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1 Stowers Institute for Medical Research, Kansas City, Missouri, United States of America, 2 Theory of Condensed Matter, Cavendish Laboratory, Cambridge, United

Kingdom, 3 Department of Computer Science, Duke University, Durham, North Carolina, United States of America, 4 Department of Mathematics, Duke University,

Durham, North Carolina, United States of America, 5 Geomagic, Research Triangle Park, North Carolina, United States of America, 6 INSERM U900, Paris, France, 7 CNRS

UMR 144 Curie Institute, Paris, France, 8 Ecole des Mines de Paris, Paris Tech, Fontainebleau, France, 9 Department of Biochemistry, University of Texas Southwestern

Medical Center, Dallas, Texas, United States of America, 10 Department of Mathematics, University of California, Berkeley, California, United States of America, 11 Howard

Hughes Medical Institute, Kansas City, Missouri, United States of America

Abstract

While genome-wide gene expression data are generated at an increasing rate, the repertoire of approaches for pattern
discovery in these data is still limited. Identifying subtle patterns of interest in large amounts of data (tens of thousands of
profiles) associated with a certain level of noise remains a challenge. A microarray time series was recently generated to
study the transcriptional program of the mouse segmentation clock, a biological oscillator associated with the periodic
formation of the segments of the body axis. A method related to Fourier analysis, the Lomb-Scargle periodogram, was used
to detect periodic profiles in the dataset, leading to the identification of a novel set of cyclic genes associated with the
segmentation clock. Here, we applied to the same microarray time series dataset four distinct mathematical methods to
identify significant patterns in gene expression profiles. These methods are called: Phase consistency, Address reduction,
Cyclohedron test and Stable persistence, and are based on different conceptual frameworks that are either hypothesis- or
data-driven. Some of the methods, unlike Fourier transforms, are not dependent on the assumption of periodicity of the
pattern of interest. Remarkably, these methods identified blindly the expression profiles of known cyclic genes as the most
significant patterns in the dataset. Many candidate genes predicted by more than one approach appeared to be true
positive cyclic genes and will be of particular interest for future research. In addition, these methods predicted novel
candidate cyclic genes that were consistent with previous biological knowledge and experimental validation in mouse
embryos. Our results demonstrate the utility of these novel pattern detection strategies, notably for detection of periodic
profiles, and suggest that combining several distinct mathematical approaches to analyze microarray datasets is a valuable
strategy for identifying genes that exhibit novel, interesting transcriptional patterns.
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Introduction

The dynamics of gene expression in a biological system exposed

to varying experimental conditions, such as dose response to a

drug or a time course, can be analyzed now at the whole genome

level by generating series of microarrays or using massively parallel

sequencing technologies. Each gene in the genome becomes

associated with a set of expression values, called gene expression

profile. The main challenge for the biologist is to identify, among

the tens of thousands of gene expression profiles, trends or patterns

revealing biological properties of the system that may lead to the

formation of novel hypotheses. Some such patterns are easy to

detect, e.g., when a gene is silent under most conditions but is

actively transcribed under a subset of conditions. However, other

patterns may be subtle and of unknown shape, as well as relatively

noisy, so there is a continuous need for better methods of pattern

detection in gene expression data.

Microarray time series have been extensively generated to study

periodic biological processes, such as the cell cycle [1], circadian

regulation [2,3], the life cycle of malaria parasite in human blood

[4] and vertebrae segmentation [5]. In most of these cases, the

periodic behavior observed at the macroscopic scale is associated

with periodic changes in the level of multiple mRNAs. Several

approaches have been used to identify genes whose periodic

expression underlies the cellular- or tissue-level periodic behavior

of the system. A common feature of these approaches is their strict

assumptions about the shape of periodic profiles. For example,

popular Fourier-based methods detect periodicity by decomposing

gene expression profiles into a series of sine curves. However, these

methods are less sensitive to many types of periodic profiles that
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are poorly approximated by sine curves (because of the noise in the

experimental measurements or because periodic profiles might

have a different shape, such as asymmetric profiles with short peak

and long trough), introducing biases to the results. Moreover, little

attention has been given to the possible presence of aperiodic, yet

non-random, patterns of gene expression in the transcription

program of periodic biological processes.

