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ABSTRACT

Partial differential equations posed on surfaces arise in a number of applications. In
this survey we describe three popular finite element methods for approximating solutions
to the Laplace-Beltrami problem posed on an n-dimensional surface y embedded in
R"*L: the parametric, trace, and narrow band methods. The parametric method entails
constructing an approximating polyhedral surface I' whose faces comprise the finite
element triangulation. The finite element method is then posed over the approximate
surface I' in a manner very similar to standard FEM on Euclidean domains. In the trace
method it is assumed that the given surface y is embedded in an n + 1-dimensional
domain Q which has itself been triangulated. An n-dimensional approximate surface I' is
then constructed roughly speaking by interpolating y over the triangulation of Q, and the
finite element space over I consists of the trace (restriction) of a standard finite element
space on Q to I'. In the narrow band method the PDE posed on the surface is extended
to a triangulated n + 1-dimensional band about y whose width is proportional to the
diameter of elements in the triangulation. In all cases we provide optimal a priori error
estimates for the lowest-order finite element methods, and we also present a posteriori
error estimates for the parametric and trace methods. Our presentation focuses especially
on the relationship between the regularity of the surface y, which is never assumed better
than of class C2, the manner in which vy is represented in theory and practice, and the
properties of the resulting methods.
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1.1 INTRODUCTION

Partial differential equations (PDEs) posed on surfaces play an important role
in many domains of pure and applied mathematics, including geometry, mod-
eling of materials, fluid flow, and image and shape processing. The numerical
approximation of such surface PDEs is both practically important and the source
of many mathematically rich problems.

We consider a closed, compact and orientable surface y in R™*1 of co-
dimension 1. The Laplace-Beltrami operator —A,,, which acts as a generalization
of the standard Euclidean Laplace operator, plays a central role in both static
and time-dependent surface PDE models arising in a wide range of applications.
Because of this a wide variety of numerical methods have been developed for
the Laplace-Beltrami equation

~ai= T,

where fis a given forcing function satisfying fy fz 0. In this article we first lay
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out some important notions from differential geometry. We then describe three
important classes of finite element methods (FEMs) for the Laplace-Beltrami
problem: the parametric method, the trace method, and the narrow band method.
In all three cases we focus on the simplest case of piecewise linear finite element
spaces and give an in-depth discussion of the effects of geometry on error
behavior.

The parametric finite element method was introduced in 1988 by Dziuk
[Dzi88], with some important related techniques appearing in earlier works on
boundary element methods [Néd76, Ben84]. This method is the simplest of the
many FEM that have been developed for solving the Laplace-Beltrami problem.
The given PDE is first written in weak form as: Find # € H' () such that A u=0

and

= [vivi= [ e
Y Y

Here H'(y) is the set of functions 7 in L,(Q) whose tangential gradient V,v €
[Lo(y)]**!. The continuous surface y is approximated by a polyhedral surface
I whose faces serve as a finite element mesh, and the finite element space V
is made of continuous piecewise linear functions over I'. The finite element
method then consists of finding U € V such that

A(U,V)=/VFU-VFV=/FV VYV eV,
r y

where F is a suitable approximation (lift) of f defined on I'. In its conception
and implementation, the resulting method is very similar to canonical FEM
for solving Poisson’s problem on Euclidean domains. To quote Dziuk, “...the
numerical scheme is just the same as in a plane-two dimensional problem.
The only difference is that in our case the computer has to memorize three-
dimensional nodes instead of two-dimensional ones.” [Dzi88, p. 143]. The
strategy underlying parametric surface finite element methods —direct translation
of FEM on Euclidean spaces to triangulated surfaces— has subsequently been
applied to a variety of methods. These include higher-order standard Lagrange
methods [Dem09], various types of discontinuous Galerkin methods [ADM™15,
DMS13, CD16], and mixed methods in classical, hybridized, and finite element
exterior calculus formulations [Ben84, HS12, CD16, FFF16]. A posteriori
error estimation and adaptivity have been studied in [DD07, WCH10, BCMN13,
DM16, BCM* 16, BD19]. Finally, we refer to the survey article [DE13].

In many applications in which surface PDEs are to be solved, a background
volume (bulk) mesh is already present. A paradigm example is two-phase fluid
flow, in which effects on the interface between the two phases such as surface
tension are coupled with standard equations of fluid dynamics on the bulk. In
these cases it is advantageous to utilize the background volume mesh to solve
surface PDEs instead of independently meshing y. This is especially the case
when v is evolving, since the meshes needed for the parametric method typically



distort as vy changes and periodic remeshing is thus necessary. The trace and
narrow band methods both employ background bulk meshes in order to solve
surface PDEs.

Trace (or cut) FEMs for the Laplace-Beltrami problem were first introduced
in [ORGO9]. In this method an approximating surface is constructed as in the
parametric method, but using a different approach. An implicit representation
of vy as the level set of some function ¢ is used, that is, it is assumed that

v = {xERn+l : ¢(x) =0}.

A discrete surface I is then defined as the zero level set of an interpolant of ¢
on the background mesh, and the finite element space is taken to be the trace
of the bulk finite element space on I.  The FEM is posed and solved on I"
as in the parametric method. Note that the finite element space in the trace
method consists of continuous piecewise linear functions over the faces of I'.
However, because the faces of I' are arbitrary intersections of n-dimensional
hyperplanes with n + 1-simplices, they are not shape regular, and in particular
may either fail to satisfy a minimum angle condition or be much smaller than the
bulk simplices from which they are derived. Counter to natural intuition about
the quality of a finite element method posed on such a mesh, the trace method
satisfies optimal error bounds and works well in practice. In addition to the
basic analysis of piecewise linear methods that we present below, the literature
on trace methods for the Laplace-Beltrami problem includes study of matrix
properties [OR10], adaptive versions [DO12, CO15], and extensions to higher-
order [Reul5, GR16, GLR18], stabilized [BHL15, BHL*16], and discontinuous
Galerkin [BHLM17] methods. We refer to the recent survey article [OR17].

Narrow band methods also employ a bulk mesh in order to approximate
surface PDEs, but extend a surface PDE to the bulk instead of restricting a bulk
finite element space to a surface. This idea appeared first in [BCOSO1] and is
based on an extension of the PDE into a tubular neighborhood N (&) of width 26
about vy that reads

L(us) = —diV((I -Vd® Vd)Vu(;) +us = fs.

Here f5 is an extension of ffrom v to N(6) and d is the distance function 7.
The latter is chosen for simplicity over a generic level set function ¢ to represent
v throughout this article. Because Vd is the unit outward normal to 7y, the
coefficient matrix / — Vd ® Vd is degenerate in the direction normal to y, and the
operator L is thus elliptic but degenerate. We emphasize that in contrast to most
previous literature on narrow band FEM we do not include a zero order term
in our presentation, thereby adding extra difficulty due to the need to account
for the non-trivial kernel of L on closed surfaces. In narrow band FEMs, the
Galerkin approximations to us are posed over a discrete approximation Nj,(6) to
the narrow band N(6). Related methods that involve extending surface PDEs to
bulk domains include the closest point method [RMOS§].
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Narrow-band unfitted finite element methods have been proposed and ana-
lyzed by different authors. In [Bur(09], the aforementioned degenerate extension
is shown to be well posed and error bounds in the weighted bulk energy norm
are derived. Subsequently, error estimates in the H'(y) norm are obtained in
[DDEH10] for the lower order method. An alternate nondegenerate extension
L(us) = —Augs + us is then proposed in [DER14] leading to optimal H'(y) and
also LZ()/) error estimates for the lower order method when fs is (or is close to)
the constant normal extension of f. Independently, higher order methods are
proposed and analyzed in [OS16] using the extension

L(us) = —div(u(I — dD*d)*Vugs) + us,

with p := det (1 - dDzd) and f; the constant normal extension of f Note also
that the associated FEM requires a sufficiently accurate approximation of D*d
(if not known explicitly). For the case of lowest order (piecewise linear) finite
element spaces, it is enough to approximate D*d with zero and thereby retrieve
the discrete formulation in [DER14].

In the construction of all three FEMSs above, we incur on variational crimes
(consistency errors) due to the approximation of geometry. In the parametric
and trace methods, these errors arise because the finite element method is posed
over a discrete approximation I to vy, thereby leading to different bilinear forms
(a and A) used to compute the continuous and finite element solutions (z and U).
In the narrow band method the finite element equations are posed over a discrete
narrow band ANj(6) instead of over the domain N(6) on which the extended
solution us is defined. This again entails the use of different bilinear forms
in the definitions of the continuous and discrete solutions. A core problem in
surface FEMs is understanding and controlling these errors, which are typically
called geometric consistency errors or geometric errors. In order to analyze
these errors, it is necessary to define a map P : I’ — 7y and then compare a(z, w)
with A(7 o P, #w o P) for given functions ,w € H'(y). This is done via a change
of variables argument for the map P. There may be several competing demands
of both theoretical and practical nature that come into play when choosing the
map P, and a main focus of this article is to elucidate how this choice affects
analysis and implementation of surface FEMs.

The canonical choice of the map P is defined via the so-called signed distance
functiond : N — vy. The distance function is defined on a tubular neighborhood
N of y and is of the same regularity class as y provided that y is at least C?
and N is sufficiently narrow. In such a case, the map (also called distance-lift or
orthogonal closest point projection)

Py(x) :=x-d(x)Vd(x) VxeN

is well defined and is of class C'. The maps d and P, play a crucial role in
analyzing and in some cases defining the numerical algorithms presented below.
In particular, the distance function is a critical tool in proving error estimates



that are of optimal order with respect to geometric consistency errors. When a
generic map P : I' — v is instead used to analyze surface FEMs, the predicted
behavior of geometric errors is of one order less than is seen in practice and also
than may be proved using the closest point projection. More precisely, when
quasi-uniform meshes of size h are used with affine surface approximations in
the parametric and trace methods, arguments which use special properties of the
closest point projection predict an O(h*) geometric errors, and these are in fact
observed in practice. On the other hand, standard proofs employing a generic
map P instead of the distance function map P, predict only order & geometric
errors. This increase in convergence order due to the properties of the closest
point projection may be viewed as a superconvergence effect.

Reliance on P; may however also constitute a serious drawback for several
reasons. First, P, has a closed form expression only for the sphere and torus, so
it is in general not directly available to the user. We thus discuss how to use the
distance function only as a theoretical tool for the parametric FEM and yet retain
the superconvergence properties of P;. On a practical level, the user is still free
to choose from a much more general class of lifts to implement an algorithm.
Our presentation includes optimal a priori and a posteriori estimates in H' and
optimal a priori estimates in L, for an algorithm whose implementation only
requires access to a generic lift P; the latter appear to be new in the literature
even for smooth surfaces. Second, if y is merely C@ for @ < 1, then the
closest point projection P, is not uniquely defined in any neighborhood of y.
We thus also provide an analysis of parametric FEMs for y of class C® that
instead makes use of a generic parametric map. The price we pay is a possible
order reduction of the method due to the loss of superconvergence properties of
P,. Finally, previous proofs of optimal-order error estimates employing P; have
required that P is of class C? and thus v of class C3; cf. [Dzi88]. However, the
solution u to the Laplace-Beltrami problem already possesses the H? regularity
needed to ensure optimal convergence of piecewise linear finite element methods
when v is of class C2. In this survey we bridge this gap by giving a novel error
analysis for the three FEMs which is based exclusively on C? regularity of d
and 7y, but which also preserves the superconvergence property in the geometric
error. In the case of the trace and narrow band methods we achieve this by a
regularization argument.

This article is organized as follows. In section 1.2 we introduce surface
gradient, divergence and Laplace-Beltrami operators along with the signed dis-
tance function and its most relevant properties. In section 1.3 we quantify the
geometric effects of perturbing surfaces y of class C*® and C%. We also present
H? extensions to a tubular neigborhood N(8) ¢ N of width &

llzr2 ey < 02 il
of functions # € H?(y) provided v is of class C2. This turns out to be essential for
our later error analysis of the trace and narrow band methods for C? surfaces. In
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section 1.4 we give a selfcontained exposition of parametric FEMs for surfaces
of class C*® and C?, including a priori and a posteriori error analyses. In section
1.5 we describe the trace method and conclude in section 1.6 with the narrow
band method. Both discussions assume C? regularity of y.

1.2 CALCULUS ON SURFACES

In this section we discuss basic concepts of differential geometry. We start in
section 1.2.1 by describing the paramatric representaton of y via charts. This
classical point of view is critical to introduce the first fundamental form g, the
area element g, and the unit normal v of y. We present in section 1.2.2 the
tangential operators (gradient V,,, divergence div,, and Laplace-Beltrami A, ) as
well as the Weingarten map; we also discuss H*-regularity for A, on surfaces
v of class C%. We introduce the distance function d in section 1.2.3 and derive
several important properties of it; this intrinsic approach avoids parametrizations
and allows for implicit representions of y. We devote section 1.2.4 to the second
fundamental form of y and its principal curvatures using both parametric and
intrinsic approaches.

1.2.1 Parametric Surfaces

We assume that y is a closed, compact, orientable manifold of class che,
0 < @ < 1, and co-dimension 1 in R"*!. It can be represented parametrically by
an atlas {(V;, Ui, x;)}ier, where the individual charts y, : V; — U; Ny c R™!
are isomorphisms of class C'® compatible with the orientation of y; the open
connected sets V; € R" are the parametric domains. Unless stated otherwise,
it will be often sufficient to consider a single chart and resort to a partition of
the unity. We thus drop the index i for convenience. For x € U Ny, we set
yi=x"'(x)eV.

Let 9, x(y) be the column vector of j-th partial derivatives of x(y) for 1 <
j < naty € V. By definition, the rank of Dy(y) = (ﬁj/\/(y))}l:l € R+Dxn jg
(full rank). This implies that {0; ,\/(y)}J'.‘:] are linearly independent and span the
tangent hyperplane to y at x.

