysis, the degree to which these deviations cause actual loss
of subject earnings is linked to the non-bossiness properties of the scf and the information structure.

19Haile et al. (Footnote 2, 2008) note that it is indeed considered “unusual” when experimental data cannot
be reconciled with monotone structural QRE, a more general monotone noisy best-response model. Recent
experiments reported by Goeree and Louis (2021) provide further support for weak payoff monotonicity.

20Melo et al. (2019) develop a test for the structural Quantal Response hypothesis. This parametric
hypothesis does not imply weak payoff monotonicity and constrains behavior between games with different
payoff matrices for the same action spaces. These authors leverage these restrictions to construct a test of
this model. Weak payoff monotonicity imposes no restriction on behavior across different payoff matrices.
Even for a single game matrix it may impose less restrictions than the monotone structural Quantal Response
hypothesis (Velez and Brown, 2020b).
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Second, evaluating this property requires that one has a good estimate of agents’ frequencies

of play and expected utility for all actions. In games with relatively large action spaces,

like those we surveyed (eg., in Andreoni et al. (2007) agents bid integers in the interval

{0, ..., 200}; in Attiyeh et al., 2000 each agent has 2001 actions available), inference requires

an impractically large number of observations.

Even though fully testing weak payoff monotonicity is not obvious, one can test for

certain markers of this property that are less demanding on data. First, in weakly payoff

monotone data sets there should be a positive correlation between the frequencies with

which actions are played and their empirical expected utility. For the four studies where we

have sufficient data (Andreoni et al., 2007; Attiyeh et al., 2000; Cason et al., 2006; Li, 2017),

we can compare the actual payoffs earned with each action choice with the counterfactual

payoffs had a subject chosen a different action. If subjects choose actions independent of

payoffs—a gross violation of weak payoff monotonicity—we should suspect the differences

between the average payoffs of played strategies and counterfactual payoffs of non-played

strategies to be evenly distributed around zero. Instead we find in all cases the average

payoffs of played strategies exceed those of non-played strategies.21 Treating the 30 total

sessions across these four studies as independent observations, we can easily reject the null

hypothesis that strategies are played independent of expected payoffs (p < 0.001).22

Weak payoff monotonicity has implications that can be tested independently. For in-

stance, it implies weakly dominant actions are played at least as frequently as uniform

random play (see Sec. 5.1). Another useful implication is between actions related by weak

domination. Suppose that action ai weakly dominates action bi for agent i with type θi.

Independent of the behavior of the other agents, the expected payoff of ai is greater than

or equal to the expected payoff of bi for this agent type. In a weakly payoff monotone

distribution in the game, agent i with type θi will never play bi more frequently than ai.

Thus, if σ is the profile of distributions of play and one can reject the hypothesis that

σi(ai|θi) ≥ σi(bi|θi), one can also reject weak payoff monotonicity.

Using this strategy one can find evidence against weak payoff monotonicity. We are

aware of three instances. First, in the Pivotal mechanism experiment of Cason et al. (2006),

there are two dominant strategies for each agent. While the Column agent chooses them

with similar frequencies (36.1% and 38.3%), the Row agent chooses them with frequencies

51.1% and 19.4%. Parametric paired t-tests and non-parametric signed rank and sign tests

21Using a conditional-logistic regression also produces positive coefficients in all cases. It also assumes a
specific formalized structure on subject choice, making it a less general test.

22Specifically, in 30 out of 30 sessions the average strategy subjects played in a round had higher expected
payoffs than those they didn’t play. If we exclude all instances where subjects played a dominant strategy,
this result holds in 28 out of 30 sessions.
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suggest the latter difference is statistically significant at the subject level (p < 0.01), but

not the former.

Second, there is a well documented propensity of overbidding in second-price auctions.

This does not have to be necessarily at odds with weak payoff monotonicity. Agents who

draw larger values will find overbidding with respect to value to be a less costly mistake

than underbidding. Low-value agents will have fewer bids below their value than above

their value. Thus, such a distribution of play can still be weakly payoff monotone and in

aggregate overbid more than underbid. However, Figure 1 in Andreoni et al. (2007), which

depicts the frequency of the difference between the bid of the low value agents and the

maximal value, shows that these agents place significantly higher weight in the bids that

are close to the maximal value agent. This is a clear violation of weak payoff monotonicity,

because in the second-price auction a bid b above an agent’s value vi is weakly-dominated

by all bids between vi and b. Andreoni et al. (2007) argue that this behavior may be due

to spiteful preferences of the low-value agents. Finally, a simple behavioral regularity as

rounding to multiples of five, can easily induce violations of weak payoff monotonicity. Such

patterns are present, among bids that are related by weak dominance, in the auction data

of Andreoni et al. (2007), Brown and Velez (2020), and Li (2017).

With the exception of rounding, the aforementioned violations all come from data where

there is evidence of subject play resembling an undesirable equilibrium. Interestingly, our

model predicts these possibilities despite small violations of its underlying assumptions.

We do not believe this is coincidental. When agents are indifferent over several different

strategies, they may favor some strategies over others for reasons independent of personal

payoffs. Such a practice would violate weak-payoff monotonicity. Because agents are not

choosing these strategies based on the mechanism designer’s objectives, there is a substantial

danger that their play may approximate an undesirable equilibrium.