The segmentation of the vertebrate axis into periodic structures,

such as vertebrae, occurs during embryogenesis when the vertebral

precursors, the somites, are formed rhythmically from the

presomitic mesoderm (PSM). This process is associated with a

molecular oscillator, the segmentation clock, which drives periodic

gene expression in the PSM with a period corresponding to that of

somite formation [6,7]. During one somite formation (one clock

cycle), cyclic genes, such as Lunatic fringe (Lfng), are expressed as a

wave initiated in the posterior PSM that progressively migrates

along the PSM and narrows as it moves anteriorly [8–10]. A

microarray time series of PSM samples encompassing one period

of the segmentation clock has been generated in the mouse and

analyzed using the Lomb-Scargle (L) periodogram, a method

related to Fourier analysis in that it attempts to fit the observed

data to a sine curve [5,11] (Microarray data are available at

ArrayExpress at www.ebi.ec.uk/arrayexpress/ under accession

number E-TABM-163). This analysis identified a large number of

novel cyclic genes that fall into two biologically coherent clusters

oscillating in opposite phase, one of which is associated with the

Wnt and the other with the Notch and FGF signaling pathways.

This paper is the result of a collaborative effort which occurred

in the context of the Defense Advanced Research Projects Agency

(DARPA) FUNBIO program that brought together mathemati-

cians, physicists and biologists to evaluate novel mathematical

approaches for biological data analysis. In this paper, we applied

four different mathematical approaches to the same mouse

segmentation dataset and compared the results to the original

study. The four methods are: Phase consistency (P), Address

reduction (A), Cyclohedron test (C), and Stable persistence (S).

These methods can be divided into two groups. In the first group,

the P and S methods [12] are hypothesis-driven and search for

periodic profiles but in a very different way compared to the L

method. The P method optimizes the ratio of the total variation to

the sum of the piecewise variations, with the pieces set by the

behavior of the known cyclic gene Lfng, and the S method is based

on a numerical assessment that is provably stable (see Materials

and Methods - ‘‘Pattern Detection Methods’’). In the second

group, the A [13,14] and C [15,16] methods are data-driven and

attempt to identify significant patterns without assuming the

periodic nature of the patterns of interest. Both methods associate

significance inversely with the likelihood of certain groups of

patterns but differ from each other in how they partition the set of

all possible patterns into groups.

All methods identified previously known cyclic genes among their

top ranked candidates and each method identified a number of

novel candidate cyclic genes of the Wnt pathway. We show that one

such gene, coding for the Wnt-target and Wnt-modulator cysteine rich

protein 61 (Cyr61) identified by three of the methods, represents a

novel bona fide cyclic gene of the mouse segmentation clock.

Results and Discussion

In this study, we used a microarray dataset generated in earlier

work [5] to identify cyclic genes associated with the mouse

segmentation clock. A microarray time series was generated by

collecting the PSM tissue from 17 embryos (17 time points) along

the clock cycle and analyzed using L analysis [5] that focuses on

the genes whose expression patterns display the best fit to a sine

curve [11]. This led to identification of 27 strongly periodic probe

sets (corresponding to 25 genes), including seven cyclic genes

whose cyclic expression pattern had been discovered earlier by in

situ hybridization [8–10,17–22] and 20 more probe sets that

subsequently were experimentally validated by in situ hybridization

after L analysis [5] (Supplementary Information, Table S1).

In this study, we used the four methods (P, A, C and S) to rank

the 7,549 probe sets of the same dataset in order of the significance

of their expression profile (as defined by each method (see

Materials and Methods - ‘‘Pattern Detection Methods’’). We

selected the top 300 ranked probe sets from each list (Supple-

mentary Information, Tables S2, S3, S4, S5 and S6). First, we

compared the rank of the seven known cyclic genes that were

independently identified from non-microarray experimental

methods. The L, P, A and S methods each identified at least

five out of the seven benchmark genes in the top ranked 100 probe

sets; whereas, C identified three of the seven known genes

(Figure 1A). To measure the performance to a higher resolution,

we repeated this analysis using a larger collection of 27 probe sets

experimentally validated [5]. As indicated in Figure 1B, method S

performs best by identifying 90% of the benchmark probesets,

followed by methods A and P (approximately 75% and 63%,

respectively) and C (approximately 37%). Among the top 10 probe

sets of each list, the methods perform similarly by ranking among

them from four to five benchmark probesets. Thus, all methods,

whether or not designed to detect specifically periodic patterns,

identified cyclic genes from among their top ranked candidates.