The first fundamental form is the symmetric and positive definite matrix
g € R™" defined by

g(y) = Dx(y)'Dx(y) VyeV. (1.1)
Ifg = (g f)Zj:I’ then the components g;; read
8ij = 0ixX'9x = dix - 9jx,

which depends on the choice of parametrization. A normal vector N(y) to y at

X can be written as N(y) = ;’;1 Aj(y)e;, where A; := det(e;, Dy) and {e; ;’:11



is the canonical basis of R"*!, In fact, since

n+l n+l
N-Oix = Z e;-0; x det(e;, Dy) = det ( Z(ej-é’i)()ej, Dy) = det(d;x. Dx) = 0,
J=1 j=1

and A; # 0 for at least one j because Dy has rank n, we deduce that

Ny
") = Rl

is a well-defined unit normal vector to y. Therefore, the matrix

% (1.2)

T(y) := [Dx(y), v(y)] € RWDX+D yy e o

has rank n + 1 and so is invertible. We write its inverse as
-1 _|B (n+1
T = , BeR™U) yeRrn
v

and note that

_ BD Bv
Lixeny =TT = [ X ]

v Dy Vv,

whence
BDy =Ly, VDy=0 ~vv=1.

The last two equalities imply v = v. Reversing the order of multiplication yields
Lo yxen) = TT ' = Dy B +vv',

whence the projection matrix T1 € RO*D*(+1) op the tangent hyperplane to y
has the form
M:=I-v®v=DxB. (1.3)

To obtain an explicit expression for B note that
Dy=(01-v®v)Dy=B'Dy'Dy=B'g = B=g 'Dy'
This leads to the following useful expression of IT defined in (1.3):
I=Dyg 'Dy'. (1.4)

The area element ¢(y) is the ratio of the infinitesimal volume aty € V and
area of y at x = y(y), namely the volume of the parallelotope in the tangent
plane to y spanned by the vectors {x; ;‘:1:

q(y) := det ([v(y), Dx(y)]) VyeYV. (1.5)
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To obtain a more familiar form of g we argue as follows:

g= ﬁ det ([N, Dy]) = ﬁ det ([N, Dx]'[N. Dx])? = ydetg,  (1.6)

because det ([N, Dx]'[N, Dx]) = |N|?>det(Dx'Dy) = |N|*detg. Moreover,
exploiting that |[N|? = 7;1 Aj det([e;, Dx]) = det([N, Dx]), we deduce

q =|NJ. (1.7)

An integrable function » : V — R induces an integrable function 7 : y — R
by composition v = v o y, or equivalently 7(x) = »(y) for ally € V. The area
element allows for integration over y via the formula

/;z/ vq Yv e Li(V). (1.8)
y %

This definition does not depend on the parametrization: if x|, x, are parametriza-
tions of y, then | = x, o (/\/51 ox;)and Dy, = D,\/zD(XEI o x;) whence

q1 = |det (D(Xgl OXI))|‘12 = / vq| = / vq>.
(Vl (Vz

1.2.2 Differential Operators

If a function v : V — R is of class C!, we can define the tangential (or surface)
gradient of the corresponding function 7 : y — R as a vector tangent to y that
satisfies the chain rule

Vo(y) = Dx(y)'V,o(x) VyeV. (1.9

Since V, v is spanned by {9, ¥ };’:1 ,we get V, v = Dyw for some w € R"” whence
w=g 'Vovand

V,7(x) = Dx(y)g(y)'Vo(y) VyeV. (1.10)

Ifv = () : v = R™! is a vector field of class C', we define its tangential
differential D,v € R"*DX("+1) a5 3 matrix whose i-th row is (V,%;)". If y is of
class C2, then the unit normal vector v is of class C! and its differential

W(x)=D,v(x) Vxevy (1.11)
is called the Weingarten (or shape) map of y. In addition, the tangential diver-

gence of V is the trace of D,V

div, V(x) = trace(D, V(x)) = Z g9 (y) dix(y)-9;v(y) VyeV, (1.12)
ij=1
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provided g~! = (g )!;_y- If both y and v : ¥ — R are of class C?, then the
Laplace-Beltrami (or surface Laplace) operator is now defined to be

1 _
Ay = div (q(y)g(y) 1W(y)) Vy € V. (1.13)

The following lemma shows that (1.13) is designed to allow integration by parts
on 7, exactly as it happens in flat domains with the Laplace operator A.

Lemma 1 (weak form of the Laplace-Beltrami operator). If @ is of class C' with
compact support in y, then

/gmﬁ _ —/vyg.r- V3. (1.14)
Y Y

Proof. In view of (1.8), which allows us to switch from y to V back and forth,

we can write
‘/ZA)E = / pdiv (qg_le/)
y 4%

Vo-g'Vog

Dxg 'Vo-Dyg 'Vogq

T~

=- [ %¢-V,7

<

This proves (1.14) as desired. O

Inview of (1.14), we are now in the position to introduce the weak formulation
for the Laplace-Beltrami operator. We first define the space of square integrable
functions on y with vanishing mean value by

L) = (e 1a)]| [5=0)

and its subspace H, #lt (y) containing square integrable weak derivatives defined as
for example in Section 3 of [JK95] by

Hiy) = H'O) 0 Las(y), H'O):= {7 € L) | V@ o x) € [La(V)1"}.

Our next result shows that the natural norm ||V, V]|1,4) + [[VllL,¢) in HJ (y) is
equivalent to the semi-norm |[V,V]|z,,). The proof essentially hinges on the
Peetre-Tartar Lemma [Pee66, Tar78], but we proceed with a slightly more direct
proof as in [Eva98, Section 5.8.1].
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Lemma 2 (Poincaré-Friedrichs inequality). Let y be a compact Lipschitz sur-
face. There exists a constant C only depending on vy such that

1Zllrat) < ClIVy 0,y Y7 € Hy(y). (1.15)

Proof. We prove by contradiction the more general estimate
Bl < C(I1Vy ey + |/z]) Ve H\(y). (1.16)
Y
Suppose that there is a sequence 7 € H'(y) such that

Nl = L I1Vyokllag) + ‘ /5/( | -0
Y

as k — co. We deduce that {7 }x is uniformly bounded in H'(y). Since the
embedding H'(y) c Ly(y)is compact (because H' (V) ¢ L,(V)is compact, see
the proof of [Aub82, Theorem 2.34]), there is a Cauchy subsequence (with abuse
of notation not relabeled) of {z }x in Ly(y). This, together with ||V, 7 |z,¢,) —
0, implies that {7 }; is a Cauchy sequence in H'(y). Let 7 € H'(y) be the limit
of 7 in H'(y), which yields V,7 = limg_« V, 7 = 0 whence v is constant on
v. Moreover, fy? = limk_mfyik = 0 whence » = 0. This gives rise to the
contradiction 0 = [|7||1,¢) = limk—eo || l|2,() = 1, and finishes the proof.  [J

We emphasize that the Poincaré-Friedrichs constant depends on the surface
y. Later we shall consider perturbations I" of y and derive Poincaré-Friedrichs
type estimates on I" where the constant depends on y provided the geometry of
v is minimally approximated by I'. This is proved in Lemma 18 for Lipschitz
surfaces and only requires that the L, and H' norms on y and T" are equivalent.
We will not deal explicitly with functionals in the dual space H, '(y) of

H;(y), but occasionally need its norm for fe Lo 4(y)
_ INE;
171y = sup

_ (1.17)
TeH(y) ”VYUHLz(y)

Lemma 2 (Poincaré-Friedrichs inequality) implies that LA H'g) S Clfl Las(y)-

The weak formulation of —A,u = freads: for fe Ly #(y), seek u € H;(y) o)
that

/vyﬁ.vyzz /f; V7 e Hi(y). (1.18)
Y Y

Since the Dirichlet bilinear form in (1.18) is coercive, according to Lemma
2, existence and uniqueness of a solution u € H# (y) is a consequence of the
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Lax-Milgram theorem. We observe that thanks to the property fe L 4(y), the
solution & € H,(y) satisfies

/Vy’u‘-vyzz /f; Ve H'»y). (1.19)

Y 2
It turns out that  exhibits the usual regularity pick-up provided 7 is of class C2.

Lemma 3 (regularity). If y is of class C?, then there is a constant C only
depending on vy such that

Il < Cllfllagy)- (1.20)

Proof. We use a localization argument to the parametric domain. We assume,
without loss of generality, that the atlas {(V;, U;, x;)}/_, satisfies the following
property: there exist domains ‘W; such that Wi C U; and {(Wl-}{=1 is still a
covering of y. Let now {Ji}le be a C? partition of unity associated with the
covering {(Wi}l.lzl. The functions u; = wy; satisfy

Ayt = i f + 2V, - Vol + U =: 3;.

In light of the estimate ||V,ullr,¢) < IIﬂI H'() and (1.15) we deduce that

g, < Cl|ﬂ|L2(ymﬂi). Recalling (1.13) we can rewrite A, u; in the paramet-
ric domain V; as

div (Qi(Y)gi(Y)_IV“(Y)) =qi(y)gix(y)) VyeYV,

and observe that this is a uniformly elliptic problem with C! coefficients. Ap-
plying interior regularity theory [Eva98], we deduce

luillzz2 1wy < CllgillLa(usy)-

Therefore, adding over i and using the finite overlap property of the sets U;, we
end up with

1 1
1l < D @l < € ) Il < Cll Flo,
i=1 i=1

as asserted. O

In view of our discussion below of surfaces of class C® with 0 < @ < 1,
it is natural to ask whether the regularity estimate (1.20) is still valid in this
more general context. We now show that this is indeed the case provided the
surface y is of class Wg with p > n, or equivalently the parametrizations {x; 1'1:1

and partitions of unity {J,-}f , subordinate to the covering {“Vl/i}l.’:l of vy are of

class W[%. In this case a Sobolev embedding implies 1y is of class C® with
O<a=1- % <1
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Lemma 4 (regularity for W}, surfaces). If'y is of class Wj withn < p < co, then
there is a constant C > 0 depending on vy, p and n such that

Il < Cllfllagy)- (1.21)

Proof. We argue with one chart (V, U, x) and thus suppress the index i in g, .,
etc. Since f € Ly(y) and u € H'(y), the right-hand side g = g o y in the proof
of Lemma 3 (regularity) satisfies
1 1 1
L, — == +—.

8 € o((v) w2 + »
On the other hand, the definitions (1.1) and (1.5) of the first fundamental form g
and area element g imply that they are bounded in Lo,(V) as well as

g.q€WiV) = A:=qg ' e WN(V).

Therefore, the Laplace-Beltrami equation in the parametric domain V' can be
written in non-divergence form as follows:

A :D’u=qg—div(A)-Vu =€ L (V). (1.22)

Since A is uniformly continuous, the Calderén-Zygmund regularity theory ap-
plies (cf. [GT98, Theorem 9.15 and Lemma 9.17]) and gives the interior regu-
larity u € WEO(Z) with

el 2 S NEllz,y )

where Z = y (‘W) and W c U as in the proof Lemma 3 (regularity).
Invoking Sobolev embedding again, we deduce

MGWIII(.Z), =TT
131 rp n
and u € W,ll (y) upon pasting these local estimates together over y; hence u €
W,l1 (V). We now iterate this argument and prove a recurrence relation by
induction. Suppose that a sequence of real numbers {ry, #x } is governed by the
relations ¢y = 2 and

1 1 1 1 1 1

b
ek p Ik ket Tk R

and the right hand side of (1.22) satisfies £ € L, (‘V); note that this is the case
for k = 0. Calderén-Zygmund theory thus implies u € Wrzk (Z) with

El

lullwz z) S Wle,, 2)-

Sobolev embedding in turn yields u € W,LH (V) whence ¢ € L, (V), which

proves the recurrence relation. Iterating these relations we see that for £ > 0
1 1 1 1 1 1 1 1
—=—+———=—+—+k( )
'k k-1 pon 2 p

P n
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and that every step increases the value of ¢, because 117 - % < 0. Since f € Ly(y),
the iteration stops once ri > 2 or equivalently
k=[]
p—n
This concludes the proof. O

1.2.3 Signed Distance Function

We now take advantage of the ambient space R"*! and use standard calculus in a
suitable tubular neighborhood N of y to derive useful expressions of geometric
quantities; we postpone momentarily the precise definition of N. The surface
v splits R"*! into two disjoint sets, the interior and exterior of y. The signed
distance function d : N — v is defined for every x € N to be the distance of x
to 7y, dist(x, y), if x belongs to the exterior of v and — dist(x, y) if x belongs to
the interior of 7y, whence

|[d(x)| = dist(x,y) VYx€eN.

It turns out that d belongs to the same regularity class as vy so long as y is at
least C2, which we henceforth assume in our discussion of d. While the distance
function exists for surfaces of regularity less than C"!, as we explain in Section
1.2.5 below its properties are drastically different and it is not immediately useful
for purposes of defining and analyzing surface FEM. Returning to the setting of
C? surfaces, Vd(x) is well defined for all x € A and computed on y gives the
unit normal v(x) pointing outwards:

v(x) =Vd(x) Vxevy.

Since Vd is defined in N it provides a natural extension of v to N. This
neighborhood N is sufficiently small that for every x € N there is a unique
closest point projection P (x) € vy defined by

P,(x) = x — d(x)Vd(x) VxeN. (1.23)
An important property is that Vd coincides at x € N and P4(x) € y:
Vd(x) = Vd(P4(x)) = Vd(x - d(x)Vd(x)) VxeN. (1.24)
Since |Vd(x)|? = 1, we deduce that the Hessian D?d(x) satisfies
D*d(x)Vd(x)=0 VxeN. (1.25)

This implies that D?>d(x) can be regarded as an operator acting on the tangent
hyperplane to y at x € vy and thus gives an alternative representation to the
Weingarten map (1.11):

W(x) = D?d(x) Vxe€vy.
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This has two important consequences. First it provides a natural extension of W
to V and second shows that W is symmetric, which is not apparent from (1.11).