Consider an abstract example in labor management. There are two incentive structures

A and B. Under incentive structure A, it is a (strictly) dominant strategy for employees to

do their job correctly. Under B, it is a (weakly) dominant strategy for employees to do their

job, but there are also 999 shirking activities that produce similar payoffs. Our model would

correctly identify the dangers of incentive structure B. Imagine that data show employees

do their job correctly with high probability under A, but do their job correctly and shirking

activity no. 333 roughly half of the time under B. This latter behavior violates our model’s

assumption of weak-payoff monotonicity, since all shirking options should be played with

the same probability. Nonetheless, our model’s prediction is still very useful for mechanism

designers of labor incentives.

What about activity no. 333? There must be some appeal of this activity that goes

beyond simple payoff structures. We have been testing weak payoff monotonicity under the
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assumption that numerical payoffs induced in an experimental game are representative of

actual payoffs perceived by subjects. Admittedly, this in an imperfect assumption. Agents

may have different objectives when they engage in strategic interactions. For instance, they

can have other regarding preferences. They could be attracted to some actions because

of their labels. They could use mental shortcuts as rounding. If we allowed all these

other options to be included, we would lose the discipline of falsifiability on our model’s

predictions. We also would lose the applicability of empirical equilibrium to the universe of

simultaneous-move finite games.

This example has an experimental analogue with the complete information treatment of

Andreoni et al. (2007). Our model predicts undesirable equilibria are possible within this

environment, something that is indeed found within the data. However, the authors note

that specific equilibria that are most played are consistent with spiteful bidding. Much like

the appeal of activity no. 333 in our previous example, we do not view these explanations

as competing, rather they are complementary. Our model answers the question on why

the desired equilibrium is not being played; the incentives are not strict enough to rule out

other options. The explanation of spiteful bidding explains why a particular undesirable

equilibrium is so appealing. As we do not consistently observe spite dominating payoff-

maximizing behavior in general, we conclude that an examination of existing incentive

structures is necessary before other explanations are used to explain subject behavior.

Policy-relevant conclusion: The fundamental assumption of our model, weak payoff

monotonicity, generally describes behavioral data well, but there are some anomalies. Even

in data where these anomalies are present, it is still a good idea to follow the general

guidelines presented here on operating a strategy-proof scf.

5.5 Empirical findings in the field

Strategy-proof mechanisms have been operated for some time in the field. Empirical studies

of such mechanisms have generally corroborated the observations from laboratory experi-

ments (e.g. Hassidim et al., 2020; Rees-Jones, 2017; Artemov et al., 2021; Chen and Pereyra,

2019; Shorrer and Sóvágó, 2022), in such high stakes environments as career choice (Roth,

1984) and school choice (Abdulkadiroğlu and Sönmez, 2003). Among these papers, Arte-

mov et al. (2021) and Chen and Pereyra (2019) are the closest to ours. Besides presenting

empirical evidence of persistent violations of the dominant-strategy hypothesis, they pro-

pose theoretical explanations for it. They restrict to school choice environments in which a

particular mechanism is used. Artemov et al. (2021) study a continuum model in which the

SPDA mechanism is operated in an interior incomplete information environment. They con-

clude that it is reasonable that one can observe equilibria in which agents deviate from the
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ideal but only make mistakes that do not affect equilibrium outcomes. Their construction is

based on the approximation of the continuum economy by means of finite realizations of it in

which agents are allowed to make mistakes that vanish as the population grows. Chen and

Pereyra (2019) study a finite school choice environment in which there is a unique ranking

of students across all schools. Based on the analysis of an ordinal form of equilibrium, the

authors argue that only when information is not interior can an agent be expected to deviate

from her truthful report. Our study substantially differs in its scope with these two papers,

because our results apply to all private values environments that admit a strategy-proof scf.

When applied to a school choice problem, our results are qualitatively in line with those in

these two studies and thus provide a rationale for their empirical findings. However, our

results additionally explain the causes of behavior in these environments (informational as-

sumptions and specific properties of the mechanisms) and provide exact guidelines of when

these phenomena will be present in any other environment that accepts a strategy-proof

mechanism.

6 Discussion and concluding remarks

Under the direct-revelation mechanism of a strategy-proof scf, agents’ behavior may ap-

proximate Nash equilibria with outcomes that differ from the intent of the mechanism’s

designer. We address this possibility theoretically and empirically. We tailor our analysis

to a mechanism designer concerned about the plausibility of this possibility.

Three novel theoretical insights come from our analysis. First, as long as agents are

truthful frequently enough, the behavior in a direct-revelation game of a strategy-proof

scf, g, will only support Nash equilibria that implement g whenever one of two conditions

are satisfied: either g is non-bossy, or g has no bossy dominant strategy and information

is interior. Second, whenever a strategy-proof scf that violates non-bossiness is operated

in an environment in which information is not interior, behavior may approximate a Nash

equilibrium that produces outcomes that do not implement g. Third, the performance of

a strategy-proof scf that has no bossy dominant strategy is affected by the information

environment in which it is operated. In other words, we articulate a folk theorem stating

that some dominant strategy mechanisms should perform better whenever there is enough

uncertainty.

Empirical evidence supports our findings. There is strong evidence that agents are

truthful frequently enough in direct-revelation games of strategy-proof scfs. Thus, under

the conditions on an scf in our theorems, Nash behavior in the direct-revelation game of the

scf can only essentially produce the outcomes selected by the scf for the true types. Labora-

tory experiments also confirm our second theoretical insight. There is evidence of behavior
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in direct-revelation games of strategy-proof scfs violating non-bosiness that converges to

sub-optimal equilibria when information is complete. As predicted by our theorems, the

same mechanisms operated in an interior information structure are immune to these prob-

lems.