This suggests that periodic patterns of gene expression are

predominant among all non-random patterns in this dataset,

which is consistent with the experimental design of the time series

generation. Indeed, due to technical issues, the right PSM samples

of the time series were dissected from mouse embryos belonging to

five consecutive somite cycles, and they were ordered based on

their phase of Lfng expression pattern (revealed by in situ

hybridization on the left PSM of each dissected mouse embryo)

to reconstitute a unique oscillation cycle [5]. One of the

consequences of this strategy is that the collapsed dataset

generated by this procedure preserves periodic patterns associated

with the segmentation clock, while it may affect most other

patterns (such as a linear increase with developmental time).

We next compared the intersection of the top 300 ranked probe

sets from the four methods and method L. This is represented in

Figure 2A as a five-set Venn diagram in which each color

corresponds to a different method and in Figure 2B as a Haase

diagram in the form of the lattice of the subsets of a five-element

set. The total number of distinct probe sets in all of the five sets

(the union) is 884; the total number in each of the five sets (the

intersection) is 21. The overlap contains eight true positive cyclic

genes (Supplementary Information, Table S7). Many candidate

genes were identified by only one, two, three or four methods. The

L, P and C methods identified larger numbers of unique genes

(104, 160 and 154, respectively) compared to method A (67) and

method S (47) (Figure 2). Although it is not possible to know

whether all the uniquely predicted genes are associated with the

segmentation clock, many of them are biologically plausible since

they are associated with the Wnt pathway.

We then studied the possible biological links of the top 300

genes predicted by each method to the segmentation clock process.

Most of the validated cyclic genes (22 probesets or 20 genes)

identified in the top 38 probesets list of the original L analysis are

associated with the Notch-, FGF- and Wnt-signaling pathways and

organized in two clusters [5]. In the first cluster, almost one half of

the genes are associated with the Notch- and FGF-signaling

Microarray Time Series
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Figure 1. Identification of benchmark cyclic genes in the top 300 probe set lists of the five methods. (A) Benchmark genes are
composed of cyclic genes identified independently from the Lomb-Scargle (L) analysis (seven probe sets). (B) Benchmark genes also include cyclic
genes identified by the L analysis and experimentally validated (27 probe sets). L, Lomb-Scargle analysis; P, Phase consistency; A, Address reduction;
C, Cyclohedron test; S, Stable persistence.
doi:10.1371/journal.pone.0002856.g001

Figure 2. Comparison of the intersection of the top 300 ranked probe sets from the five methods. (A) Venn diagram. (B) Haase diagram
shows the pairwise intersection of two lists, the triple intersection of three lists, and so on. The total number of distinct probe sets in all of the five top
300 lists (the union) is 884; the total number in each of the five sets (the intersection) is 21. L, Lomb-Scargle analysis; P, Phase consistency; A, Address
reduction; C, Cyclohedron test; S, Stable persistence.
doi:10.1371/journal.pone.0002856.g002
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pathways. The second cluster shows an even more striking

biological coherence with more than 90% of the genes linked to

Wnt signaling. To test the biological relevance of the predictions of

each method, we investigated their ability to identify novel cyclic

candidates associated with Wnt signaling. We first independently

clustered the top 300 gene expression profiles identified by the P,

A, C, S and L methods (Figure 3; Supplementary Information,

Table S8, S9, S10, S11 and S12 and Materials and Methods).

While the L and S methods identified periodic patterns oscillating

in different phases, the P, A and C methods also identified a larger

variety of patterns (illustrated by higher numbers of clusters).

Dimensionality analysis, inferred from principal component

analysis (Materials and Methods; Figure S1) of the corresponding

top 300 probeset lists, is in agreement with these observations. The

highest numbers of degrees of freedom (between four and six)

found for C and A stem from the uninformed priors used in these

methods, allowing for discovery of unrestricted profile shapes. In

contrast, the other methods are characterized by smaller numbers

of degrees of freedom: L had only two significant degrees of

freedom, corresponding to sine and cosine of the main harmonic

oscillation; S had two strong sin-cos components, plus two

additional, presumably related to shape parameters; and finally,

P showed three degrees of freedom (corresponding to the

difference between phases 1 and 3, the difference between phases

2 and 3, and the variation within phase 3).