Given a generic function v : y — R, the distance function d provides a
natural way to extend it to the neighborhood N upon writing

v(x) = 7(Pa(x)) = 2(x — d(x)Vd(x)) Vx€N. (1.26)
Differentiating and using the definition (1.3) of orthogonal projection, we obtain
Vo(x) = (I - Vd(x) ® Vd(x) - d(x)D*d(x)) V,7(P4(x))
= (T(x) - d(x)D*d(x)) V,7(P4(x)) (1.27)
= (I - d(x)D*d(x))T1(x)V,7(P4(x))
where the last equality hinges on (1.24), which implies T1(x) = T1(P4(x)) and
D*d(x) = D*d(x)I1(x). In particular, Vo(x) = V,7(P4(x)) for x € y because
(1.26) provides a normal extension of .
Suppose now that v is an extension of 7 to V, but not necessarily in the normal

direction. An intrinsic definition of tangential gradient of 7 is the orthogonal
projection of Vv to the tangent hyperplane of y:

V,9(x) = (I-v(x) ® ¥(x))Vo(x) = [I(x)Vo(x) Vx€y. (1.28)
This definition is consistent with (1.10): V,7(x) is orthogonal to v(x) and

V,o(x) - 0ix(y) = Vo(x) - 9 x(y) = 0iv(x(y))

obeys the chain rule, whence it must coincide with our previous definition based
on these two properties. An important consequence of this property follows.

Remark 5 (parametric independence). The definition (1.28) is independent of
the extension: if vy, v, are two extensions of v then v; — v, = 0 on y and the
only non-vanishing component of V(v; — ) is in the normal direction v. Since
definitions (1.28) and (1.10) agree, we deduce that the tangential gradient Vv is
independent of the parametrization ) chosen to describedy. The same happens
with the tangential divergence (1.12) as well as the Laplace-Beltrami operator
(1.13), the latter because of (1.14) and the fact that (1.8) is independent of x.

Given a vector field V : y — R™*! and corresponding extension to N, the
tangential divergence can be written as

div,, (V(x)) = trace (V,v(x)) = div (v(x)) — v(x)' Vv(x)v(x) Vx €y,

and gives an alternative expression to (1.12). Likewise, the Laplace-Beltrami
operator A, v = divy (V, ), written parametrically in (1.13), can be equivalently
written in terms of the extension v as follows

A,v = trace ((I -v®v)D? 7/) — (Vo -v)div, (v),
because V, (Vv - v) - v = 0. This implies the expression

Ayo(x) = Av(x) — V(X)tDz 2(x)v(x) — (Vo - v)(x)divy, (v(x)) Vxevy.
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1.2.4 Curvatures

We again assume that y is of class C2. In view of (1.11), the Weingarten map
is symmetric and its n + 1 eigenvalues are real. Except for the zero eigenvalue
corresponding to the eigenvector v(x), according to (1.25), they are called the
principal curvatures of y at x and are denoted by «;(x) for 1 < i < n. The eigen-
vectors of W corresponding to the principal curvatures are called the principal
directions.

We stress that «;(x) is well defined for all x € N because so is W(x). This
allows us to make the definition of N precise. Given ¢ > 0, first let

N@S) = {x e R™! : |d(x)| < 6}. (1.29)
Let also
K(x) := max |«;(x)] Vxevy; Koo = IKllLoty)- (1.30)
1<i<n
We may now set
N = {x e R™! . dist(x, ) < L} =N (Kw/2) (1.31)
: : : T w/2). .

Note that the distance function, closest point projection, and related properties are
defined and hold on the larger set N(1/K). We adopt the more limited definition
of N in order to avoid degeneration of some quantities such as curvature of
parallel surfaces (see below) that occurs near the boundary of the larger set.
Given & small so that |g| < ﬁ, we define the parallel surface y, to be

Ye = {x e N :d(x) = &}.
The following statement relates the principal curvatures of y, with those of .

Lemma 6 (curvatures of parallel surface). Ify is of class C? so are all parallel
surfaces y. and their principal curvatures satisfy

«i(Pa(x))

(0 = 77 i (Pa(x))

VX € Ve, (1.32)

whereas the principal directions at X and P4(X) coincide.

Proof. Differentiate (1.24) to get
D?*d(x) = D*d(P4(x)) (I - Vd(x) ® Vd(x) — d(x)D*d(x)),
whence, since Vd(x) = Vd(P,4(x)) again from (1.24),

(I+d(x)D*d (P4(x))) D*d(x) = D*d(P4(x)) (I- Vd(x)® Vd(x)) = D*d(P4(x)).
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Therefore, for x € . we see that the eigenvalues of (I + eD*d(P4(x))) are

ki(L+eD*d(Py(x))) = 1+ ex; (Pa(x)) >

>

N =

according to (1.31). This implies that I + eD*d (P4(x)) is nonsingular and the
previous relation reads as follows in terms of the Weingarten map:

W(x) = (T+&W(Py(x))) ™ W(P4(x)).

This shows that the eigenvectors of W(x) and W(Pd(x)) coincide and the eigen-
values are related via (1.32). O

The second fundamental formh = (h;;) of vy is defined by

Lj=1
hij(y) .= =0v(y) - Oix(y) = v(y) - Oijx(y) VyeY,

where the last equality relies on the fact that v and 9,y are orthogonal for
1 < j < n. The next result connects h with the Weingarten map (1.11).

Lemma 7 (second fundamental form). The symmetric matrix W = D, v defines
a selfadjoint operator on the tangent hyperplane to 'y that can be represented in
the basis {9;x }"!_, by the generally non-symmetric matrix

]_

s =-hg!.

The eigenvalues of s are the principal curvatures of 7y.

Proof. Since D,vv = 0, we can regard D, v as an operator acting on the tangent
plane to y and represent its image in terms of {dx x };/_, as follows

n

0iv(y) = Dyv(x) dix(y) = Z sik(Y) oex(y) VyeV.
k=1

Let s(y) := (sij(y))}; _; and multiply both sides by d; x(y) to see that

jo=1
hij(y) = =0v(y) - 9 (¥) = ) sukex(y) - 9ix(¥) = ) sk
k=1 k=1
This implies h = —sg and thus the assertion. U

1.2.5 Surface regularity and properties of the distance function

In the previous two sections we have seen that when 1 is of class C?, the closest
point projection is uniquely defined in a tubular neighborhood of y whose width
is related to the principal curvatures of the surface. We shall see below that the
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closest point projection plays a pivotal role in analyzing finite element methods
on C? surfaces. On the other hand, some applications may require solving PDE
on surfaces that are less regular than C2. Thus it is natural to ask which properties
of the distance function and closest point projection carry over to less regular
surfaces. It turns out that the properties of these maps change drastically and
fundamentally when crossing the threshold from C? to less regular (C® with
a < 1) surfaces.

In order to make this statement precise, we begin by restating for compar-
ison from [GT98, Lemma 14.16] some fundamental properties of the distance
function for C* surfaces (k > 2).

Lemma 8 (properties of distance functions for C* surfaces). Let y be a C*
surface, k > 2. Then there exists a positive constant 6 depending on vy such that
d € CK(N(6)). In addition, the closest point projection P4(x) = x — d(x)Vd(x)
is defined and of class C*~' on N(6) with § < K%o

We now ask whether a similar statement holds for k < 2, and in particular
for k = 1. Note first that the distance function d to any closed set y ¢ R"*! is
defined and Lipschitz continuous [Fed59, Theorem 4.8.1], so the first question
at hand is whether distance functions for C® surfaces (0 < a < 1) are more
than Lipshitz continuous.

In order to understand the relationship between surface regularity and the
distance function map, we first define the reach of a surface y:

reach(y) := sup {6 > 0 : all x € N(6) have a unique closest point P;(x) € y}.

For a C? surface y, we have already seen that reach(y) = 1/K.. We now explore
the connection between the reach and properties of the distance function for less
regular surfaces. We first define

U(y) := {x e R""! ; x has a unique closest point in y}.

The following result may be found in [Fed59, Theorem 4.8.3].

Lemma 9 (properties of differentiable distance functions). Ify is a C' surface,
x € R\ y, and d is differentiable at X, then x € U(y). In particular, if d is
differentiable in a neighborhood of vy, then reach(y) > 0.

Next we define several constants from the technical report [Luc57]. Given
x € y and p > 0, we first define the closed normal segment

S(x, p) =[x = pv(x), X + pv(x)].
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Let B, (y) denotes the ball in R™*! of center y and radius p > 0, and

1 [v(x) — v(y)|
— sup ———=—
1y X,y €Y,X£Y Ix -yl

sup{p > 0: S(x,0) N S(y,p) =0 Vx,y €y, x #y},

1 -
o =sup{p > 0: B,(x * pv(x)) contain respectively no points
interior or exterior to y for all x € y},
[ 12(y —x) - v(x)|
;= sup ———————.
ry X,y €Y, XY ly — x|

Combining [Luc57, Theorem 1] and noting that ry bounds the Lipschitz
constant of y (cf. the comment on p. 15 of [Luc57]), we have the following.

Lemma 10 (further properties of C' surfaces). If the surface 7y is of class C,
then the constants ry, ry’, ro”’, and ro’”’ are all equal. In addition, if ro > 0 then
y is of class C"!.

Combining the previous lemmas with the statement in [Fed59, Theorem 4.18]
that ry””’ = reach(y) yields the following result.

Theorem 11 (C' distance function implies C"! surface). If the distance func-
tion d associated to a C' surface vy is continuously differentiable in a tubular
neighborhood N(6) of y for some & > 0, then y is of class C"'. In addition, any
C! surface with positive reach is of class C"'.

The preceding results establish that the properties of the distance function
and the associated closest point projection for C? surfaces that we previously
discussed are inherently connected with surfaces of bounded curvature. This
can be seen both in Theorem 11 (since the curvatures are defined and bounded
almost everywhere on a Cb! surface) and in the definition of the constant ry”’
(since for X € 7, the supremum over the radii p for which B,(x + pv(x)) Ny = 0
is the inverse of the maximum principal curvature at x).

For our purposes, Theorem 11 is essentially a negative result in that it es-
tablishes that the distance function and closest point projection are of limited
immediate use for surfaces that are less regular than C!. In particular, in this
case the closest point projection is not uniquely defined on any tubular neigh-
borhood of y. In addition, the regularity of the distance function does not vary
continuously with that of y, since for a C'® gurface with @ < 1 Theorem 11
establishes that d is only Lipschitz. Thus we must use different tools when
considering surface finite element methods on less regular surfaces than C2.
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1.2.6 Divergence Theorem on Surfaces

We conclude this section with an application of calculus in R"*! to derive an
integration by parts formula on not necessarily closed surfaces.

Proposition 12 (divergence theorem). Let y be a compact, oriented surface of
class C? with Lipschitz boundary dy. Let H = 2| ki be the total curvature of
v and p be the unit outward normal to 97y lying in the tangent hyperplane to y.
Ifv:y — Re H\(y), then

/mﬁ:/}m”/ T
Y b4 dy

Proof. Given ¢ < % we define the tubular set

Q. = {z=x+pv(x): Xey,|p|<a};
note that P4(z) = x for all z € Q.. We decompose the boundary Q. of Q. into
Yie = {Xtev(X): X €y}, Ae 1= 0Q: \ (¥ Uy-s).

The sets y.. are parallel surfaces to y whereas A, is the lateral boundary of size
2¢e. Ee first assume that 7 is of class C', let v be an extension of 7 to Q. of class
C'(Q,), and apply the divergence theorem in Q, to obtain

/ Vz/:/ waz/ Z)VOPd—/ UVOPd+/ vpoPy,
Qg 0Q, Ye Y-¢& Ag

where v, is the unit outward normal of dQ.. We divide both sides of this
equality by 2¢, the thickness of Q0. and compute the limits as € — 0. According
to (1.27) we first see that

1 1 N ~
2 Jo V7 5 /Q g (= d(x)D*d(x)) Vyo(Pa(x))dx — /y v,7.
Likewise

1 —
— P,— .
2¢e Ae vH© d.‘:—>0./l;),ylJ

Moreover, since v o P; = Vd, we infer that

1 d
lim—(/ vchd—/ vVOPd)z—/de‘
=02\ ), Yoo dp J, p=0

& P

d
= o /V v(x) Vd (x + pVd(x)) g,(y)dy ‘p:O

with x = x(y) € y and g,(y) denotes the infinitesimal area associated with
the surface y, := {z = x + pr(x) : x € y}. Since %Vd(x + pVd(x)) =
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D?d(x + pVd(x))Vd(x) = 0, it remains to evaluate %qp. We resort to (1.53)
(shown below) with I = y,, and use that v, - v = 1 as well as (1.32) to write

ap(y) _ 1 ~ 1 - |
q(y) B det (I —pD2d(x)) - le}:l (1 _ pKi(X)) = 1:1[ (1 +,0K,(Pd(X))).

We finally observe that
d n
)], =9 25 4iPu(x) = gOH(Pa(0)

to conclude the proof for 7v of class C!. The assertion for 7 € H'(y) follows by
density of C'(y) in7 € H'(y). O

Applying Proposition 12 (divergence theorem) to a vector field v : y — R"*!
and computing the trace yields the more familiar expression

/div77=/HV-v+/ v-u
Y Y dy

Corollary 13 (integration by parts). Lety be a surface of class C with Lipschitz
boundary 0y. If v, w : y — R satisfy 7 € H*(y) and w € H'(y), then

/WAYZ+V7W~V7W=/ WVYZ',u.
Y Oy

Proof. Apply the previous equality to V= w V,v. O

1.3 PERTURBATION THEORY

In most surface finite element methods, the approximate problem is not posed on
the continuous surface y. This may occur either for convenience, or because y
is not known precisely. Examples of only incomplete information being present
in simulations include free boundary problems such as two-phase flow and cases
where vy is reconstructed from some sort of imaging data.

The purpose of this section is to investigate how geometric quantities change
under perturbation of the surface y. To this end, suppose that I" is a closed
Lipschitz surface (not necessarily C%). We use a subscript I to denote geometric
quantities associated with I': y (parametrization), gr (first fundamental form),
qr (area element), vr (unit normal), Vr (tangential gradient), and I (orthogonal
projection onto I).