Our theoretical analysis is based upon a refinement we introduce, empirical equilibrium.

This refinement selects the equilibria that can be approached by weakly payoff monotone

behavior. Weak payoff monotonicity is satisfied by popular noisy best-response models that

have been successful in replicating comparative statics in laboratory experiments. Since

weak payoff monotonicity is compatible with noisy best-responses, the refinement does not

rule out all equilibria involving weakly-dominated behavior.

The idea to refine Nash equilibrium by means of the proximity to plausible behavior has

precedent in the literature. Harsanyi (1973) addressed the plausibility of Nash equilibrium

itself by approximating in each game at least one Nash equilibrium by means of behavior

that is unambiguosly determined by utility maximization in additive randomly perturbed

payoff models with vanishing perturbations. The main difference with our construction is

that the theory in which we base approximation is non-parametric and disciplined by an a

priori restriction that allows us to narrow the set of equilibria that can be approximated.23

Our refinement is also closely related to Rosenthal (1989)’s approximation of equilibria by

a particular linear random choice model that evolves towards best responses and is defined

only in games with two actions, van Damme (1991)’s firm equilibria and vanishing control

costs approachable equilibria, and McKelvey and Palfrey (1996)’s logistic QRE approach-

able equilibria. These authors propose parametric theories to account for deviations from

utility maximization in games and require equilibria to be approachable by the empirical

content of these theories. Behavior generated by each of these theories satisfies weak payoff

monotonicity. Thus they generate further refinements of empirical equilibrium.

These previous attempts to refine Nash equilibrium by means of approachability were

never studied as stand alone refinements. van Damme (1991) developed firm equilibria and

vanishing control costs approachable equilibria as basic frameworks to add restrictions and

provide foundations for other equilibrium refinements that do eliminate weakly-dominated

behavior, e.g., Selten (1975)’s perfect equilibria. McKelvey and Palfrey (1996) observed that

Nash equilibrium can be refined based on approachability by logistic QRE behavior, but

did not pursue the study of this refinement further. Thus, a significant contribution of our

work is to show that a robust non-parametric generalization of these refinements can inform

us about the incentives for truthful revelation in dominant strategy games.

23Each Nash equilibrium can be approached by a sequence of behavior in Harsanyi (1973)’s randomly
perturbed payoff models with vanishing perturbations (Velez and Brown, 2020b).
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Besides the application of empirical equilibrium to the analysis of strategy-proof mecha-

nisms in the present paper, we have advanced, in three companion papers, the foundations of

empirical equilibrium (Velez and Brown, 2020b) and the study of this equilibrium concept in

a partnership-dissolution environment (Velez and Brown, 2020a; Brown and Velez, 2020). In

Velez and Brown (2020b) we show that empirical equilibrium can be equivalently defined by

means of approximation of behavior in van Damme (1991)’s control costs games and Goeree

et al. (2005)’s regular QRE. We also show that there is a meaningful difference between this

refinement and every possible refinement based on monotone additive randomly perturbed

payoff models (e.g., firm equilibria, logistic QRE approachable equilibria). In Velez and

Brown (2020a) we advance empirical equilibrium analysis of partnership-dissolution auc-

tions, a family of non-strategy-proof mechanisms in which no agent has available a weakly

dominant strategy. In Brown and Velez (2020) we experimentally test the comparative

statics predicted by empirical equilibrium in partnership-dissolution auctions. We encour-

age others to identify other environments in which empirical equilibrium analysis produces

results that are relevant for mechanism design and game theory. In particular it is interest-

ing to generalize empirical equilibrium to extensive form games and explore its applications.

Finally, some technical remarks. We have deliberately concentrated our analysis on

direct-revelation mechanisms. Our results obviously extend to mechanisms that are strate-

gically equivalent to these direct-revelation games. For this reason, we have made no dis-

tinction between some direct-revelation mechanisms and their alternative abstract forms in

our presentation. For instance, the second-price auction is a mechanism in which agents

simply bid for a good, one of the highest bidders get the good and pays the second-highest

bid. This mechanism is equivalent to the direct-revelation game of the social choice function

that assigns the object to an agent with the highest valuation and charges this agent the

second highest valuation among all agents.

It is an open question whether there is an environment that admits a strategy-proof scf

violating non-bossiness and for which there is a mechanism that implements the scf in empir-

ical equilibrium for all common-prior information structures. At the cost of slightly heavier

notation one can show that the statements in Theorem 1 are equivalent to the existence of

a finite dominant-strategy mechanism (M,ϕ) that implements the scf in empirical equilib-

ria for all common-prior information structures. Thus, our restriction to direct-revelation

games is to some extent without loss of generality. If one were to implement a strategy-proof

scf that violates non-bossiness robustly in empirical equilibria, one would have to renounce

partial implementation in dominant strategies.

There is a sense in which our restriction to direct-revelation games is not without loss

of generality, however. A mechanism designer may be interested not in precluding the exis-
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tence of suboptimal equilibria, but in minimizing the probability that undesirable outcomes

occur. For this purpose, general mechanisms may offer improvements over direct-revelation

mechanisms. Think for instance of a social planner who oversees the lunch choices of an

agent. There are two options, healthy and unhealthy. The social planner would like the

agent to choose the healthy choice whenever it is the best for them. Suppose that the social

planner uses a direct-revelation mechanism. That is, the social planner asks the agent for

their preference and then assigns the agent’s preferred option breaking ties in favor of the

healthy choice. Then in each empirical equilibrium of the game (choice problem in this case)

the social planner would obtain their objective for sure when the agent is not indifferent

between options and with two thirds probability whenever the agent is indifferent between

both choices. Suppose that instead the social planner offers the agent a menu of k + 1

choices, where the first k > 2 choices lead to the healthy option and the last choice to the

unhealthy. Then in each empirical equilibrium of the game the social planner would obtain

their objective for sure when the agent is not indifferent between options and with k/(k+1)

probability whenever the agent is indifferent between both choices. Thus, the social planner

can virtually implement their objective in empirical equilibria with a general mechanism.