In each of the five analyses, we identified a cluster of periodic

profiles containing the known cyclic genes Axin2, dickkopf homolog 1

(Dkk1), myelocytomatosis oncogene (c-Myc) and dapper homolog (Dact1) of

the Wnt pathway (Figure 3 [red boxes]; Figure 4; Table 1). Given

the very tight biological coherence of the Wnt cluster identified by

the L method and according to the principle of ‘‘guilt by

association,’’ it is likely that other gene members of the cluster also

belong to the Wnt pathway. We find that the S method identifies

the eight known members of the Wnt cluster previously identified

by the L method and validated as described [5], while the P and A

methods identify six out of eight, and the C method identifies five

out of eight of the known Wnt cyclic genes. We further analyzed

the novel candidate cyclic genes contained in each of the Wnt

clusters through a literature search to investigate their potential

link to Wnt signaling (Table 1). The PubMed database was

searched for each of the 142 genes in the Wnt clusters to identify

articles indicating a link between these genes and the Wnt

pathway. The results indicated some articles containing the two

search terms: the ‘‘gene name’’ and ‘‘Wnt.’’ Manual curation of

these results was necessary to verify the biological connection

between each gene and the Wnt pathway. The search of the

PubMed database was automated using the MedlineR library [23]

for the R statistical language. The number of matches for each

pair of search terms was returned, as well as a link to the abstracts

for each match. Thirteen genes were identified as novel Wnt cyclic

gene candidates (Table 1).

This allowed us to identify six novel candidate genes in the L-Wnt

cluster showing a link to the Wnt pathway. These include the genes

Cyr61 [24], homeo box B1 (Hoxb1) [25], rhodopsin (Rho) [26], SPEN

homolog, transcriptional regulator (Drosophila), (Spen) [27] and fibroblast

growth factor 9 (Fgf9) [28] which were all previously identified as Wnt

targets. Interestingly, the P method performs similarly to the L

method by predicting six new candidates (although only two are

common with those predicted by L), while A, S and C methods

predict two, two and three additional members, respectively. Most

of the Wnt cyclic gene candidates predicted by the L method are

also predicted by at least one of the other methods. In contrast, the P

Figure 3. Clustering analysis of the top 300 ranked probe sets from the five methods. K-means clustering was applied as described in the
Materials and Methods section. The ‘‘Notch’’ and ‘‘Wnt’’ clusters contain validated cyclic genes regulated by the Notch and Wnt pathways,
respectively. Blue, decrease in gene expression; yellow, increase in gene expression. Wnt clusters are boxed in red.
doi:10.1371/journal.pone.0002856.g003
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and C methods identify the largest numbers of putative Wnt

pathway candidates that are not predicted by any other method.

One of the candidates, Cyr61 (Figure 5A–E), a well known Wnt

target [29] which codes for a modulator of the Wnt-signaling

pathway [24] that had not been identified in the original analysis

[5], was identified by three of the methods. We experimentally

investigated the expression pattern of this gene by in situ

hybridization in the PSM of mouse embryos (Figure 5B–E) and

indeed, observed a dynamic pattern of expression in the posterior

PSM that was reminiscent of the typical expression of a cyclic gene;

hence, validating it as a novel cyclic gene and extending the list of

known cyclic genes associated with the Wnt pathway. More

generally, the other Wnt cyclic gene candidates identified by the

different methods are attractive, potential new cyclic genes involved

in the mouse segmentation clock and would deserve to be further

experimentally validated. Interestingly, the gastrulation brain homeobox

2 (Gbx2) gene predicted by method C and which is a target of Wnt

signaling, was reported to be expressed in the PSM [28,29].

An interesting feature common to the A, C and S methods is

that they work on the ranked data as opposed to the raw

amplitudes of the signal. In other words, the signal intensities that

describe over time the expression of a gene are sorted by

magnitude, and each signal intensity is then replaced by the

integer rank within this sorted order. Thus, each gene expression

profile is represented by a permutation that is invariant over the

transformations of monotonically increasing functions (such as log

or taking the square) and is much more mathematically tractable.

These methods offer a particular advantage for the analysis of this

segmentation clock time series in which only the ordering of the

time points could be estimated, but not the exact time interval in

Figure 4. Heatmap of the members of the Wnt clusters
identified by the five methods. Blue, decrease in gene expression;
yellow, increase in gene expression.
doi:10.1371/journal.pone.0002856.g004

Table 1. Composition of the Wnt Clusters of the Five Methods.