Let i € Hj(y) solve (1.19) and ur € H}(T) solve

/Vrur-er:/ﬁ-v Vv e Hy(T), (1.33)
T T
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for a given forcing fr € Ly #(I'). To examine the error between u and ur, we first
have to study how the bilinear forms in (1.19) and (1.33) change when changing y.
This amounts to deriving expressions for the error matrices E, Er € RO+1)x(+1)
in the error equations

/Vrszrw—‘/VyZ-Vva: /V,,'Z'EV),Wz/Vrv'Erer, (1.34)
r Y y r

valid for all »,w € H'(I') and 7,w € H'(y) the corresponding lifts. We carry
out this program below within two scenarios depending on the regularity of .
We alert the reader about the following abuse of notation: the matrix E (resp.
Er) is defined in y (resp. I'), but we will often write them in the parametric
domain V thereby identifying E (resp. Er) with E o y (resp. Er o ).

1.3.1 Perturbation Theory for C* Surfaces

Let y be of class C'*® and y and y be the parametrizations of y and I'. They
dictate the relation between 7 and v, the former defined on vy and the latter on T,

v=710yxo0xr.

In the sequel, we first establish a relation between V75 and Vv and next use it
to characterize E and Er.

Lemma 14 (relation between tangential gradients). If 7 : y — R is of class H',
then the tangential gradients Vv and Vv satisfy

Viv=Dxrgr' Dx'V,7,  V,o=Dyg ' Dy\Vro. (1.35)
Proof. We concatenate (1.10) and (1.9) to write
Vro = Dxrgr V(voxr) = Dxrgr V(o x) = Dxrgr' Dx' Yy,

which is the first asserted expression provided i is of class C!. Using the density
of C'(y) in H'(y) for a surface y of class C?, the first assertion follows. The
second one follows similarly. O

Lemma 15 (geometric consistency). The error matrices E and Er read on V

E:DX(%Fg;l —g—l)DXf, (1.36)
Er = D)(r(gfl - 1g—1)DX’r. (1.37)
qr

Proof. Using (1.35), together with the definition (1.1) of gr = DDy, yields
_ ~ qr -1 t ~
/Vrv -Vrw = /Vyzw ?(D/\/gl- Dx')Vyw.
r b4

Since V, o = [1V, 7 = Dy g”' Dx'V,, according to (1.4), the first equality in
(1.34) follows immediately. The proof of the second equality is similar. U
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Our task now is to relate g — gr and g — gr with D(y — ). We accomplish
this next but first we introduce some additional concepts. For any y € V, we
denote by |Dx(y)| (resp. |D~ x(y)|) the largest (resp. smaller) singular value of
Dx(y). Given the relation g = Dy’ Dy, these quantities are the square roots of
the largest and smallest eigenvalues of g. We define the stability constant

o g M {IDXO DX
x += Sup —
vev min {|Dx ()|, 1D~ xr (I}

(1.38)
and point out that it is a measure of non-degeneracy of Dy and D x . We further
define the following relative measure of geometric accuracy

e DG~ X))
o 1= SUp .
yev min {|D~x(y)l, D~ xr(y)|}

(1.39)

Lemma 16 (error estimates for g and g). The following error estimates are valid

T - grg o) 11— gr'gllra@) S Sy Ao, (1.40)
11 = ¢ " grllo@vy 11 = a5 gl S Sy . (1.41)

Proof. Since |Dy| = |Dx'|, |g7"| < |D”x|? and

(8- 2r)(y) = Dx(y)'D(x — xp)(¥) + D(x = xp)(¥)' Dxr(y) VyeV,

the first assertion in (1.40) follows; the second one is similar. To prove (1.41),

we write
detg(y) — detgr(y)

q(y) + qr(y)

and note that g = \/detg = T1~, Ai(g) where {A:(g)}, are the eigenvalues of
g. Utilizing the definitions of |Dy| and |D~ x| we end up with

q(y) —ar(y) = Vye,

D" xWI" < q(y) < |[Dx(y)I" VyeV. (1.42)

Since detg — detgr is the sum of terms of the form &;x - d;x — O;ixr - ;i xr
multiplied by n — 1 factors bounded by |Dy/|, we deduce

lg)™' (g = a0 S DX 1D = x )W Dx(W)I"™ VyeV.
This is the first assertion in (1.41) in disguise. The second one is similar. O

Lemma 17 (norm equivalence). Let y and I be Lipschitz surfaces which are
related via a bi-Lipschitz map P = y o Xf] : ' — y. Then there is a constant
C > 1, depending on the stability constant S, in (1.38), such that

CM2lar) < 1Pl < Cllolle V7€ La(y), (1.43)
C'IVroll,my < 1Y, 2006 < CliVroll,r Yo e H (y). (1.44)
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Proof. Use (1.9) and (1.10) in conjunction with (1.8). O

Lemma 2 (Poincaré-Friedrichs inequality) holds on the perturbed surface I'
but with a constant depending on I'. In order to avoid this dependence, and
thus obtain a uniform constant in I, it is only necessary that Lemma 17 (norm
equivalence) be valid. Before stating our result, we first define a class of surfaces.
Given a Lipschitz surface y, we let S, be the class of Lipschitz surfaces I" such
that Lemma 17 (norm equivalence) holds with uniform equivalence constant C,, .
Note that implicit in this definition is the existence of a bi-Lipschitz bijection
P:T — yforeachI’ € S, for instance P = x o,\/fl.

Lemma 18 (uniform Poincaré-Friedrichs constant). Given a Lipschitz surface
vy, for every v € Hé (I') with T’ € S there holds that

2l S IVrullyr (1.45)
with the constant hidden in < depending only on 'y and Ce,.

Proof. We argue by contradiction the validity of
9l < CllVroll,em Yoe H ()

and all T' € S, with uniform constant C. We thus assume the existence of a
sequence of surfaces I'y € S, and functions v € H; (T'x) such that

lorc |l zyre) = 1 IVr, ol @) — 0

as k — oo. We denote by Py : I’y — v the associated bi-Lipschitz bijections and
by % = o o P;l the lifts of the functions z to y. Since I'y € S.4, the estimates
of Lemma 17 (norm equivalence) hold with uniform constant C,, for each I',
whence 7 € H'(y) and

”Zk”Lz()’) =1, ||V7;k|IL2(7) -0

as k — oo. Proceeding as in Lemma 2 (Poincaré-Friedrichs inequality), we
deduce that a subsequence of {7 }, still denoted {7 }, converges in H'(y) to
a function 7 € H'(y) with V, 7 = 0; this implies that 7 is constant. To show that
v =0, let € > 0 be arbitrary and k sufficiently large so that [[zx — 7||1,(,) < €.
Exploiting that  is constant and /Fk 7% = 0, we use Lemma 17 to compute

/‘5 /;—yk
T'x I'r

< Tl ™27 = sy < Ceg Tkl ™17 = Tlla) < CoqITel ™.

7] = [Tk ™! = T

Applying again Lemma 17, now to the function 1, yields |T'x| =~ |I'| with constant
depending only on C,, so that [7| < €. Since € is arbitrary, we must thus have
v = 0. This contradicts |[7||z,q) = 1 because | 7llr,) — N7l = O.
Consequently, the desired statement is proved.
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Lemma 19 (perturbation error estimate for C'-® surfaces). Letu € H ; (y) solve
(1.19) and ur € H; (') solve (1.33). Then, the following error estimate for u — ur
holds

19y @ = )l S Aoll fellpg 1y + 1 aar = frlleg oy (1.46)

where the hidden constant depends on Sy, defined in (1.38).

Proof. We proceed in several steps.
Step 1: error representation. Let v = u — ur and make use of (1.34) to write

IV, (@ = ar)ll7 ) = / Vit Vyo— / Vrur - Vro + / V,ir - EV,7.
Y r Y

We next employ the equations (1.19) and (1.33) satisfied by u and ur to obtain

~_ =2 _ q ~ —~
1%, =00, = [ (#L - fi)os /y Vi EV,3

where we have also employed (1.8) to switch the domain of integration of f.

Step 2: geometric error matrix. To derive a bound for ||E||;_ (), we rewrite E
E= DX((q‘lqr - 1gr' —g7'(1- ggEI))DX’~

Since |g”!| = |[D"x|72, |gfl| = |D™xp| 2, applying (1.40) and (1.41) leads to
the error estimate

IEllL.0) S Aco- (1.47)
Step 3: final estimates. The Cauchy-Schwarz inequality yields
‘/Vﬁr “EV,7 < IV, 2ll,0) IVyur | ;) | Ell L. ) -
Y

To derive a bound for ||V, ur||z,(), we first combine (1.17) with (1.33) to obtain
IVrurlle,ay < llfrll H\(T)> and next appeal to Lemma 17 (norm equivalence).

On the other hand, we recall that f % — fr has vanishing mean-value on T, let

7= /r v be the mean-value of v, and use (1.17) to arrive at

/F (£om = fi)o= /r (£ = ) (o= 9) < 179" = fellgr o)l el

Finally, applying Lemma 17 ends the proof. O



26

1.3.2 Perturbation Theory for C? Surfaces

Let y be of class C? and the tubular neighborhood A satisfy (1.31), namely

1
N = {x eR™: |d(x)| < f} (1.48)

so that parallel surfaces to y within A are also C2. We further assume that
I' ©¢ N and the distance function projection Py = I-dVd : I — v is a bijection.
The parametrizations of y and I are given by y := P4 o y so that

v=vo0Py,.

Lemma 20 (relation between tangential gradients). If 7 : y — R is of class H',
then the tangential gradients V, v and Vrv satisfy for allx € T

Vro(x) = Hr(x) (I - dW)(x) II(x)V, 2(P4(x)), (1.49)
and
Y, 5(Py(x) = (1— dW) ' (x) (1 - %) Vro(x). (1.50)

Proof. Let us assume that 7 € C'(y). Recalling (1.27) and (1.28), we readily
get
Vro(x) = Hr(x)Vo(x) = Hr(x) (I - dW)(x) II(x)V, 2(P4(x)),

hence (1.49). Since I — d(x)W(x) is invertible for all x € N, according to the
definition (1.31) of N and shown in Lemma 6 (curvature of parallel surfaces),
(1.27) can be rewritten as

V,7(Py(x)) = (I - dW)(x)) ' Vo(x) VxeN.
To prove (1.50) we must relate Vv and Vro. First note that forx e I’
Vo = (I —-vr® Vr)Vv +vr®vrVo = Vro + (V’l/ . Vr)Vr.

Exploiting next that Vo(x) - v(x) = 0, because »(x) is constant in the normal
direction to P;(x), yields

Viv-v+(r-v)Vo-vr =0 = Vo.-vp=-

VFU'V.
yr-v

Since Vo = Vro + (Vo - vr)vr, we deduce

r®) ® V()
Vi) V()

Vo(x) = (I ) Vro(x) Vxel.

Inserting this into the previous expression for V, #(P4(x)) leads to (1.50). Finally,
a density argument of C'(y) in H'(y) for y of class C? concludes the proof. [
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The following result mimics Lemma 15 (geometric consistency) except that
now it quantifies the effect of perturbing the surface y on the bilinear forms
written in (1.34) in terms of Py.

Lemma 21 (geometric consistency). The error matrices E, Er € RU+DX(+1)
(1.34) are given on T by

EoP, H(I dW)TIr (1 - dW)TI (1.51)
Er = - ( v®vr)(1—dW)—2(1_‘;F.Qi:)_l'[r. (1.52)

Proof. In view of (1.8), (1.49), and the fact that all matrices involved are sym-
metric and H% = I1r, we can write

/er-vryz /Vyw- (Lr1(1 - aw)nie(1- aw)m1)v, 7
r Y q

Noticing that V,,w = ITV,w the first equality on (1.34) follows immediately. The
second equality proceeds along the same lines but using (1.50) instead. O

It is clear from Lemma 21 that the ratio of area elements ¢/gr matters. We
next derive a representation for ¢/¢r for any dimension n, proved originally for
n = 2,3 in [DD0O7, Dem09]. We stress that, in view of Remark 5 (parametric
independence), the solution u of the Laplace-Beltrami equation (1.18) is inde-
pendent of the parametrization of y. This allows us to consider a convenient
parametrization y for theory because it does not change the geometric objects
under consideration. We exploit this flexibility next.

Lemma 22 (relation between g and gr). Given any parametrization x of T, let
X =Py o xr be the parametrization of y. If v(X) - vr(x) 2 0 for all x € T, then
the ratio of area elements q(y)/qr(y) with y = Xlil(x) satisfies

q(y)
qr(y)

Proof. We start with the formula (1.5) for the area elements g and gr to get

= det (1 - d(x)W(x))(V(x) vr(x) VxeTl. (1.53)

2L = det [v, Dx1 vr Dxrl ™).

qr

We write [vr, Dyp]™' = [v, A’ for some v € R"*! and A € R7+1*" {0 be found.
The identity [v, A]’[vr, Dxr] = Lyields v = vr while [vr, Dx][v, A]* = Igives
DxrA' =1—-vr @ vr =IIr and

v, Dx][vr, Dy =ve®vr + Dy A’.
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To obtain an expression for Dy, let x = xp(y) € I' and x(y) = Pys(x) =
x — d(x)Vd(x) € 7y, and utilize the chain rule

Dx(y) = (I-d(x)W(x)) I1(x) Dxr(y) YyeV,

where we have argued as in (1.27). Compute now Dy A’ and use that Dy A" =
I together with Wy = 0 to arrive at

qi = det (v @ vr + (1— dW)TITIy)
r
=det (I-dW)(v ® vr + I11Ir)) = det (I - dW)) detB.

where B := v ® vr + I IIr. It thus remains to show that detB = v - vr.

We now embark on a spectral analysis of B. We first note that the statement
is trivial if v = vp. We thus assume that {v, vr} are linearly independent and
that the space X = span{v, vr} is generated by two orthonormal vectors v and
e. We consider the orthogonal decomposition R"*! = X @ X* and a rotation
R € RO*+DX(+1) 51 X that maps v into vr, namely

Ry =vr=cosfv+sinfe, Re=-sinfv +cosfe;
thus the rotation angle 6 satisfies cos# = v - vr and detR = 1. Consequently,
B=(vev+IRI)R" = detB=det(v®v+IIRII).