Finally, it is known that the restriction to social choice functions is not without loss of

generality in robust implementation. Bergemann and Morris (2005, Example 2) show that

“partial” robust implementation can be achieved for a “social choice correspondence” that

does not posses any strategy-proof single-valued selection. Their argument can be adapted

to account for mixed strategies, which are essential in our analysis, and to show that the

same phenomenon happens in our environment (see Example 1 in our Online Appendix).

Appendix

Proof of Lemma 1. Let g be strategy-proof, p a common prior, and σ an empirical equilib-

rium of Γ := (Θ, g, p). We prove that for each i ∈ N and each θi ∈ Θi, θi is in the support

of σi(·|θi). Consider a sequence of weakly payoff monotone distributions for Γ, {σλ}λ∈N,

such that for each i ∈ N and each θi ∈ Θi, as λ → ∞, σλ(·|θi) → σ(·|θi). Let λ ∈ N and

θ−i ∈ Θ−i. Since θi is a weakly dominant action for agent i with type θi in (Θ, g), for each

τi ∈ Θi, ui(ϕ(θ−i, θi)|θi) ≥ ui(ϕ(θ−i, τi)|θi). Thus, Uϕ(σλ−i, δθi |p, θi) ≥ Uϕ(σλ−i, δτi |p, θi).
Since σ is weakly payoff monotone for Γ, we have that for each τi ∈ Θi, σ

λ
i (θi|θi) ≥ σλi (τi|θi).

Convergence implies that σi(θi|θi) ≥ σi(τi|θi). Thus, θi is in the support of σi(·|θi).

Proof of Lemma 2. Let us make three assumptions.

Assumption (i): Let g be strategy-proof, p a common prior, and σ ∈ N(Θ, g, p).

Assumption (i’): σ is a baseline-truthful strategy profile.
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Assumption (ii): Suppose that for each θ ∈ Θ in the support of p, each τ in the

support of σ(·|θ), and each i ∈ N such that ui(g(τ)|θi) = ui(g(τ−i, θi)|θi) we have that

g(τ) = g(τ−i, θi).

We claim that if Assumptions (i,i’) and (ii) are satisfied, σ is necessarily optimal. To

see this, let θ ∈ Θ be in the support of p and τ be in the support of σ(·|θ). Consider first

agent 1. Since τ is in the support of the equilibrium in state θ, the expected utility of τ1 for

agent 1 is greater than or equal to the expected utility of θ1. Since θ1 is a weakly dominant

strategy for agent 1 in this state, these utilities are equal. Moreover, the integrand of the

expected utility of θ1 dominates point-wise the integrand of the expected utility of τ1. This

means that these integrands need to be equal in the support of the common integrating

measure of both integrals. Since τ−1 is in the support of this integrating measure, we have

that u1(g(τ)|θ1) = u1(g(τ−1, θ1)|θ1). Thus, by Assumption (ii), g(τ) = g(τ−1, θ1). Now, by

Assumption (i’), we have that (τ−1, θ1) is also in the support of σ(·|θ). We can iterate then

and conclude that g(τ) = g(θ).

Thus, we have proved that if Assumptions (i,i’) are satisfied and σ is sub-optimal,

Assumption (ii) needs to be violated. That is, there must be θ ∈ Θ in the support of

p, τ in the support of σ(·|θ), and i ∈ N such that ui(g(τ)|θi) = ui(g(τ−i, θi)|θi), and

g(τ) 6= g(τ−i, θi).

Proof of Lemma 3. Let g be strategy-proof, p a common prior, and σ a baseline-truthful

strategy profile in (Θ, g, p). Let θ ∈ Θ in the support of p, τ−i in the support of σ−i(·|θ−i),
i ∈ N , and τi ∈ Θi such that g(τ) 6= g(τ−i, θi). We prove that each of the additional

assumptions in the lemma imply that τi is not a best response to σ−i for agent i.

Suppose first that g is non-bossy. Since g(τ) 6= g(τ−i, θi), it must be the case that

ui(τ |θi) 6= ui(τ−i, θi|θi). Since g is strategy-proof ui(τ |θi) < ui(τ−i, θi|θi). Since τ−i is

played with positive probability by N \ {i}, and truthful reports are weakly dominant

strategies, Ug(σ−i, τi|p, θi) < Ug(σ−i, θi|p, θi). Thus, τi is not a best response to σ−i for

agent i.

Suppose now that g has no bossy dominant strategy and p has full support. Since g(τ) 6=
g(τ−i, θi), it must be the case that τi is not a weakly dominant strategy for agent i with

type θi. Thus, there is τ ′−i such that ui(τ
′
−i, τi|θi) < ui(τ

′
−i, θi|θi). Since p has full support,

(τ ′−i, θi) is in the support of p. Since truthful reports are played with positive probability

and truthful reports are weakly dominant strategies, Ug(σ−i, τi|p, θi) < Ug(σ−i, θi|p, θi).
Thus, τi is not a best response to σ−i for agent i.

