Homework 1

Statistical Mechanics, by D. A. McQuarrie, 1s an excellent textbook with a
more chemical emphasis. In our notation Q—Z, A—>F, Q— W, etc. for both

McQuarrie and our textbook. These 5 problems are taken from McQuarrie.

1-58. One often encounters the gamma function in statistical thermodynamics. It was
introduced by Euler as a function of x, which is continuous for positive values of x and which
reduces to n! when x = n, an integer. The gamma function I'(x) is defined by

T'(x) = fo e=tt*=1 dt

First show by integrating by parts that
T'(x+ 1) =xI'(x)
Using this, show that I'(n + 1) = n! for » an integer. Show that

T} =V~

Evaluate T'(3) using the recurrence formula I'(x + 1) = xI'(x). Lastly show that
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For a discussion of the gamma function, see G. Arfken, Mathematical Methods for Physicists,
2nd ed. (New York: Academic, 1970).

1-59. We can derive Stirling’s approximation from an asymptotic approximation to the
gamma function I'(x). From the previous problem
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where g(x) = In x — x/N. If g(x) possesses a maximum at some point, say xo, then for large
N, exp(Ng(x)) will be extremely sharply peaked at xo. Under this condition, the integral for
N'! will be dominated by the contribution of the integrand from the point x, . First show that
g(x) does, in fact, possess at maximum at the point xo = N. Expand g(x) about this point,
keeping terms only up to and including (x — N)? to get

g(x) ~ g(N)—(x NN)

Why is there no linear term in (x — N)? Substitute this expression for g(x) into the integral
for N! and derive the asymptotic formula
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1-63. Another function that occurs frequently in statistical mechanics is the Riemann zeta
function, defined by

H=2 k~*

k=1

First show that £(1) = co, but that (s) is finite for s > 1. Show that another definition of
{(s) is
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that is, show that this is identical to the first definition. In addition, show that
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The evaluation of {(s) for integral s can be done using Fourier series, and some results are
{(2) = 7%/6 and {(4) = =*/90.

For a discussion of the Riemann zeta function, see G. Arfken, Mathematical Methods for
Physicists, 2nd ed. (New York: Academic, 1970).

1-24. We need to know the volume of an N-dimensional sphere in order to derive Eq.
(1-36). This can be determined by the following device. Consider the integral
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First show that / = #¥/2, Now one can formally transform the volume element dx, dx; - - - dxn
to N-dimensional spherical (hyperspherical) coordinates to get

f dxidxs dxy—>r¥"1Sydr
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where Sy is the factor that arises upon integration over the angles. Show that S =27 and
S5 = 4. Sy can be determined for any N by writing / in hyperspherical coordinates:
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Show that I =Sy I'(V/2)/2, where I'(x) is the gamma function (see Problem 1-58). Equate
these two. values for I to get
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Show that this reduces correctly for N =2 and 3. Lastly now, convince yourself that the

volume of an N-dimensional sphere of radius a is given by
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and show that this reduces correctly for N = 2 and 3.



1-61. An integral that appears often in statistical mechanics and particularly in the kinetic
theory of gases is
I,= f xg~*=* Jy
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This integral can be readily generated from two basic integrals. For even values of 7, we first
consider
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The standard trick to evaluate this integral is to square it, and then transform the variables
into polar coordinates.
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Using this result, show that for even n
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For odd values of n, the basic integral I; is easy. Using I;, show that
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