The proof concludes upon realizing that v and e are eigenvectors of v®v +I1 RII
with eigenvalues 1 and cos 6, and the remaining eigenvalues are 1 with eigenspace
Xt O

We are now ready to compare solutions u# and ur of (1.19) on two nearby
surfaces y and I'. In essence, weak solutions u and ur are close in H 1 provided
v and T are close in a Lipschitz sense. Therefore, to make this statement
quantitative we introduce the following geometric quantities

deo = ldllLom)y Voo := IV =vrllLo@m), Koo := [IKllLoi), (1.54)

where I' € N is a Lipschitz surface. Our goal is to bound ||u — ur|| g () in terms
of the forcing functions f, frr, and deo, Voo, Koo in (1.54).

Lemma 23 (perturbation error estimate for C? surfaces). Let u solve (1.19) and
ur solve (1.33) withI" C N. Let yr and x := P4 o xr be the parametrizations
of I and vy that give rise to the area elements qr and q. If the normal vectors
satisfy v -vr > ¢ > 0, then

19y (= ur)llza) S (dosKeo + V) I fellpg 10y + 1f a5 = fillg oy (155)
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Proof. We proceed along the lines of Lemma 19 (perturbation error estimate for
C" surfaces) and realize that Steps 1 and 3 are exactly the same. Therefore, we
only deal with the estimate of the geometric error matrix E. If we prove

IEllL.) S Ve + deoKeo, (1.56)

then the assertion will readily follow. We first write E o P; = I} + I, + I3 with
qr
I = (— - 1)n (I- dW)IIr- (I - dW)TI,
q
I = (H(I — AW)TIp (1 — dW) I — HHFH),

I = (HHFH—H).

We now estimate these three terms separately. In view of (1.53) we deduce

n

v .
% 1= ((V(X) yr(x)—1) !:][ (1- d(x)/q(x))) + ( 1_[ (1-dx)xi(x)) - 1),

i=1

where x = y(y) € T. Since 1 —v-vr = v —vr[> < $v2 and T C N, we

readily obtain
M—1‘§v§0+do<,1<o<, Vyew, (1.57)
qr(y)
and a similar bound for % because L is bounded in V thanks to the assumption
v-vr = ¢ > 0. The desired estimate for ||I{||z ) follows from the fact that
I, TIr and W are bounded. This property again, now combined with

L=-IHrdWII -TITdWIIr 1 + ITdW I} dWTI,
yields |[I2]lz.¢) S deoKeo. Finally, term I3 reads
L=-Mvr@Iyr=—(vr = (v-vr)v) ® (vr — (v - vr)v)

Since vr — (v -vr)v = (vr —v) + (1 —v - vr)v we infer that [|I3]|z ) S v2,. This
ends the proof. U

It is worth comparing Lemmas 19 and 23 (perturbation error estimates). To
do so, we next give an estimate for v, in terms of Ae.

Lemma 24 (error estimate for normals). The errors ve and A« defined in (1.54)
and (1.39) satisfy
Voo S Acos (1.58)

~

where the hidden constant depends on Sy, defined in (1.38).
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Proof. In view of the definition (1.2) of v, we realize that

N-Nr N INr| — [N| Nr

IN — Nr|
IN] IN|  |Nr| ’

IN|

V—vr= lv—vr| <2

Since N = :‘:11 det([e;, Dx])e; and det([e;, Dx]) — det([e;, Dxr]) is a sum of
products of 0;(x — xr) - e with k # i times n — 1 factors d,x,,,, we have

| det([e;, Dx1) — det([ei, Dxr])| S DOy = xp)l [Dx|" ™.

We finally resort to |N| = ¢, proved in (1.7), as well as ¢ = |Dy|", showed in
the proof of Lemma 16, to conclude (1.58). O

We now stress the advantage of using the distance function lift P4 to represent
the error u — u,, whenever the surface vy is of class C?. Comparing (1.46) and
(1.55) we see that the geometric error becomes of order ||d||z.r) plus a quadratic
term in Ao rather than linear. In the context of finite element methods, I is often
a polyhedral approximation to y having faces of diameter /. In this case ||d||. ()
essentially becomes a Lagrange interpolation error measured in Lo, and A a
Lagrange interpolation error measured in W.. The former error is of order h?
and the latter of order 4. Consequently, the perturbation error for C2 surfaces
is of order h%, whereas for C1*@ surfaces with @ < 1 it is of order A% from
the analysis of the previous subsection. The increased approximation order for
C? surfaces is a superconvergence effect. We also recall from Theorem 11 (C!
distance function implies C*! surfaces) that the elegant properties of the distance
function and closest point projection that lead to this superconvergence effect are
not available when v is not of class C?, thus the necessity of developing a separate
perturbation theory for less regular surfaces as in the previous subsection. It is
not clear whether the order of the perturbation error actually jumps in this manner
when crossing from C>® to C? surfaces, or if this jump is an artifact of proof.

1.3.3 H? extensions from C2 surfaces

The analysis of the trace and narrow band methods that we carry out in later
sections requires us to extend the solution € H?(y) of (1.19) to tubular neigh-
borhoods N (6) with the property

[
el vy S 02 1l g2y (1.59)

we recall that N(§) is defined in (1.29). The distance function lift P, provides a
natural way to achieve this upon setting u = u o P4, namely

u(x) = u(x — dx)Vd(x)) Vx e N(6).

However, this is problematic because it requires P, to be of class C?, and thus
y of class C 3 for (1.59) to hold. We now construct an extension that satisfies
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(1.59) for y of class C2. Our approach employs a regularization d; of the signed
distance function d and construction of a regularized surface y, close to y, with
the regularization parameter & appropriately related to the desired value of ¢
above. We begin by describing properties of this regularization.

Regularization. Recall that given y of class C? there exists a sufficiently thin
tubular neighborhood N so that the signed distance function d to y satisfies
deC*N). Lets >0and e = ¢6 < % be sufficiently small so that the tubular
neighborhood N(6) of width § satisfies the property

N +2e) C N.

Let B := B(0, &) be the ball of center 0 and radius &, p. be a smooth and radially
symmetric mollifier with support in B, and

To(®) = d % pelx) = / d(x - Y)pey)dy Vx € N(G)

&

be a regularized distance function. This function d, induces the smooth surface
Ye = {XeN: d.(x)=0}

but is not the signed distance function to ., which we denote d. The following
properties are immediate from the previous definitions.

Lemma 25 (properties of d,). Ifd € CX(N), then d, satisfies
Id = dellansy + €1V = do)liainisy S € 1dlyz )

and ||D238||Lw(N(5)) < |d|W2(/T/)‘ Moreover, the surface ye is smooth and the
Hausdorff distance disty (y, vs) between y and vy satisfies

. 2
dlStH(’}’, 78) /S &€ |d|Wczc(N)

provided & is small enough so that Ce|d |W2(N) < % for a suitable constant C.

Proof. Since p, is radially symmetric, we have that
(=T = [ (d09=Td -y = dlx =)o)y

and

V(d =) = [ (Va0 - Valx-)otr)y.

These relationships imply the first assertion upon employing a Taylor expansion
of d and the Lipschitz nature of Vd, respectively. We also note that

DTo(x) = / Vd(x —y) ® Vps(y)dy = / V(dx ~y) - d9) @ Vo, (y)dy

&
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because fB Vp:(y)dy = 0 in view of the radial symmetry of p.. The second

relationship bounding D%d,, then follows from the Lipschitz nature of Vd (i.e.
[V(d(x—y)-d(x))| < &,y € B,) and the standard property ||V, ||z, (8,) S el
of the mollifier.

To establish the smoothness of ., note that the closeness of Vd and Vaa
implies that Vd, is nondegenerate for Ce|d |W;‘; N = 1/2. The smoothness of
ve then follows from the implicit function theorem.

The last assertion is a consequence of the nondegeneracy of the distance
function: Giveny € y, let x = P4(y) =y — d(y)Vd(y) € y be the closest point
to y and note that

[y =X = 1dW)| = 1dE) - deW)] S 1y 5,

Likewise, given x € y let y(s) = x + sVd(x). There is s € (—¢, &) such that
dg(y(s)) = 0. To see this, note that d(y(s)) = & for s = +& and

de(y(e)) = d(y(e)) = C&*ldlyz ) = &(1 = eldly2 7)) > 0

provided Celdl|y,» N S %; similarly d,(y(—¢)) < 0. Letting y = y(s) be such
that d.(y(s)) = 0, we note that x = P4(y), and so arguing as before we have that

[y = x| = [d(y)| = ld(y) = de@)] < &ldly2 0,
which concludes the proof. O

_ We recall that d; is the signed distance function to the zero level set y. of
d.. Consider the C* lift

P.(x) :=x-d.(x)Vd.(x) Vx e N(J). (1.60)

It is natural and useful for later considerations to compare tubular neighborhoods
dictated by d and d. Let

Ne(6e) :i={x € R™! |ds(X)] < ¢},

where we choose ¢, as follows depending on ¢ and €. Given x € N(6) let
X € y be the point at shortest distance, whence |[x —X| < §, and let X € y. be
a point such that [X — xz| < Cld|y. N)sz which is guaranteed to exist because

disty (y,v.) < Ce?|d| < & in view of Lemma 25 (properties of d.). Therefore
lde(x)| = dist(X, yz) < [X—Xg| < |X—X|+[X—X,| < 5+C|d|w§,(/v)52 < 0+¢e = g,
provided Celd|y,2(xy < 1; note that 6, < %(5. This implies

N(6) € Ne(62). (1.61)
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Similarly, using again Ce|d|W2W) < 1 in conjunction with Lemma 25 yields
Ne(6s) C NG +6)=N(+28) C N.

The next lemma and corollary study important properties of d. and P, in
particular how derivatives degenerate with &.

Lemma 26 (properties of dg). The function d. € C*(N(96)) and satisfies

e llw2nvoy + elldellwz vy < 1wz -

Moreover, the following error estimates hold
IV(d = do)llzanion S ldlwz vy 11 = Vd - Vel vy S 6°1dlg0 -

Proof. Since EE(X) = 0and |V25(X)| > % forallx € y,, fixxg € vy, and a system
of coordinates such that x = (xX’, x,.,1) is a generic point and Vd(xo) points in
the (n + 1)-th coordinate direction. The Implicit Function Theorem guarantees
the existence of a ball B in R" centered at x| and a C* function ¢ : B — R such
that _

de(x,y(x’)=0 Vx' €B.

In other words, vy, is locally described in B as a graph x,,+; = ¢(x’) for X" € B.
It is not difficult but tedious to see that

I llwz s S ||Es||WD%(N(6)) S dllwz
- 1
1 llwas < Mdellwaovsy < 5 14lwz o

which translates into the first estimates for d

1
||ds||WD%(N(5)) S ||d||W30(N), ||ds||w3°(/v(5)) S E”d”WD%(N)'
To prove the error estimates, let x € N'(6) € N and note that

Vd.(y)
\Vde(y)

withy = X — d.(x)Vd.(x) € v, and w = x — d(x)Vd(x) € y. Hence,

Vdg(x) = Vds(y) = Vd(x) = Vd(w)

5
W—y| <|w—x|+]y—-Xx| <6+F; < 56
because of (1.61). Since |Vd(y)| = 1, we now write

Vd(x)-Vdg(x) = w(w>_Vd(y)+w(y)_vzg(y)+M(|vzg(y)|_|w(y>|)

[Vd(y
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and estimate pairs of terms on the right hand side separately. Since d € W2 (N),
we get
[Vd(w) = Vd(y)| < Iw =yl ldlyw2n) S Sldlwz

and using Lemma 25 (properties of d) we also obtain
VAW = IVde | < [Vd(y) = Vde(y)| < eldlywz vy < Sldlyzn)
whence the first error estimate follows
|Vd(x) - Vd(x)| < 6ldly2p) VX ENEG).
To show the desired second error estimate we observe that |1 - Vd(x)- Vdg(x)| =
%|Vd(x) - Vdg(x)|2. This concludes the proof. O
Corollary 27 (property of P.). The lift P, belongs to C*(N(6)) and satisfies

Pelwz vy S 1dlwz o
for suitable constants Cy, C, so that C16 < & < % and C28|d|W£(N) <1

Proof. Differentiate the k-th component of P with respect to x; and x; to obtain

0ijPei = —0]de Okde — 8;ds 05 ds — 0;de D3 ds — di 0], d

l]k &

whence invoking Lemma 26 (properties of d.) yields

)
ID*PellLonvsy S ldlwzon + g|d|wgo()v) S ldlwz
because of |Vd,| = 1 and (1.61). This completes the proof. O

Given a function & € H?() we are now ready to introduce an H? extension
to N(6). For this, we assume that § is sufficiently small so that (1.61) is
valid. We first define the auxiliary function u, = w0 Qg : y. — R, where
Q. =P, ! : vy, — ¥, and then the extension u = u, o P, : N(6) = R, namely

u(x) := ug (X — do(x)Vdg(x))  Vx € N(9). (1.62)

Consequently, we realize that u = u o Q, o P.. We introduce the notation Q, to
avoid confusion between Q. o P, : N(§) — v and the identity. We recall that
the coarea formula

)
/ g=/ gIVdI=/ / gdoy, (1.63)
N(S) N(S) -6 J{d"\(s)}

is valid for any integrable function g : N'(§) — R [Theorem 3.14, Evans and
Gariepy]. We will use this formula next and later in this chapter.
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Proposition 28 (H? extension). Let & and & be as in Corollary 27 (property
of Pg), and assume that e|d|y,> Ny S ¢ for a sufficiently small constant c. If

i € H*(y), then u € H*(N(6)) and

el g2 onvsy < 5t | dlw2 a1l 2 -
Moreover, the trace of u on y coincides with i, that is u an H* extension of .