Proof of Lemma 4. Let g be an scf. Suppose that for each interior prior p and each empirical

equilibrium of (Θ, g, p), σ, we have that for each pair {θ, τ} ⊆ Θ where τ is in the support

of σ(·|θ), g(θ) = g(τ).
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We claim that g is strategy-proof. Our proof of this claim follows Bergemann and

Morris (2005, Proposition 3). We spell out the details because our statement includes

mixed strategy equilibria. Let θ ∈ Θ, i ∈ N , and τi ∈ Θi. Let ε ∈ (0, 1). Consider the

common prior p that places probability 1/2−ε/2 on each element of {θ, (θ−i, τi)}, and places

uniform probability on all other payoff types. Thus, p is interior. Let σ be an equilibrium

of (Θ, g, p) that, for each µ ∈ Θ and each message in the support of σ(·|µ), produces g(µ).

Thus, the expected value of a report in the support of σi(·|θi) has an expected value for

type θi that is greater than or equal to the expected value of a report in the support of

σi(·|τi), i.e.,

p(θ−i|θi)ui(g(θ)|θi) +
∑

µ−i∈θ−i
p(µ−i|θi)ui(g(µ−i, θi)|θi) ≥

p(θ−i|θi)ui(g(θ−i, τi)|θi) +
∑

µ−i∈θ−i
p(µ−i|θi)ui(g(µ−i, τi)|θi).

Since as ε → 0, p(θ−i|θi) → 1, we have that ui(g(θ)|θi) ≥ ui(g(θ−i, τi)|θi). Thus, g is

strategy-proof.

We now claim that g has no bossy dominant strategy. Suppose by contradiction that

there are i ∈ N , θ ∈ Θ, τi ∈ Θi, such that ui(g(θ)|θi) = ui(g(θ−i, τi)|θi), g(θ) 6= g(θ−i, τi),

and for each τ−i ∈ Θ−i, ui(g(τ−i, θi)|θi) ≤ ui(g(τ)|θi). Let p have full support. Let σ be an

empirical equilibrium of (Θ, g, p). Since g is strategy-proof, τi is a weakly dominant action

for agent i with type θi in (Θ, g), and for each j ∈ N \ {i}, θj is a dominant strategy for

agent j with type θj . By Lemma 1, σ(·|θ) places positive probability on (θ−i, τi). This

contradicts Statement 1 in the theorem.

Proof: 2⇒ 1 in Theorems 1 and 2. Suppose that g is strategy-proof and let σ be an em-

pirical equilibrium of the direct revelation game of g. From Lemma 1 we know that σ is

a baseline-truthful equilibrium. We claim that σ implements g. Suppose by contradiction

that it is not. By Lemma 2 we know that at least an agent ends up being bossy with

positive probability. This contradicts, Lemma 3, which states that under the assumptions

of the theorems, no empirical equilibrium of a direct revelation game of g admits an agent

be bossy with positive probability.

Proof of Lemma 5. Let g be strategy-proof. Suppose that for each common prior p and

each empirical equilibrium of (Θ, g, p), σ, we have that for each pair {θ, τ} ⊆ Θ where θ

is in the support of p and τ is in the support of σ(·|θ), g(θ) = g(τ). We claim that g is

non-bossy. Suppose by contradiction that g violates this property. We can suppose without

loss of generality that there is θ ∈ Θ and τ1 ∈ Θ1 such that u1(g(θ)|θ) = u1(g(θ−1, τ1)|θ)
and g(θ) 6= g(θ−1, τ1).

Consider the complete information prior p that places probability one on state θ. For
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each i ∈ N , let Di be the set of weakly dominant actions for agent i with type θi in (Θ, g, θ).

Let σ be the strategy profile in which each agent i > 1 uniformly randomizes on the set Di,

and agent 1 uniformly randomizes on the set of best responses to σ−1. By construction σ

is a Nash equilibrium of (Θ, g, θ). We claim that σ is an empirical equilibrium of (Θ, g, θ)

in which agent 1 plays τ1 with positive probability.

Note that g satisfies the hypotheses of Lemma 4. Thus, g has no bossy dominant

strategy.

We prove first that agent 1 plays τ1 with positive probability in σ. That is, τ1 is a best

response to σ−1 for agent 1 with type θ1 in (Θ, g, θ). Let θ′−1 be in the support of σ−1.

Recall that by hypothesis, u1(g(θ)|θ1) = u1(g(θ−1, τ1)|θ1). Since θ′2 is a dominant strategy

for agent 2 with type θ2 in (Θ, g, θ), and g has no bossy dominant strategy, we have that

g(θ) = g(θ−{1,2}, θ1, θ
′
2) and g(θ−1, τ1) = g(θ−{1,2}, τ1, θ

′
2). By repeating this step we get that

g(θ) = g(θ′−1, θ1) and g(θ−1, τ1) = g(θ′−1, τ1). Then, u1(g(θ′−1, θ1)|θ1) = u1(g(θ′−1, τ1)|θ1).

Thus, Ug(σ−1, τ1|p, θ1) = Ug(σ−1, θ1|p, θ1). Since θ1 is a weakly dominant action for agent

1 with type θ1 in (Θ, g, θ), τ1 is a best response to σ−1 for agent 1. Consequently, agent 1

plays τ1 with positive probability in σ1.