Predicted Wnt-Cyclic Genes Gene Symbol L Rank P Rank A Rank C Rank S Rank

Wnt-benchmark cyclic genes Dkk1 1 1 1 1 1

Myc 1 1 1 1 1

Axin2 1 1 1 1 1

Dact1 1 1 1 1 1

Tnfrsf19 2 2 2 2

Sp5 1 1 1 1

Has2 1 1 1

Phlda1 1 1

Wnt-candidate cyclic genes Candidates identified by several methods Cyr61 2 2 1

Hoxb1 1 1

Rho 1 1

Pfkfb1 1 1

Candidates identified by only one method Spen 1

Fgf9 1

Hnf4a 1

Sgk 1

Foxb1 1

Ppap2b 1

Amph 1

Gbx2 1

Ptprf 1

Numbers indicate the count of probe sets detected per gene.
L = Lomb-Scargle analysis; P = Phase consistency; A = Address reduction; C = Cyclohedron test; S = Stable persistence.
doi:10.1371/journal.pone.0002856.t001
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between. These methods, based on the rank permutation, do not

require such precise timing information. These methods perform

similarly to the L and P methods, which use the raw signal

intensities. This suggests that moving to ranked data despite losing

some information (like fold change), might be advantageous in

certain cases, especially when these methods are not based on a

priori biological knowledge, making them promising exploratory

tools to discover novel, interesting transcriptional patterns in large-

scale expression analysis.

Materials and Methods

Description of the starting microarray dataset
Microarray data, available at ArrayExpress at www.ebi.ec.uk/

arrayexpress/ under accession number E-TABM-163, were

normalized as described [5] and filtered based on detection call

(by removing the probe sets called ‘‘absent’’ throughout the

experiment), signal intensity (by removing genes with low-

maximum expression level ,50) and amplitude (by eliminating

peak-to-trough variation ,1.65). After these filters, the dataset

consisted of 7,549 probe sets.

Pattern Detection Methods
Here we describe the four methods used in the analysis of the

mouse segmentation clock: Phase consistency (P), Address

reduction (A), Cyclohedron test (C) and Stable persistence (S).

For further details, we refer the reader to papers describing each

individual method. A description of the Lomb-Scargle method

(L), previously used to study the mouse segmentation clock in [5]

can be found in [11]. In contrast to experiments exhibiting two

or more periods, which are well suited to Fourier analysis and

related methods (see, e.g.,[30]), the mouse embryo data in this

paper represents only a single period. The analysis of this system

is therefore particularly challenging and requires novel ap-

proaches.

The methods A, C and S begin by converting the raw data into

rank order, which we explain here. Each gene is characterized by

its expression profile, which is a function f whose values are given

at N = 17 distinct time points. In the raw data, these values fi, for

1#i#N, are real numbers quantifying the amount of expression as

measured by the microarray. We sort the values and replace each

fi by its rank within this sorted order. For example, the values

(0.41, 0.63, 0.11, 0.23, 0.59) would be replaced by (3, 5, 1, 2, 4).

The function f is thus replaced by a permutation which we denote

p(f) and the ith element of p is pi. Ramifications of this step are

provided in the Discussion.

All four methods associate with each gene expression profile a

number m(f). This number is used to rank the probe sets in order of

significance (as defined by each method).

Phase consistency (P). This method is unique in that it looks

directly at the raw data (f rather than p(f)) and uses information

that is specific to the mouse embryo experiment. Specifically, it

was observed that the expression of the gene Lfng suggests a

decomposition into three phases comprising the first four, the next

five and the last eight measurements in each time series. To make

the phase lengths more equal in size, we further divided the last

phase into two subphases, each comprising four measurements.

Measurements were assigned to the respective subphases

according to their projection onto the main principal component

of the data in the eight-dimensional space. The periodicity of a

function f is assessed by comparing the overall standard deviation

with the sum of the normalized standard deviations of the four

phases.

Mathematical description— First we normalize the function values

to zero average and unit variance: xi = (fi2avg)/var1/2, where

avg~ 1
N

P
fi and var~ 1

N

P
fi{avgð Þ2. By construction, the

standard deviation of the normalized values is

s~ 1
N

P
x2

i

� �1=2
~1. The estimated population standard devia-

tions of the four phases are denoted by si. The measure used by P

is then

mP fð Þ~ s

s1zs2zs3zs4
:

Ordering by decreasing mP prioritizes profiles which exhibit a high

global variation and low local variation.