Proof. In view of (1.27), the i-partial derivative of u reads
n+l _
=" (61 = de 0fde) Ojute o Py
j=1
where 5]- ug stands for the j-component of V,,_u.. We use again (1.27) to obtain

n+1

Voju ==Y (Vds 0ds + dg 03Vd) Bjus o Py
j=1
n+l

+Z i = de 9%dy) (1 dp D*d,)Vy, 1, o P

Setting A := 1 + |d|y2 () and applying Lemma 26 (properties of d) yields
|D%u| S A(1Vy, 1 0 Pe| + V2,11 0 P ]).

We reduce the computation of integrals in the bulk ANV () to integrals on parallel
surfaces y.(s) := {x € R"™! : d.(x) = s} via the coarea formula (1.63). Since
|Vdg| = 1 in view of (1.61) the co-area formula implies

2
[ irtumpassa [ 33 9P 19,9
N(&) N

< A2 / f Zwk e (P () doe () ds
.

8(5) k=

S A7 Z |VE, ue(x)? dors(x),
Ye k

Lemma 17 (norm equivalence) immediately yields

|V75ME(P£(X))|2dO-E(X)§/|V7ﬁ(x)|2do-(x)-
Ye Y

In order to relate second derivatives of uz on 7y, to those of u on y, we apply
(1.50) with y, playing the role of y and I = y. Then
Vy(X) ® v(x)

_ _ -1 _
Yy, t(Po(x) = (1 dsW,)™ (%) (I v, (%) Vo)

) Vyu(x) xev,
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and after applying this formula again to V,,_u.(P.(x)) we obtain

D}, e (P(x)] < |DyM(x)| |V, @(x)] + [M(x)| | Dyu(x)L,

where M(x) = (I — d.W,) '(x) (I— ‘M). We thus wish to bound

Vy(x)"’s (x)
| M [l (- First we note that combining the bound on the HausdorfF distance be-
tween y and y, from Lemma 25 (properties of d,) with ||d, w2 nvis)) <|d lw2(n)
from Lemma 26 (properties of d.) yields for x € y that the eigenvalues of
ds(x)W(x) are bounded by Ce?|d |‘2V2 e which is less than § under the as-
sumption that &|d|y2 , is sufficiently small; thus [|(I - d:W,)™! vy < 2.
In addition, combining the same assumption with & ~ § and Lemma 26 yields

1
21,712 21,712
||l - V’y : VS”Loo(N(5)) Sj 6 |d|W£(N) S & |d|W020(N) S 59

so that vy - v, > 1/2 and

Sk

HI Wy 8V,
Lo(N(6))

Vy Ve

thus |[M||z.avs) S 1. In order to bound the derivatives of M, we note that for
a matrix A there holds ;A™! = —A~1(§;A)A™!. For A = I - d,W,, we use
Lemmas 25 and 26, |Vd,| = 1, and the assumption C;6 < & to deduce in N(8)

|0:Al = |(atds)wg +de aiwa’
S ldellwz nvis) + Olldellwz an S Idlw2a)-

Since we have already established that ||A‘1||Lm( Ny S 1, we infer that [(T -
Vy QVe
Vy7 Ve ?
ing that vy - v, > 1/2, yields M|y, < |dly2 () and, after applying Lemma
17 (norm equivalence), gives

while recall-

d=We) i vs) S ldlw2(w)- A similar calculation for I -

102, e sty < 1wz (195 + 103,00 -

The asserted estimate follows from applying again the co-area formula (1.63),
which leads to

/ lul> + |Vul?® + |D?ul?® < 5A2/|m2 +|V,al* + | D*l?
N(6) Y
Finally, we take x € vy, note that Q.(P.(x)) = X, and compute

u(x) = o Qg o Py(x) = u(x)

to realize that u is indeed an extension of u to N(9). U



The Laplace-Beltrami Operator 37

We now derive the elliptic PDE’s satisfied by u. on y. and u in N'(6). For
ue H(y),let f =— it € L 4(y) and consider the extension f; to y,

f;::fon‘

Lemma 29 (PDE satisfied by u,.). Ify is closed and of class C?, then vy, is also
closed and of class C*, and the extension uz = u o Q. satisfies on y,

— . 1 ~ ~
—ygdlvys(rA‘gV%us) = feo
Me

where Ay = (I - de D*do)II(I - d. D*d;) o Qg, 11 stands for the orthogonal

projection I1 = (1 -Vd @ Vd) ony and . := q36~ reads

fie = det (1= d, D*d, ) (Vd - Vde) 0 Q..

Proof. Givenv € H'(y),let v =70 Q. € H'(y,). We resort to (1.49) to write
V,i =(I1 - de D*dg)Vy,u. 0P, onvy,

because V, u; o P, = 1.V, _u, o P.. This combined with (1.8) and Corollary
13 (integration by parts) on the closed surface . yields

~ ~ 1 ~ 1 ~
/Vyu “Vyo = / —A;Vy us -V, v= —/ divy£(~—A8V7£us)y
b ve Me He

Ye

qe
q°Qs

with [, = given by (1.53). Likewise,

J7o= ]

Since the last two equalities hold for all v € H'(y,), the assertion follows.  [J

We extend the function f; to Ng(6:) as follows:
fe :=Ji°P8 :foQSOPS'

Equivalently, given x € Nz(6.) let X € vy be the unique point such that for some
s

X=x+s5Vde(x) = f(x)=fRX).

Proposition 30 (PDE satisfied by u). Let € and 6 be as in Corollary 27 (property
of P,.). The extension u € H*(N(6)) of u of Proposition 28 satisfies the PDE

—idiv (ueB:Vu) = f; in N(6),

&
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where

B, := (1-d. D*d,) 'ToA.M, (I - ds D*d,) ",

Ag = Kg oPg with Ks given in Lemma 29, 11, = 1-Vd, ® Vdg, u. is given by
1
He = = det (I ~d; Dzds),

Me O Fg

and pi is defined in Lemma 29.

Proof. We proceed as in Proposition 28 (H? extension). Let y.(s) be a parallel
surface to y, at distance s, and let |s| < 6, with §, = %6 so that (1.61) holds. We
first employ (1.50) to obtain the bilinear form for u on y.(s). For ¢ sufficiently
small Lemma 26 (properties of d.) guarantees that (I —dg Dzdg) is invertible
in Nz(6;). Hence, if D, = (I - d, Dzdg)_ll'[g and v € C°(N(6)), we restrict v
to v, (s), define the auxiliary function 7 := v o P,~! € C®(y,) and observe that

(1.50) reads on y.(s)
vV, v0P, =DV,

where Vv is the full gradient of v; this is because of the presence of the projection
matrix I on the tangent hyperplane to y.(s) in the definition of D.. We get

1~ —~
/ ~_A£Vysuz-: : Vyg’(/ = / ﬂgAngVu -D.Vo
Ye Hs Ve(s)
where i, is given in Lemma 29 (PDE satisfied by u.) and u, is the surface
measure density on y(s) due to the change of variables, namely
1 e 1 2
e = — = ———det (1 d. D*d,
HeoPeqes  HeoPg

according to (1.53). Similarly, the linear form for the forcing reads

1 ~-
/~_fsy=/ He fe v
Ye He Ye(s)

Since the left hand sides of the previous integral expressions coincide, in view
of Lemma 29, we now integrate over s € (—dg, d) and use the co-area formula
(1.63) to convert the resulting integrals into bulk integrals

/ UsADVu-D Vo = / UsADVu-D Vo |Vd,|
Ne(6e) Ne(6e)

[P
= / / UsADVu -D Vodog s ds
=05 Jys(s)

Os
= / Jev ue do—s,s ds

e Jye(s)

:/ fev s |Vdg] =/ Jev e,
Ne(6e) Ne(6)
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because |Vdg| = 1 in Ng(6s). Since N(§) C Ng(6z) according to (1.61),
integration by parts gives

—/ div(usDsA:D Vu)v = fevps VveCyl(N(©)),
N(6) N(6)

whence the desired PDE follows after noticing that (I — d, D2d,€)7l and I,
commute. This completes the proof. O

1.4 PARAMETRIC FINITE ELEMENT METHOD

The parametric method hinges on a surface approximation I' “interpolating”
the exact surface y. Recall that the latter is assumed to be a closed, compact,
orientable hypersurface in R"*!. In the lowest order case of piecewise linear
polynomials, this corresponds to a polyhedral surface I' whose vertices lie on
v or, more generally, sufficiently close to y. The finite element space is then
obtained in a classical way by mapping a finite element triplet defined on a
reference element in R” to a facet of " in R"*!. The FEM requires a bi-Lipschitz
map P : I — y which is not necessarily the distance function lift P;. The latter
is used for numerical analysis purposes only even for smooth surfaces.

There are two sources of error: the approximation of the exact surface y
by the polyhedral surface I, the so-called geometric consistency error, and the
Galerkin error arising from the actual finite element approximation on I". In
this section we quantify these two errors depending on the regularity of y. For
the former we rely on the discussion of section 1.3 that addresses the effect of
perturbing y. For y of class C® we deal with a generic lift P : ' — y and
obtain a suboptimal geometric consistency error. For C? surfaces, instead, we
resort to P for error analysis and restore geometric optimality.

1.4.1 FEM on Lipschitz Parametric Surfaces.

Lipschitz Parametric Surfaces. We adopt the viewpoint that the surface y
is described as the deformation of an n-dimensional polyhedral surface I" by a
globally bi-Lipschitz homeomorphism P : T — y < R™*!. Thus there exists
L > 0 such that for all x;,x; € T

L% — x| < X1 = %] < LIx; — xal, X; =P(x;), i =1,2. (1.64)

If y is C?, we may take P = P, but our current definition allows for much
more flexibility in the choice of P. For example, if ¥ has nonempty boundary
and is given as the graph of a function ¢ : Q — R™! with Q c R”, then
the map between x = (x,z) € I' with x € Q and z € R could be given by
P(x,z) = (x,¢¥(x)) € vy, i.e., the “vertical” graph map.

The (closed) facets of I' are denoted by 7', and form the collection 7~ = {T'}.
We assume that these facets are all simplices and denote by S the set of interior
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faces of 7. Extension to other element shapes such as n-quadrilaterals and to
nonconforming discretizations is possible under reasonable assumptions with
minor modifications, but we do not elaborate them further. We let Py : T —
]in”l be the restriction of P to 7. The partition 7 of I' induces the partition
T ={T}rerof y upon setting

T:=Pp(T) VT eT.

Note that this non-overlapping parametrization of y allows for Lipschitz surfaces
rougher than globally C2. We additionally define macro patches

wr =U{T":T'NT # 0}, or = P(wr). (1.65)
Let hr = |T|% and o < oo be the triangulation shape-regularity constant, i.e.

diam(7)
0 = supmax —————.

1.66
g TeT h’]" ( )

We further assume that the number of elements in each patch wr is uniformly
bounded. This assumption automatically follows from shape regularity for tri-
angulations of Euclidean domains, but the situation is more subtle for surface
triangulations as illustrated in Figure 1.1. Such a bound does for example hold if
I' is obtained by systematic refinement of an initial surface mesh with a uniform
bound on the number of elements in a patch [DDO07], or more generally using
adaptive refinement strategies [BCM* 16, BCMN13]. In addition, this implies
that all elements in wr have uniformly equivalent diameters, as it happens for
shape regular triangulations on Euclidean domains.

FIGURE 1.1 Two different configurations when n = 2 illustrating that the number of elements
sharing the same vertex could be arbitrarily large even when using triangles satisfying (1.67).

To provide a parametric description, let T be the unit reference simplex,
sometimes called the universal parametric domain. We denote by X7 : R" —
R”™*! the affine map such that 7 = X7(7) and note that (1.66) implies

hrlw| < |DXrw| < hr|wl, Yw e R™. (1.67)
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Hereafter we omit to specify when the constants (possibly hidden in < signs)
depend on o. As pointed out in [BP12], even if the initial surface approximation
satisfies (1.67), this property might not hold for refinements unless the initial
polyhedral surface approximates the exact surface well. We refer to [BCM™ 16,
BCMN13] for a discussion on how to circumvent this in an adaptive strategy.
However, since this work focusses on a-priori and a-posteriori error estimation
rather that adaptivity, we assume (1.67) directly.

We are now ready to introduce the local non-overlapping parametrization y
of y. Let y; := Po Xy : T — T be the corresponding local parametrization of
T and X = {x7}re7; see Figure 1.2. We record for latter use that thanks to the
Lipschitz properties (1.64) and (1.67), x also satisfies

hrw| < IDxr ()W < hrlw| VweR", yeT. (1.68)

TCy

/v

T

FIGURE 1.2 Non-overlapping parametrizations X : T — T of T and XT : T —Tof Y.

It turns out that it will be convenient to consider y; to be defined on a larger
domain than T, say Wy C R", so that y = P o Xy : &y — @r is a bi-Lipschitz
local parametrization of y: there exists a universal constant L > 1 such that for
each fixed T € 7 and for all X; = x7(y1), X2 = x7(¥2) € or,

L hrly1 = y2| < [X1 —%| < Lhrly: - yal; (1.69)

in this case x := { X7 }re7 is an overlapping parametrization of y. We further
assume that P(v) = v for all vertices v of T, so that Xy is the nodal Lagrange
interpolant of y, into linears.

We finally note that a function 7r : T — R defines uniquely two functions
or : T — Rand or : T — R via the maps y; and P, namely

7r(y) = or(xr(y) VXeT and op(x):=7r(P(x) VxeT. (1.70)
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Moreover, each one of these functions induces the other two uniquely. Accord-
ingly, we will use the symbol » for all three functions if no confusion arises.