We finally show that σ is an empirical equilibrium of (Θ, g, θ). We construct a sequence

of weakly payoff monotone distributions for this game that converges to σ. Let k ∈ N and

0 < ε < 1. If for some i > 1 all actions are in Di, let σki := σi and σk,εi := σi. Note that if

for each i > 1 all actions are in Di, σ is itself a weakly payoff monotone distribution. So σ

is an empirical equilibrium. Thus, we can suppose without loss of generality that for some

i > 1, there are some possible reports that are not in Di. For each such agent let σk,εi be the

strategy that distributes 1− ε uniformly among Di and distributes ε unifromly among the

actions not in Di. Let σk,ε1 be the strategy for agent 1 defined as follows: for each θ′1 ∈ Θ1,

σk,ε1 (θ′1) :=
ekUg(σk,ε

−1 ,θ
′
1|p,θ1)∑

θ′′1∈Θ1
ekUg(σk,ε

−1 ,θ
′′
1 |p,θ1)

.

Since the exponential function is positive, σk,ε1 is an interior probability distribution.

Thus, σk,ε is an interior strategy profile.

We claim that if ε < mini>1,|Di|<|Θi| |Di|/|Θi|, σk,ε is weakly payoff monotone for

(Θ, g, θ). Since the exponential function is strictly increasing, σk,ε1 is ordinally equiva-

lent to the expected utility vector (Ug(σ
k,ε
−1 , θ

′′
1 |p, θ1))θ′′1∈Θ1

. Thus, for any two actions

{θ′1, θ′′1} ⊆ Θ1, Ug(σ
k,ε
−1 , θ

′
1|p, θ1) ≥ Ug(σ

k,ε
−1 , θ

′′
1 |p, θ1) if and only if σk,ε1 (θ′1) ≥ σk,ε1 (θ′′1). If

i > 1 is such that |Di| = |Θi|, σk,εi places equal probability on all actions. Thus, it induces

no violation of weak payoff monotonicity. Finally, let i > 1 be such that |Di| < |Θi|. Since

ε < mini>1,|Di|<|Θi| |Di|/|Θi|, σk,εi places higher probability on each element of Di than on
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each element of Θi \ Di. Since no element of Θi \ Di is a weakly dominant strategy for

agent i with type θi in (Θ, g, θ) and σk,ε is interior, for each θ′i ∈ Di and each θ′′i ∈ Θi \Di,

Ug(σ
k,ε
−i , θ

′
i|p, θi) > Ug(σ

k,ε
−i , θ

′′
i |p, θi). Consequently, σk,εi induces no violation of weak payoff

monotonicity.

Note that as ε → 0, for each i > 1, σk,εi → σi. By continuity of expected utility and

exponential operators, as ε→ 0,

ekUg(σk,ε
−1 ,θ

′
1|p,θ1)∑

θ′′1∈Θ1
ekUg(σk,ε

−1 ,θ
′′
1 |p,θ1)

→ ekUg(σ−1,θ′1|p,θ1)∑
θ′′1∈Θ1

ekUg(σ−1,θ′′1 |p,θ1)
.

Since for each θ′1 in the support of σ1

ekUg(σ−1,θ′1|p,θ1)∑
θ′′1∈Θ1

ekUg(σ−1,θ′′1 |p,θ1)
=

ekUg(σ−1,θ1|p,θ1)∑
θ′′1∈Θ1

ekUg(σ−1,θ′′1 |p,θ1)
,

we have that there is ε(k) ∈ (0, 1/k) for which for each θ′1 in the support of σ1,∣∣∣∣∣∣ ekUg(σ
k,ε(k)
−1 ,θ′1|p,θ1)∑

θ′′1∈Θ1
ekUg(σ

k,ε(k)
−1 ,θ′′1 |p,θ1)

− ekUg(σ−1,θ1|p,θ1)∑
θ′′1∈Θ1

ekUg(σ−1,θ′′1 |p,θ1)

∣∣∣∣∣∣ < 1

k
. (1)

Let σk := σk,ε(k). By construction, σk is weakly payoff monotone for (Θ, g, θ). Moreover,

as k →∞, ε(k)→ 0. Thus, as k →∞, for each i > 1, σki → σi. By (1), as k →∞, for each

θ′1 in the support of σ1,

ekUg(σk
−1,θ

′
1|p,θ1)∑

θ′′1∈Θ1
ekUg(σk

−1,θ
′′
1 |p,θ1)

→ ekUg(σ−1,θ1|p,θ1)∑
θ′′1∈Θ1

ekUg(σ−1,θ′′1 |p,θ1)
.

Finally, let θ′1 be outside the support of σ1. Then, Ug(σ−1, θ
′
1|p, θ1) < Ug(σ−1, θ1|p, θ1). It

follows that,

σk1 (θ′1)/σk1 (θ1) = ek(Ug(σ−1,θ′1|p,θ1)−Ug(σ−1,θ1|p,θ1)) →
k→∞

0.

Thus, as k →∞, σk1 → σ1 and consequently, σk → σ.

In summary, σ is a Nash equilibrium of (Θ, g, θ) that is the limit of a sequence of weakly

payoff monotone strategies for (Θ, g, θ); moreover, σ prescribes each agent be truthful with

positive probability and agent 1 play τ1 with positive probability. Thus, σ is an empirical

equilibrium of (Θ, g, θ) in which in state θ, which is realized with probability one in this

environment, the profile of reports (θ−1, τ1) is realized with positive probability. Since

g(θ) 6= g(θ−1, τ1), this is a contradiction to the hypothesis of the lemma.
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Student Proposing Deferred Acceptance rule (SPDA) has es-

sentially unique dominant strategies

The following discussion uses the standard language in school choice problems (c.f. Ab-

dulkadiroğlu and Sönmez, 2003). Suppose that preferences are strict and starting from a

profile in which student i is truthful, she changes her report but does not change the relative

ranking of her assignment with respect to the other assignments. The SPDA assignment for

the first profile, say m, is again stable for the second profile. Thus, for the new profile, each

other agent is weakly better off. Agent i’s allotment is the same in both markets because

SPDA is strategy-proof. If another agent changes her allotment, it is because the new SPDA

assignment was blocked in the original profile. Since the preferences of the other agents did

not change, agent i needs to be in the blocking pair for the new assignment in the original

market. However, this means she is in a blocking pair for the new assignment in the new

market. Thus, with this type of lie, agent i cannot change the allotment of anybody else.

