
Physics 607 Exam 2 
 

Please be well-organized, and show all significant steps clearly in all problems. 
You are graded on your work, so please do not just write down answers with no explanation! 
 
Do all your work on the blank sheets provided, writing your name clearly. (You may keep this exam.) 
 
The variables have their usual meanings: E = energy, S = entropy, V = volume, N = number of particles, T =
temperature, P =pressure, µ = chemical potential, B = applied magnetic field, CV =  heat capacity at constant 
volume,  CP =  heat capacity at constant pressure, F =  Helmholtz free energy, G =  Gibbs free energy, k =  
Boltzmann constant, h = Planck constant .   Also, ⋅ ⋅ ⋅  represents an average. 
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1. The easiest way to do this problem is to use the equipartition theorem. 
 
A classical system of noninteracting diatomic molecules is enclosed in a box of volume V at temperature T. The 
Hamiltonian of a single molecule is  
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which can be transformed to center of mass coordinates  R
!"

 and  P
!"

 and relative coordinates (r,θ ,φ)  and 
p, pθ , pφ( ) , becoming 
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where M  is the total mass, µ  is the usual reduced mass, and I = µr2 . 
 

(a) (8) First let us make the approximation that the moment of inertia I  is constant. 
 
In this approximation, calculate r2  as a function of T . 
 
(b) (15) Now let us relax this approximation, so that the Hamiltonian includes the dependence of the moment of 
inertia on r in our classical Hamiltonian 
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For this full Hamiltonian, calculate r2  as a function of T . 
 
 
 
 
 
 
 
 
 
[In a quantum description there is a single vibrational coordinate, with the coupling between rotations and 
vibrations treated as a perturbation, along with anharmonicity.]  



2. Recall that a Debye solid has a maximum vibrational angular frequency ωD  which is determined by the fact 
that there are 3N vibrational modes with N atoms. Assume two transverse modes with ω = vt k  and one 
longitudinal mode with  ω = vℓ k , where p = !k  is the (crystal) momentum and k is the wavenumber. 
 
(a) (8) Using the fact that the density of states in momentum space is given by 

ρ p( )dp = 4π p
2dp
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calculate the total density of states ρ ω( )  for all three modes in terms of v  , where 
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(b) (8) Show that  
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where you will determine the constant C.  
 
(b) (9) Show that the zero-point energy of a Debye solid is equal to constant ×  NkBΘD , where you will 
determine this constant. Here  ΘD = !ωD / kB  is the Debye temperature and the Boltzmann constant is called kB  
to avoid confusion. 
 
  



3. Let us calculate the speed of sound u  in an ideal quantum gas of fermions at T = 0  using 
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where ρ = mn , m  is the mass of one particle, and n = N
V

 is the number density. (See the bottom of this page 

for the general expression for u .) These are nonrelativistic spin 1/2 fermions in 3 dimensions, with energy 

ε = p2

2m
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(a) (4) Using the fact that the density of states in momentum space is given by 

ρ p( )dp = 4π p
2dp
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calculate the value of the Fermi momentum pF  and the Fermi energy εF = pF
2

2m
  (in terms of the various 

constants). You should find that pF ∝n1/3  ,  where you will determine the proportionality constant. 
 
(b) (4) Again using this density of states, and the result for pF , show that the energy of the system is given by 

E
V

=   constant  ×   n5/3    

while at the same time determining the constant. 
 

(c) (4) For a nonrelativistic ideal gas, recall that P = 2
3
E
V

 .  Calculate u  at T = 0 , giving your answer in terms 

of n  and m . 
 
(d) (4) Show that u = constant × uF , while at the same time obtaining the constant. Here uF  is the Fermi 

velocity: εF = 1
2
muF

2 . 

 
(e) (4) Using the standard expression for dE  in terms of dS , dV , and dN , and the Euler relation for E  in 

terms of TS , PV , and µN , obtain the Gibbs-Duhem relation involving sdT , vdP , and dµ . Here s = S
N

 and 
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(g) (4) Finally, using the above relation and the fact that µ = εF  at T = 0 , again calculate u  at T = 0 , giving 
your answer in terms of n  and m . Do you get the same answer as in Part (c)? 
_______________________________________________________________________________________ 
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= adiabatic compressibility , with T = 0  the same as S = 0 . 



4. Consider an ideal quantum gas of spinless bosons in D  dimensions, with a relation between energy and 
momentum of the form ε = aps . We wish to determine the relation between D  and s  if Bose-Einstein 
condensation is to occur. (You can check your answer with what you know about a nonrelativistic system, with 
s = 2 , in 2 and 3 dimensions. We are extending this to an ultrarelativistic system, with s = 1 .) 
 
Recall that the density of states in momentum space is given by 

ρ p( )dp = A pD−1dp , A = 2π D/2

Γ D / 2( ) ⋅
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where V  is the D-dimensional  volume in which the particles are confined. 
 
 
(a) (4) At temperature T , write down the equation for the number of particles N  in term of (i) the number of 
particles N0 T( )  in the state with p = 0  and (ii) an integral over p  (i.e., over all the excited states with p > 0 ). 
Recall that  

n ε( ) = λ
eε /kT− λ

, λ = eµ/kT  . 

 
(b) (4) Derive the value of the chemical potential µ  below the transition temperature if Bose-Einstein 
condensation is to occur – i.e., if the ground single-particle state is to contain an infinite number of particles – 
in the limit N →∞ . (Please be clear in your argument.) 
 
 
(c) (4) Assuming the value of the chemical potential µ  obtained in Part (b), rewrite the integral of Part (a) as an 
integral over ε . 
 
 
(d) (4) Using the result of part (c), obtain an equation of the form 
 

N = constant × Tα + N0  
 

while at the same time obtaining the constant prefactor and the other constant α , in terms of  A , D , s , etc. 
 
 
(e) (4) Obtain the condition on D  and s  for Bose-Einstein condensation to be required. 
 

(f) (4) For those cases where Bose-Einstein condensation does occur at some temperatureTc ≠ 0 , obtain 
N0
N

 as 

a function of T
Tc

 for T ≤ Tc.  

 
 