Differential Geometry on Polyhedral Surfaces. We use the atlas {T , T, XT)TeT,
induced by the non-overlapping parametrization y := {xy}res, to describe y
in the spirit of Section 1.2. Likewise, we employ the atlas {T T, X7 }req to de-
scribe the polyhedral surface I'. In view of (1.68), the discrete first fundamental
form gr and area element gr of I are given elementwise by

gr = (DXT)IDXT, qr = \/det gr, VT eT. (1.71)
and satisfy
eigen(gr) ~ h2, qr ~hl, VT eT. (1.72)

They give rise to the piecewise constant functions gr := {gr}res and gr :=
{gr}res. Similar properties are enjoyed by y, which imply that the stability
constant S, defined in (1.38) is purely geometric and independent of meshsize:

Sy ~ 1. (1.73)
In addition, notice that (1.68) and (1.69) imply that

as<L<a (1.74)
qr
for constants Cy, C; independent of discretization parameters. Moreover, the vec-
tor Ny := Y/ det ([e;, DXr)])e; is perpendicular to 7 € 7~ provided {e; ;‘:11
are the canonical unit vectors of R"*!. This vector satisfies [N7| = g7 and yields
the unit normal to T N
T
vri=—— VT eT,
IN7|
and corresponding piecewise constant unit normal vector vy := {vy}reqto T.
Givenafunction v : I’ — R, its tangential gradient Vrv and Laplace-Beltrami

operator Arv over I' obey the formulas
Vo = (DX)' Vro, Vro=(DX)gr! Vo, (1.75)

and {
Arv = —div(qr gr' Vo), (1.76)
qr

where 7 : T — R is defined in (1.70). The strong form of Arv is well defined
only elementwise because gr g;l is piecewise constant and so discontinuous
over 7. To find the correct strong form we start from the weak form (1.19), split
the integral over elements and use Corollary 13 (integration by parts) to obtain

/Vry-erz Z—/wArv+/ wVro - ur
r T or

TeT

= Z —/TwArv+ Z w[Vro],

TeT ses S
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where the jump residual is computed over each face S € S of elements of 7~ via
[Vrv] :==Vrop -y, + Vroo - p_ (1.77)

and 7. € 7 are such that S = T, N7_ and v, p, are the restrictions of » and the
outer unit normal to 07, which is parallel to 7... We then see that Arv consists
of the absolutely continuous part (1.76) with respect to surface measure defined
elementwise and the singular part (1.77) supported on the skeleton of 7. This
formula makes sense for functions which are piecewise H> and globally H',
such as continuous piecewise polynomials.

Parametric Finite Element Method. In this work, we focus on continuous
piecewise linear finite elements and polyhedral surface approximations. Let P
be the space of linear polynomials and let V(7") be the space of continuous
piecewise linear polynomial functions over I', namely

V(T) = {V € COT) | Vip =V o X~ for some V € P, T ¢ fr} .

The finite element space associated with the Laplace-Beltrami equation over I
is the restriction of V(7") to functions with vanishing mean

Vu(T) :=V(T) N Lyp(T).

We define 77 : C%(") — V(7)) to be the Lagrange interpolation operator and
use the same notation for vector-valued functions.

We are now ready to introduce the parametric FEM: seek U := Uy € V4(7")
that solves

/VFU-VrV= /FV YV € V(T (1.78)
r r

where F' € L 4(I') is an approximation of f € L,4(y) to be specified later.
Lax-Milgram theory guarantees that U € V4(7") is well defined. Observe that
because F € Ly 4(I'), we also have

/VFU.Vrvz /FV YV € V(7). (1.79)
r r

Since the exact problem (1.19) and discrete problem (1.79) are defined on
different domains y and I', the error u — U does not satisfy Galerkin orthogonality
in either one. The next statement accounts for geometric inconsistency and uses
the convention (1.70) for the generic lift P.

Lemma 31 (Galerkin quasi-orthogonality). Let E and Er be defined in (1.36)
and (1.37) via the parametrizations ¥ = P o X and yr = X. Then, for all
V € V(7), there holds

/Vr(u—U)-Vrvzf(fi—F)V+/VFM-EFVFV, (1.80)
r r‘ 4qr r
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and

/Vy(ﬁ— ) v,V = /(f— FE)V + /Vyﬁ-Evﬁ. (1.81)
% Y 4q Y

Proof. We only prove (1.80) as (1.81) follows similarly. Using the equation
(1.79) satisfied by U and the consistency relation (1.34), we obtain

/VF(M—U)'VFVZ/V7L7~Vyv+/Vru'ErVrV—/FV.
r v r r

The first term on the right-hand side equals fy fV = fr f ;—FV, in view of (1.19)
and (1.8), and thus yields (1.80). O

1.4.2 Geometric Consistency

In this section we study the error inherent to approximating y with I'. The
polyhedral surface I' is always represented by a lift P whose regularity depends
on that of y. We present two scenarios depending on such regularity. We first
assume that y is piecewise C® and globally Lipschitz, and later assume that y
is C? and exploit the distance function lift Py to improve the error estimates.

Uniform Poincaré-Friedrichs estimate on I'. The analysis below takes advan-
tage of the uniform Poincaré-Friedrichs estimate on T’

ol S IVoll,m Vo e Hy(D), (1.82)

where the constant hidden in the above inequality is independent of I'. Note that
when y is of class Ch® 0 < @ < 1, Lemma 18 (uniform Poincaré-Friedrichs
constant) implies that (1.82) follows from (1.73) and (1.74), which in turn are
consequences of assumption (1.64). Furthermore, when v is of class C? and
P = P, the discussion in Section 1.3.2 yields conditions which are also easy to
verify: ' ¢ N(1/2Kx)andv -vp > ¢ >0onT.

Geometric Estimators. Since vy is described by y and I" by X it is natural to
consider the difference D y — DX as a measure of geometric mismatch [BCM*16].
We thus start with the geometric element indicator

Ar = ||[D®P - IgP)lrry = IDP =Xy VYT €T (1.83)
and the corresponding geometric estimator

A-(T) := rTnEa;g Ar. (1.84)

We have seen that the relative measure of accuracy (1.39) controls the geometric
error. In this vein, we observe that Dy, = DP DXr because y; = P o X7,
whence such measure satisfies

D(x, - X
max 1Dz — X7)) <Sdr VTeT, (1.85)

yer min {|D~x; )|, |ID-Xr(y)l} ~
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with a stability constant S, = 1 according to (1.38). Therefore A4(T") is expected
to dominate the geometric error for surfaces of class C® with 0 < a < 1. This
is consistent with Lemma 19 (perturbation error estimate for C@ surfaces).

For C? surfaces, however, A4(I) is suboptimal in that it overestimates the
influence of geometry [BD19]. According to Lemma 23 (perturbation error
estimate for C? surfaces) and Lemma 24 (error estimates for normals), the
following quantities should play a crucial role in dealing with geometry via the
auxiliary lift P,

Br =P - I7Pl ) Br():= ITH:‘(?,BT, (1.86)

and
= A2 r):= - 1.87
ur = Br + A7, ug() max ur; (1.87)

we stress that us«(T") is formally of higher order than A4(I'). We will show
below that us(I") indeed controls the geometric error and accounts for the
“superconvergence” property associated with the projection P, along the normal
direction to 7y alluded to at the end of section 1.3.2.

Geometric Consistency Error for C''* Surfaces. We now quantify the geo-
metric error incurred when replacing y by its polygonal approximation I'.

Corollary 32 (geometric consistency errors for C @ surfaces). IfX and y satisfy
(1.67) and (1.68), then for all T € T we have

- q_IQF”LM(f), I1-grg™ @y ve=vie.m) < Ars (1.88)
where the hidden constants depend on Sy, ~ 1 defined in (1.38). Moreover,
”E”Lm(f) + ”ET”Lm(f) <Ar VYTeT. (1.89)

Proof. We first point out that (1.67) and (1.68) yield S, =~ 1 according to (1.73).
The asserted estimates follow from Lemma 16 (error estimates for g and g) and
Lemma 24 (error estimate for normals) in conjunction with (1.47) and (1.85). [

Geometric Consistency Error for C?> Surfaces. We now take advantage of
the lift P; for error representation. We recall that, as in section 1.3.2, the
parametrizations of y and I' are given by y = P; o X and X. In particular, the
infinitesimal area element g of y is defined using P, and so are the consistency
matrices E, Er; see (1.51), (1.52). To improve upon Corollary 32 (geometric
consistency errors for C'>® surfaces) we need more stringent geometric assump-
tions than simply I' ¢ N. These assumptions are somewhat technical but are
checkable computationally with information extracted from P but without access
to P; [BD19]. We list them now.
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o Distance between y and I'. Invoking the closest point property of the
distance function projection P, and the definition (1.86) of B4(I"), we see
that |x — P;(x)| < |x — P(x)| < B4(I) for all x € I'. We thus assume that I is
sufficiently close to y in the sense that

1
Pr0) < 7= = TCN, (1.90)

according to (1.48). Therefore, the estimates of section 1.3.2 are valid.
Moreover, the discrepancy between the two lifts satisfies for all 7 € 7~

|P(x) - Py(x)| < |P(x) — x|+ |x = Py(x)| <2|x - P(x)| <2B8r VxeT.
¢ Mismatch between P and P,;. We assume that
P,oP'\TYcar VTeT, (1.91)
where @y is the patch around T within y. If X = P(x) € y for x € T, then
X-PyoP'(X)| = [P(x) - Py(x)| <2B8r VxeT. (1.92)

and all T € 7. Since y is of class C2, we expect 'fl—; — O as hy — 0 and
realize that (1.91) is always valid asymptotically. We emphasize that it is
possible to check (1.91) computationally without accessing P; [BD19].

Corollary 33 (geometric consistency errors for C> surfaces). If (1.90) and (1.74)
hold, then so do the following estimates for all T € T

ldllewry < Brs 1V =vellea S A 1= q ' grlleam) S ur, (1.93)

where all the geometric quantities are defined using the parametrizations y =
P, o X and X. Moreover,

IEllz.cr) IErlleaa Sur VYT eT. (1.94)

Proof. The first estimate in (1.93) is trivial from the definition (1.86) of SBr,
whereas the second estimate in (1.93) is a consequence of (1.58). The third
estimate in (1.93) results from (1.57) and (1.58). With these estimates at hand,
the estimate for E in (1.94) comes from (1.56) and that for Er is similar. O

We conclude with a technical result assessing the mismatch between P and
P,. We motivate it with the following simpler L-estimate valid for all 7 € 7

Iw—woPgoP ', 7 SIVyWllew@) Br YXET.
This is a trivial consequence of the property (1.92) forx € T

[wX) = w(Py o P X)) < IV, WllL.(@p) X — Pa o P ®)| < 2|V, Wl @B

The estimate below is L,-based and its proof entails regularization by convolution
[BD19, Lemma 3.4].
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Proposition 34 (mismatch between P and P,;). Assume that (1.67) as well as
the assumptions (1.74), (1.90) and (1.91) hold. Then there exists A, > 0 such
forw € H'(y)and T € T we have

17— o Pao P S Brllay)

provided A < A, and wr is a patch in vy around T.

Proof. We proceed in several steps.
Step 1: Reduction to R". Fix T € 7 and recall that y; = P o X7 satisfies (1.68)
and maps the reference patch iy into wr. For notational ease, let

y=PgoP iy 5y, {p\z,\/}lozpoxT:GT—wUT.

Givenw € H'(y),letw = wo y; : @r — R, and note that w € H'(&r) because
X is Lipschitz. We change variables via yr to T and invoke the non-degeneracy
property (1.42) to obtain

~  ~ 2~ o~ =~
% = 0 ll, oy < By 21 = 0 gl -

The assumption P; o P UT) c or given in (1.91) is equivalent to J(T) C wr
and is sufficient to ensure that the quantity on the right hand side is well-defined.
Since w is defined on @y C R”", and its boundary is Lipschitz, there is a
universal extension operator E : H'(@&7) — H'(R") which is bounded both in
L, and in the H'-seminorm [Ste70]; this is the so-called Calderén operator. We
relabel E to be i, and thus assume it is bounded in H'(R") while satisfying
Wl @ny S W @,)-

Step 2: Mollification. We now regularize w by convolution with a standard
smooth mollifier supported in the ball B(0, €) centered at 0 with radius € > 0 to
be determined. If Q c R" is an arbitrary domain, it is well known that

lw - WaHLz(Q) S 8|W|H1(Q+B(o,g))’
— — 2 —~
[We |W°'O(Q) Se " Wk @4 B(0.6))-
We may now write, without restriction on &, that
||W—WO¢||L2(f) S ||W_W8||L2(f) +]|[We —We OQD”LZ(T) +][We oy _WOwHLZ(f)‘
We estimate the first term using the first formula above for the mollifier
W= well,, 7 S €Wlm@ny S €lWlg@,)-

Similarly, changing variables via the map lZ which turns out to be Lipschitz
in view of (1.42) and (1.68), and applying the restriction (T) C & stated in
(1.91), we find that

”(Ws - W) o lﬁ”Lz(f) S, ”"A"e - W”Lz(@]") 5 S|W|H1(LDT)‘
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Step 3: Estimate for ||We — we o U| L7 Let {y:} be a lattice on R" with
minimum distance between y; and y; (i # j) proportional to & and such that
{B(y;, &)} covers R". The set { B(y;, M&)} then has finite overlap for any M > 1,
with the maximum cardinality of the overlap depending on M. We choose

&€ = sup ly-vWl = [we—wgo W”Lm(g(yi,g)nf) S 8|‘7V\8|W010(3(yi,28))
yeT

Applying the second property of mollifiers given above yields

—~ — 2 —~
Welwy s.2en S &2 Wl18031,30)

whence
Ve = We 0 Ul 7y S 8" ) e = e o Y]
[We —Wwg o ¢||L2(f) ~ € ' [We = we o w“Lw(B(yi,s)ﬁf)
1

2 =2 215512 215512
S8 2 Wiy 50 S &y S &1
i

Step 4: Bound on . Making use of the bi-Lipschitz character (1.68), we get
ly =] = 7' (er @) = x7' (b e (v)))|
< Lz xr(y) — ¢ ()| = Lz' K~ Py o P (®)]
where X = y,(y). Recalling (1.92) and the definition of &, we thus obtain

& < 2Lhy' Br.

We now gather the estimates of Steps 2 and 3. Mapping from T to T and back
via yr, and utilizing (1.42) and (1.68), yields

-~ _ = 2~<nA_AA2A<n2A2
17 -Foull 7 S BT =B TIE 7 S el s
202 12-n1=2 2 1~=2
g h;th IBThT n|W|Hl(5T) = lnglel

This completes the proof. O

(o1)"

We conclude this section with a variant of Proposition 34 (mismatch between
P and P;) which turns out to be instrumental for the study of the Narrow Band
method discussed later in Section 1.6.