If agent i changes the relative ranking of her allotment in the original market, she can be

worse off with the lie. For instance, suppose that she moves mj from her lower contour set

at her allotment to the upper contour set. In the preference profile in which each agent

different from i and j ranks top her allotment at m, and in which agent j ranks mi top,

agent i receives mj in the SPDA assignment.

Robust Nash implementation

Proof of Theorem 3. We first prove that 1 ⇒ 4. Suppose that Statement 1 is satisfied.

Our argument in the proof of Lemma 4, taking σ as an equilibrium of (M,ϕ, p) for the

interior p defined there, implies that g is strategy proof. We now prove that g is non-bossy

and satisfies the outcome rectangular property. Our proof follows closely that of Adachi

(Proposition 3, 2014). By Saijo et al. (Proposition 3, 2007), it is enough to prove that for

1



each pair {θ, θ′} ⊆ Θ, if for each i ∈ N , ui(g(θ′)|θi) = ui(g(θ′−i, θi)|θi), then g(θ) = g(θ′).

Thus, let {θ, θ′} ⊆ Θ, and suppose that for each i ∈ N ,

ui(g(θ′)|θi) = ui(g(θ′−i, θi)|θi). (A.1)

Consider a prior p that places uniform probability on the set {(θ′−i, µi) : i ∈ N,µi ∈
{θi, θ′i}}. Let σ be an equilibrium of (M,ϕ, p), which always exists because the mechanism

is finite. Let i ∈ N , mi in the support of σi(·|θi), m′i in the support of σi(·|θ′i), and m̂−i in

the support of σ−i(·|θ′−i). By Statement 1,

ϕ(m̂−i,m
′
i) = g(θ′) and ϕ(m̂−i,mi) = g(θ′−i, θi). (A.2)

Thus, by (A.1),∑
m̂−i∈M−i

ui(ϕ(m̂−i,mi)|θi)σ−i(m̂−i|θ′−i) =
∑

m̂−i∈M−i

ui(ϕ(m̂−i,m
′
i)|θi)σ−i(m̂−i|θ′−i).

Since agent i knows the type of the other agents is θ′−i when she draws type θi, equilibrium

behavior implies that for each m̂i ∈Mi,∑
m̂−i∈M−i

ui(ϕ(m̂−i,mi)|θi)σ−i(m̂−i|θ′−i) ≥
∑

m̂−i∈M−i

ui(ϕ(m̂−i, m̂i)|θi)σ−i(m̂−i|θ′−i).

By the last two displayed equations, for each m̂i ∈Mi,∑
m̂−i∈M−i

ui(ϕ(m̂−i,m
′
i)|θi)σ−i(m̂−i|θ′−i) ≥

∑
m̂−i∈M−i

ui(ϕ(m̂−i, m̂i)|θi)σ−i(m̂−i|θ′−i).

Thus, if µ is a behavior strategy such that µ(·|θ) = σ(·|θ′), for each m̂i ∈Mi,∑
m̂−i∈M−i

ui(ϕ(m̂−i,m
′
i)|θi)µ−i(m̂−i|θ−i) ≥

∑
m̂−i∈M−i

ui(ϕ(m̂−i, m̂i)|θi)µ−i(m̂−i|θ−i).

Thus, µ is a Nash equilibrium of (M,ϕ, θ). By Statement 1, ϕ(m′) = g(θ). Thus, g(θ) =

g(θ′).

The argument that 2⇒ 4 in Saijo et al. (2007) applies to our environment unmodified.

This argument involves only dominant strategy and pure strategy equilibria in complete

information structures.

We now prove that 4 ⇒ 3. Suppose that 4 is satisfied. Let σ be an equilibrium of

(Θ, g, p) for some common prior p. Let θ in the support of p and τ be in the support of

σ(·|θ). Observe since σ is an equilibrium, Statement 4 implies that Assumptions (i) and (ii)

2



in the proof of Lemma 2 are satisfied. Thus, for each i ∈ N , g(τ−i, θi) = g(τ). Then, by the

outcome rectangular property, we have that g(τ) = g(θ).

Finally, we observe that trivially 3⇒ 1, and by Lemma 4, 3 implies g is strategy-proof.

Thus, 3⇒ 2.

Social choice correspondences

We now show that our results depend on our restriction to social choice functions. That

is, our requirement that the social planner’s objective be summarized on a function that

selects a unique determinate outcome for each social state. Since mixed strategy equilibria

are essential in our analysis, a generalization of our model requires that we first reconsider

the role of mixed strategies in Bayesian implementation. Indeed, in some environments,

almost all pure strategy equilibria of a mechanism may be completely wiped out by the

empirical equilibrium refinement, while a continuum of mixed strategy equilibria survive

(Velez and Brown, 2020a).