Address reduction (A). This method is based on the idea of

algorithmic information content, also known as Kolmogorov

complexity. In its original form, the Kolmogorov complexity is the

length, in bits, of the shortest description of a data string given

some universal computer. Address reduction bounds the

Kolmogorov complexity of a gene expression profile and uses

this to determine how much a curve can be compressed, measured

in bits. This method works with the ranked data p(f), and the

bound is calculated by dividing the address of the rank

permutation into two parts: a coarse address (a block) and a fine

address (the permutation within the block).

Mathematical description—We first partition the space of permu-

tations into blocks using some blocking function cA that maps each

permutation to a real number; permutations with the same

number are in the same block. Second, we base the measure of an

expression profile f on the size of the block that contains it, and the

total number of possible blocks. Then the number of bits mA(f) that

Figure 5. Identification of Cyr61 as a novel Wnt-cyclic gene. (A) Gene expression profiles (in log2 ratio of Cyr61) represented by two probe sets
and the benchmark Wnt-cyclic gene Axin2. (B–E) Experimental validation by in situ hybridization. (B, C) Lateral views of the tails of 9.0 dpc mouse
embryos hybridized with the Cyr61 probe. (D, E) are schematic representations of (B) and (C), respectively, and illustrate the dynamic expression of the
gene in the presomitic mesoderm. Arrows in all four panels indicate the posterior boundary of the last formed somite (SI).
doi:10.1371/journal.pone.0002856.g005
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f can be compressed is

mA fð Þ~log2

N!
�

c{1
A p fð Þð Þ
�� ��
Im cAð Þj j

~{log2 Prob cA p fð Þð Þ½ �{log2 Im cAð Þj j,

where c{1
A p fð Þð Þ is the set of permutations mapping to the same

block as p(f) and Im(cA), the image of cA, is the set of possible values

that the blocking function can take on. The vertical bars denote

the number of elements in the set shown between them.

Subtracting the logarithm of the image size allows comparison

between different blocking functions and curves with different

numbers of data points, which we do not consider here. In the

application to the mouse embryo data, we use what is sometimes

called the bounded variation, cA~cD1
p fð Þð Þ~

P
n{1
i~1 piz1{pij j,

where pi is the rank of fi in the sorted order (see Figure 6 left for

an example). Other blocking functions can be used: see Figure 1

right and [31], as well as the discussions of the methods C and S.

Further details about address reduction can be found in [14,31].

Cyclohedron test (C). This method is a non-parametric test

that determines the significance of each expression profile based

on its topography. In addition, p-values are computed for groups

of highest ranked genes. Similar to A, the score in C is derived

from the ranked data p(f). It involves a partition of the set of

patterns, and ascribes higher biological significance to patterns in

small blocks of the partition. However, the details of C and A are

quite different.

Mathematical description—This method is a non-parametric test

that is based on the significance of a topographical map constructed

from a permutation. The topographical map is obtained by

encircling the vertices of a cycle in decreasing order of their

corresponding raw data vector coordinates. Denoting the first

circle by the set s1, the second by s2, and so on, the circles are

constructed according to the following provision: in order to

encircle the vertex di, if it is adjacent to some vertex j which has

already been encircled by some sk, then si must contain the sk

circle. Figure 7 depicts the beginning of the creation of such a

topographical map.

The score mC(f) assigned to the raw data vector f is the number

of permutations that have the same topographical map as the

permutation p(f); this score is called the permutation count. Data

vectors with small permutation counts are deemed significant,

because it is unlikely that a random permutation will have a

topographical map shared by few permutations. A full description

of the cyclohedron test, including a method for computing p-

values, appears in [15]. Connections to algebraic combinatorics

are discussed in [16].
Stable persistence (S). In contrast to A and C, this method

assesses the biological significance of an expression pattern directly

from the corresponding permutation p(f), without calculating block

sizes of the implied partition. The main focus is to use a measure that

is stable under small perturbations of the gene expression profile.

Mathematical description—Each expression pattern corresponds to

one period of somitogenesis. We represent this period by a circle

and denote time points where expression levels were measured by

xi, 1#i#N. Since these times are unknown, we choose the N points

xi at regular intervals during the period, that is, xi~cos 2ip
N

, and

define g(xi) = (pi21)/(N21), where pi is the rank of fi in the sorted

ordering, as before. Values of g(x) at other points of the circle are

obtained by linear interpolation. Notice that the normalization

constant 1/(N21) guarantees that 0#g(x)#1.

