

Homework 8

P 2.1 – counts as 2 problems

M 10-4 see below

[Λ is the thermal de Broglie wavelength, p is the pressure.]

M 10-27 see next page

[10-26 is only for background.]

M 10-29 see next page

[Interpretation for us: Get E from our grand partition function for the radiation field, then use this and energy flux = $(1/4)(E/V)c$ to get the Stefan Boltzmann law, evaluating σ_B .]

10-4. Derive Eqs. (10-11) and (10-12) from Eqs. (10-9) and (10-10).

$$N = 2\pi \left(\frac{2m}{h^2}\right)^{3/2} V \int_0^\infty \frac{\lambda \varepsilon^{1/2} e^{-\beta \varepsilon} d\varepsilon}{1 + \lambda e^{-\beta \varepsilon}} \quad (10-9)$$

$$pV = 2\pi kT \left(\frac{2m}{h^2}\right)^{3/2} V \int_0^\infty \varepsilon^{1/2} \ln(1 + \lambda e^{-\beta \varepsilon}) d\varepsilon \quad (10-10)$$

$$\rho = \frac{1}{\Lambda^3} \sum_{l=1}^{\infty} \frac{(-1)^{l+1} \lambda^l}{l^{3/2}} \quad (10-11)$$

$$\frac{p}{kT} = \frac{1}{\Lambda^3} \sum_{l=1}^{\infty} \frac{(-1)^{l+1} \lambda^l}{l^{5/2}} \quad (10-12)$$

[next page]

10-26. Show that the Planck blackbody distribution can be written in terms of wavelengths λ rather than frequency:

$$\rho(\lambda, T) d\lambda = \frac{8\pi hc}{\lambda^5} \frac{d\lambda}{e^{hc/\lambda kT} - 1}$$

where $\rho(\lambda, T) d\lambda$ is the amount of energy between wavelength λ and $\lambda + d\lambda$.

10-27. If ω_{\max} is the frequency at which $\rho(\omega, T)$ is a maximum, illustrate by maximizing $\ln \rho(\omega, T)$ that ω_{\max} is given by

$$\frac{\hbar\omega_{\max}}{kT} = 3(1 - e^{-\hbar\omega_{\max}/kT})$$

and so

$$\frac{\hbar\omega_{\max}}{kT} = 2.82$$

Similarly show that

$$\lambda_{\max} T = 0.290 \text{ cm-deg}$$

10-29. In Problem 7-24, it was shown that the number of molecules striking a surface per unit area per unit time is $\rho\bar{v}/4$. By a similar approach, show that the total energy flux radiated by a blackbody is

$$e(T) = \frac{c}{4} \frac{E}{V} = \sigma T^4$$

where $\sigma = 2\pi^5 k^4 / 15h^3 c^3$. This result is known as the Stefan-Boltzmann law, and σ is the Stefan-Boltzmann constant. Verify that σ , a universal constant, equals $5.669 \times 10^{-5} \text{ erg/cm}^2 \text{-deg}^4 \text{-sec}$.