An alternative that we find appealing as a starting point is to study typical Bayesian

implementation (Jackson, 1991) in a finitely generated model in which the social planner

selects probability measures on outcomes for each social state. More precisely, for a finite

outcome space X let Θ be a payoff type space as defined in our model. A (random)

social choice function associates with each type profile a probability distribution on X, i.e.,

g : Θ → ∆(X). A mechanism (M,ϕ) is defined as usual, but allowing for randomization,

i.e., ϕ : M → ∆(X). A (random) social choice set G is a subset of social choice functions.

Then one can determine the success of a mechanism from the point of view of a mechanism

designer who identifies G as desirable by comparing the equilibria of (M,ϕ, p) with the

elements of G.

The following example shows that strategy-proofness is not necessary to obtain a mean-

ingful form of robust implementation in empirical equilibrium when one allows for multi-

valued objectives. That is, one can construct a finite X and a payoff-type space Θ that

admits a social choice set G that contains no strategy-proof scf and for which there is a

finite mechanism (M,ϕ) such that for each common prior p and each empirical equilibrium

of (M,ϕ, p), say σ, there is an element of G that coincides with the induced conditional

measures θ 7→ ϕ(σ(·|θ)) in the support of p.

Example 1. Consider the following modification of Bergemann and Morris (2005, Example

2): Θ1 := {θ1, θ
′
1, θ
′′
1}, Θ2 := {θ2, θ

′
2}, X := ∆({a, b, c, d, a′, b′, c′, d′}),

3



u1 a b c d a′ b′ c′ d′

θ1 1 -1 1/2− ε -1 -1 1 -1 1/2− ε
θ′1 0 0 1 0 0 0 1 0

θ′′1 0 0 0 1 0 0 0 1

and

u2 a b c d a′ b′ c′ d′

θ2 ε 1 0 0 0 1− ε −1 −1

θ′2 1− ε 0 −1 −1 1 ε 0 0

Let F be the correspondence that assigns to each type profile the set of probability distri-

butions on outcomes in the following table.

θ2 θ′2

θ1 ∆({a, b}) ∆({a′, b′})
θ′1 {c} {c′}
θ′′1 {d} {d′}

Let G be the social choice set of all scfs g such that for each θ, g(θ) ∈ F (θ).

An argument as that in Bergemann and Morris (2005) shows that if ε < (9 −
√

65)/8,

there is no strategy-proof scf g such that for each θ ∈ Θ, g(θ) ∈ F (θ). Thus, there is no

strategy-proof scf in G.

Finally, let (M,ϕ) be the mechanism where M1 := {m1
1,m

2
1,m

3
1,m

4
1}, M2 := {m1

2,m
2
2},

and ϕ is given by:

m1
1 m2

1 m3
1 m4

1

m1
2 a b c d

m2
2 a′ b′ c′ d′

Consider a common prior p. Observe that m1
2 is strictly dominant for payoff type θ2 and m2

2

is strictly dominant for payoff type θ′2. Thus, in each Nash equilibrium of (M,ϕ, p) these

payoff types play these strategies with probability one. Now, consider agent 1 with type θ1.

Clearly, m1
1 weakly dominates m3

1 and m2
1 weakly dominates m4

1. Moreover, if the expected

value of m1
1 is the same as that for m3

1, we have that the expected value of m2
1 is greater

than that of m4
1. Thus, agent 1 with type θ1 will never play m1

3 nor m4
1 in an equilibrium

of (M,ϕ, p). Note also that agent 1 with types θ′1 and θ′′1 has strictly dominant actions m3
1

and m4
1, respectively. Thus, for each p, each empirical equilibrium of (M,ϕ, p), say σ, and

each realization of payoff types θ ∈ Θ, σ(·|θ) induces a measure on X that belongs to F (θ).

Summary of dominant strategy play
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Figure A.1: Second-price auction in Andreoni et al. (2007) under complete information. (left) The dark
gray area indicates the proportion of outcomes where all subjects play mutual best responses to the actions
of all other group members. The light gray area indicates outcomes where the transaction associated with
the dominant strategy outcome occurs, that is, the subject with the highest valuation obtains the item
and pays the amount of the second-highest valuation. The medium gray area indicates the percentage
of group outcomes where all subjects play a dominant strategy. Note that each level necessarily contains
the subsequent level. Subjects are rematched randomly, in four-agent groups, across a group of 20 each
period. (Right) Median bid and 15th-85th percentile range by valuation type. Bids are standardized so
that the valuation of the 1st-4th valuations in the specific auction are assigned values 4–1, respectively.
Bids of 100 (the highest possible valuation) and 200 (the highest possible bid) are assigned values of 5 and
6, respectively. If two valuation types have the same value, valuation order is randomly assigned. Bids
between two valuations are standardized by (bid − valuationj)/(valuationi − valuationj) where i is the
highest valuation a bid exceeds and j is the next highest valuation. Bids below the lowest valuation are
standardized on the interval between 0 and the lowest valuation. Bids above the highest valuation are
standardized either on the interval between the highest valuation and 100 (values of 4–5), or 100 and 200
(values of 5–6). For example, for the four valuations 80, 40, 25, 10, bids of 150, 40, 30, and 5 would be 5.5,
3, 2.33, and 0.5, respectively.
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Figure A.2: Second-price auction experiment in Andreoni et al. (2007) under interior incomplete informa-
tion; (left) percentages of best responses, dominant strategy-outcomes and dominant strategy play; (Right)
normalized median, 15th and 85th percentiles, for bids (same normalization as in Fig. A.1)
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between the price and a second valuation (right) in the second-price auction experiments of Andreoni et al.
(2007) in the interior incomplete and complete information treatments.
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