Given a threshold t, the sublevel set g21[0, t] consists of all points x

of the circle with g(x)#t. In other words, it contains all the time

intervals during which the (modified) expression level is below t. As

we increase the threshold from 0 to 1, the sublevel set grows until it

eventually covers the entire circle. A birth event corresponds to t

passing the function value of a minimum, at which time a new

interval is added to the sublevel set. A death event corresponds to t

passing the value of a maximum, at which time the sublevel set

merges two intervals into one or, at the last and global maximum,

it closes up to form the complete circle. Using this process we form

a canonical pairing in which each minimum is matched with the

Figure 6. Address reduction. The tree representations of the block
structures for the blocking functions cD1 (left) and c+2 (right) (c+2 is the
number of permutations with a given sequence of rises and falls [14]).
Locating a given curve using the two-part address is equivalent to
starting at the centre of the tree (A) and finding a particular exit at the
edge (e.g., B). Address reduction mA gives the reduction in information,
measured in bits, to get from A to some B, compared to the information
needed to locate B explicitly. In the case above, the endpoint B, being in
a block of four, could correspond to the permutation (4, 5, 3, 2, 1) (this
and three other permutations have cD1 = 5). To find it, someone
starting at A would require log2 8+log2 4 = 5 bits of information (8 paths
to choose from, then 4 paths to choose from), which is mA = 1.91 bits
less than that required to transmit (4, 5, 3, 2, 1) explicitly, namely, log2

5!.
doi:10.1371/journal.pone.0002856.g006

Figure 7. The Cyclohedron test constructs a topographic map
on the N-cycle by subsequently encircling vertices. Displayed at
the top are the formations of the first two circles si, and at the bottom
are the third and fourth, for an example with N = 11.
doi:10.1371/journal.pone.0002856.g007
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maximum that merges its interval with another interval started by

an earlier minimum; see [12] and Figure 8.

After matching the global minimum with the global maximum

we exhausted all minima and maxima and completed the

construction of the canonical pairing. The persistence of a min-

max pair (xi, xj) is the difference between the function values pers(i,

j) = g(xj)2g(xi), which is necessarily positive. Pairs with small

persistence correspond to small local variations of the expression

profile, while pairs with large persistence correspond to significant

oscillations. We note that the sum of persistences is equal to half

the bounded variation used in A, except that there the domain is

taken as the interval rather than the circle. For each non-negative

integer p, we define the order-p measure as the sum of the p-th powers

of the persistences over all min-max pairs. (Incidentally, the

blocking functions cA and cC are related to the order-1 measure.)

As proved in [32], this measure is stable for p$2 and unstable for p

equal to 0 or 1. Method S uses the order-2 measure, since two is

the smallest integer power that implies stability. Thus,

mS fð Þ~
X

pers i,jð Þ2:

Further details about stable persistence can be found in [12,32].

Cluster analysis
The 300 top ranked expression profiles of each method were

clustered using K-means based on the Pearson correlation distance

in MultiExperiment Viewer (MEV) software. The optimal number

of clusters was determined using the Figure of Merit (FOM)

function [33] in the MEV package that provides a measure of the

fit of the expression patterns for the clusters produced by K-means.

Dimensionality analysis
Effective dimensionality, or number of degrees of freedom of the

five ‘‘top 300’’ datasets (Figure S1) can be inferred from Principal

Component Analysis (see e.g., [34]). The transcription profiles

have been normalized to zero average and unit variance. Then,

principal components have been computed for each of the sets of

300 points (top 300 from each method). Intrinsic dimensions in

each set were considered significant until differences in log residual

variance drop and converge towards the common noise level.

Experimental validation
The candidate cyclic gene Cyr61 was experimentally validated by

whole mount in situ hybridization that was performed as described

[35] on 9.0 dpc mouse embryos using expressed sequence tag

(ESTs) from Image clone 5716887 as a probe for Cyr61.

Accession Numbers
The NCBI EntrezGene (http://www.ncbi.nlm.nih.gov/sites/

entrez/query.fcgi?db = gene) accession numbers for the genes

discussed in this paper are Axin2 (12006), c-Myc (17869), Cyr61

(16007), Dact1 (59036), Dkk1 (13380), Fgf9 (14180), Gbx2 (14472),

Hoxb1 (15407), Lfng (16848), Rho (212541) and Spen (56381).
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