Proposition 35 (Lipschitz perturbation). Let Q;,Q, cc Q c R"*! be Lipschitz
bounded domains and L. : Q1 — Q) be a bi-Lipschitz isomorphism. If

= L(x) -
r = max [L(x) — x|
is sufficiently small so that (Q1UQ)+B(0,r) € Qthenforall g € H'(Q) we have

llg = g o Lllz2,) S rliglaq)-
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Proof. We now proceed as in Proposition 34: let ¢ = r > 0 and g, be a
regularization of g by convolution with a standard smooth mollifier supported
in the ball B(0, ). We write

lg —goLlli2q,) < lg —8ellrz@,) + I8 — 8= o Lll 2,y + lIge o L= g o Ll 20

and note that

llg = gell@ S ellgllaiy  llge oL=g oLz S ellgllaiw)

because L~! is Lipschitz. To estimate ||g, — gs o L| 12(Q,)> We argue as in Step 3
of Proposition 34 (mismatch between P and P;). This completes the proof. [

1.4.3 A-Priori Error Analysis

In this section we derive a-priori error estimates in H Land L,, namely estimates
expressed in terms of regularity of the exact solution u of (1.18). Compared
to the existing literature these estimates involve two lifts: Py and P. The
former, based on the distance function d, is only used theoretically or to define
a notion of error when comparing U with u. The latter is generic and used
in practice to define the finite element method, i.e., by setting F = f o P%
and the discrete parametrization X to be the interpolant of the continuous one
x = PoX. Optimal orders of convergence are derived without the need to access
the distance function.

We also address a gap in the literature. Existing proofs of optimal a priori
estimates for surface FEMs employ the distance function lift P; = x—d(x)Vd(x).
However, when y is C?, this map is only C' because of the presence of Vd in its
definition. Thus given 7 € H?(y), its extension v = o P, to I'is only in H! and
not piecewise in H> as is needed to prove optimal approximation order. Thus
existing proofs that only employ the distance function lift require the assumption
that y be of class C* in order to obtain optimal order error estimates in the
standard way; cf. the work of Dziuk in [Dzi88] in which such error estimates
were originally obtained.

As pointed out already in Theorem 11 (C' distance function implies C!!
surface), the distance function d to a C"® surface is no better than Lipschitz
in general. Therefore, the aforementioned strategy does not extend to Ch®
surfaces. However, the best approximation property of the Galerkin method
together with the geometric consistency estimates of Section 1.4.2 yields a-priori
error estimates in H'. We present this discussion after that for C> surfaces.

A-Priori Error Estimates for C> Surfaces. The following lemma will be
instrumental to prove optimal a priori error estimates for y of class C2. It states
that a function V(i o Py) can be approximated in H'(T') to first order for a
function € H*(y). The difficulty is that the composite function #o Py ¢ H*(T)
whereas V, it o P; € H'(I'). The proof exploits this property to restore optimal
approximability of V(i o Pg) in H!(T').
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Lemma 36 (approximability in H'(T')). Let y be a surface of class C?> and
u € H*(y). Let Ky, be defined in (1.30) and B(T') be given in (1.86). Then we
have

Veig’(fﬂ IVr(@ o Py = V)l S hrliulpeg) + Br(DKwl|VyullL,p).  (1.95)

Proof. We know from Veeser [Veel5] that continuous and discontinuous piece-
wise polynomial approximations in H' are equivalent. Even though this crucial
result was originally proved for Euclidean domains, it proofs carries over with
essentially no changes to the case of surface meshes

inf ||[Vr@o Py = WV)||> 1 < inf ||[Vr(@oPy—VP)|IZ . (1.96
Jinf [V (@o Py )||L2(F>NT;VT1€%(T)|| r@o Py ~Vo)lly ). (196)

We refer to [CD15] for related results on surfaces. We thus fix T € 7~ and argue
over this element hereafter; recall that T = P,4(T).
Applying the triangle inequality yields

Vr( o Py = Vp)| < |[Vr(@o Pg) ~ Tr(Vyit o Py)| + [[Ip(Vyit o Pyg) = Vr V|-
Using (1.49), we next find that

Vi@ o Pg) = I (Vyii 0 Py)| = [ [dW(V, it 0 Py)]| < Keold]| |(Vyi0) © Py}
which along with (1.44) yields

IVr@@ o Pg) — TIr(Vyti 0 Pa)ll iy < Br Keo IVyull, 7

Next note that IIr = I-vr®vr is constant over 7. Therefore, IIr(V,uoPy) €
[H'(T)]™*! in T because u € H*(y) implies V,u € [H'(y)]"*! and Py is C'.
In addition, TIr(V,u o Py) is a tangent vector field on I'. On the other hand,
Vr maps the affine functions P! onto the subspace of [P?]"*! tangent to T, so
standard approximation theory leads to

inf ||lw-VrV, < hr|w
VrleV(T)H rVrll,m S hrl |H‘(T)

for any tangent vector field w € [H'(T)]"**! to T'. Using that VP; = IT - dW and
W is bounded because 7 is of class C?, together with the fact that ITy is constant
in T, we deduce

VTiEfg(T) ITr(Vyw o Pg) = VeVrll,ry S hrllr(Vyu o Py)l g
< byl = dW || ) ID3 0 Pl L,y S hr |l g, 7,

where we used the notation D%ﬁ =V, V,u. This completes the proof. U
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This proof reveals that (1.95) can in fact be written locally:

Ly(T)

. ~ 2 2 2 ~112
Vél\llfT) IVr(woPy — V)||L2(T) < Br Koo”V’)/u”

_ _ 2
* Velﬂg)f(T) I (Vyt o Pa) = VI, 7).

We now apply Lemma 36 (approximability in H'(I')) to derive an a-priori
error estimate. We present two proofs. The first one is very compact and
relies on Lemmas 19 and 23 (perturbation error estimate). The second proof is
selfcontained and paves the way to the L, error estimate that follows. In both
cases we rely on Lemma 3 (regularity) for y of class C? and f € L, #(y):

Nl S N 1lLe)-

Theorem 37 (H' a-priori error estimate for C? surfaces). Let y be of class C?,
f € Lyu(y) and w € H?*(y) be the solution of (1.18). Let U € Vy(T) be the
solution to (1.78) with F = fo P% defined via the lift P. If the geometric
assumptions (1.69), (1.90), and (1.91) are valid, then

IVe@o P - U)li,a) S (hr + A7) fllag) S hrll flisg)

as well as

IVE@ o Py — D)Ly S (hr + prO) e S hrll flle)-

Proof 1. We prove the second estimate. Let fr = F and ur € H; (T) solve (1.33)

/VrurVr’U = /frv Vve H#(F)
r r
Since U € Vu(7) is the Galerkin approximation to ur on I', we infer that

(IVr(ur = U)|| = v nf ||Vr(ur - V)|l

i
eV(T)
This combined with the triangle inequality yields

IVr(@oPg—U)|lr,r) < 2||Vr(ﬁ°Pd—Mr)||Lz(r)+V€ig(f7,) IVr(@@oPg—V)lL,m)-

Applying Lemma 36 (approximability of H'(T')), together with @l 2y S

71l Ly(y) Teadily gives

inf_||[Vr(@oPy—V < (hy + BrO) 1 flL,o)-
vévm” r(@oPg = V)lya) S (hy + Br(O) 1 flly6)

To estimate the remaining term, we resort to Lemma 17 (norm equivalence),

Lemma 23 (perturbation error estimate) along with Corollary 33 (geometric

consistency errors for C? surfaces) to obtain

Ve @ o Pa = ur)llzaey S wrONF Il + 1 dagi’ = Fllgey
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where g4 denotes the area element induced by the parametrization y = P4 0o X
of y. We denote by P;ll the inverse of P, restricted to I', and use Proposition 34
(mismatch between P and P,), with w = v o P;‘ and v € H; (T), to get

= s qa 7 q
fasai' = Flyow = s [ (Fora2-Ford)s
IVrollL,m=1T qr qr

S / FlooP = 0o P) < BrD Flla.
Y

IVrollL,m=1

Combining the previous inequalities with ||F||g-1r) < |l f|| Ly(y) completes the
proof of the second assertion. The proof of the first one proceeds along the same
lines but using Lemma 19 (perturbation error estimate for C surfaces) and
Corollary 32 (geometric consistency for C surfaces) instead. O

Proof 2. We closely mimic the proof of Lemmas 19 and 23 (perturbation error
estimate) for the solution to the Laplace-Beltrami problem on nearby surfaces,
with an additional step needed due to the Galerkin approximation. In addition,
the factthat F = fo P% is defined using the map P while all other quantities are
lifted using the closest point projection P, adds a twist to our proof as compared
with standard proofs of such error estimates. We let u = u o Py(x) forallx e I’
for notational convenience, and focus on the second assertion.

Step 1: Error representation. For V € V(7)) arbitrary, we let W = V — U to
arrive at

IVe(V = O, = /rvr(u ~U)-VrW+ /rvr(v —u) - VrW.

We now invoke Lemma 31 (Galerkin quasi-orthogonality) to rewrite the first
term as follows:

/Vr(u—U)'VrWZ/(fOqu—d—F)W+/VFM-EFVFW,
r r qr r

where the area element g4 over vy is induced by the parametrization y = Py o X.
We thus have the error representation formula

VeV = O, ) = /Vru -ErVrW + /vr(v —u)- VW
r r

+/(fo p, —F)W = [+ 11+ 111,
r qr

and estimate the three terms on the right hand side separately.

Step 2: Geometric and interpolation errors. According to Corollary 33 (geo-
metric consistency errors for C2 surfaces), the error matrix satisfies ||Er|| Lo S
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u7(). This, together with Lemma 17 (norm equivalence) and the a priori bound
IVyull,) < llullgzey S 1), yields

I < Nl Ve Wl iy

On the other hand, we can choose V € V(77) so that Lemma 36 (approximability
in H'(T")) holds, whence

11 S (b + BrO) I Fllao) IVEW Lo

Step 3: Final estimates. We recall that the discrete forcing is given by F =
fo P%, where ¢ is the area element in y induced by the parametrization
X = P oX. Changing variables to y via the lifts P; and P for each integral in
111 gives

111:/(fopdq—d—foPi)szf(WoP;,l—WoP‘l),
r ar ar ,

where again P;ll denotes the inverse of P restricted to I'. Since fhas vanishing
mean over y, we can assume that so does W over I'. This allows us to invoke (1.82)

(uniform Poincaré-Friedrichs constant) to deduce [|W||g1 ) S [IVrW/|zyr) and
thus apply Proposition 34 (mismatch between P and P,) to obtain

HT'S BrIf IV WLy

Collecting the previous estimates, and using that B4-(I") < us(T), leads to

Ve = V)l S (hr + pr )y S hrll Fllag)

because us(I) < h?rld lwz (ry according to the definition (1.87) of uq(T) and
Corollary 33 (geometric consistency for C? surfaces). Invoking again Lemma
36 (approximability in H'(I')) yields the second assertion.

The first statement follows similarly upon replacing o P4 by w o P, P, by P
and invoking Corollary 32 (geometric consistency errors for C1® surfaces)

IErllzom) S A7) S hr|Plyz -

This concludes the proof. O

Comparing Corollary 32 (geometric consistency errors for C1® surfaces)
with Corollary 33 (geometric consistency errors for C? surfaces) ones sees that
using the distance function lift P4 for error representation gives rise to a quadratic
geometric error estimator for surfaces y of class C?

pur(D) < h,2]—|d|W£(r) >

even though the FEM is designed in terms of a generic lift P also of class
C?. Meanwhile the geometric estimator A4(I") < h|Ply2 r is linear for this
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regularity class. This does not affect the H' a-priori error analysis for piecewise
linear approximations of y and u, which is first order, but it is crucial to derive
optimal second-order L, error estimates by a duality argument. We present next
such estimates for surfaces of class C> and a FEM based on a generic lift P also
of class C?, a result that seems to be new in the literature.

Theorem 38 (L, a-priori error estimate for C2 surfaces). Let y be of class C?
and be described by a generic lift P of class C?. Let the geometric conditions
(1.69), (1.90), and (1.91) be satisfied. Letu € H; (y) solve (1.19)and U € Vu(T")

solve (1.78) with F = f o P%. Then

7 0P = UllL,ar) < W2l fliL (1.97)

provided A < A, where A, is as in Proposition 34.

Proof. We employ a standard duality argument, but enforcing compatibility
(mean-value-zero) conditions. We use the lift P; and its inverse P[‘l1 when
restricted to I' to switch from y to I back and forth. To this end we use the
notation w = WOP;1 vy —>Randv=70P, : I — Rforfunctionsw : ' —» R
and 7 : y — R. We denote g, the area element induced by P,;. We finally
observe that if P is of class C? then

Br(T) < pr(T) S hePlyz s

where B4-(I') and ug(I") are defined in (1.86) and (1.87). We split the proof into
several steps.

Step 1: Duality argument. We associate with U € Vy(7") the function Uy =
%U € L, 4(y) with vanishing mean over y and let Z € H, ; (y) satisfy

/vy'g-vywz/(ﬁ-ﬁ#)w Vi e Hy(y).
Y Y

Observe that the Lax-Milgram lemma and Lemma 2 (Poincaré-Friedrichs in-
equality) guarantee existence and uniqueness of 7 € H; (y). Letalso Z € V(7))
be the Galerkin approximation to 7 over I, that is

/VFZ'VFWZ/(M#—U)W, VWEV(T),
r r

where uy = %u has vanishing mean over I'. Note also that uy — U = (u —

Uy) o qulr is a compatible right-hand side for Theorem 37 (H' a-priori error
estimate). We thus have

1@ = Usll7, ) = /Vy(ﬁ— U)-Vy(Z-Z)+ /Vy(ﬁ— U)-V,Z.
Y Y
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Applying Lemma 31 (Galerkin orthogonality) the second integral becomes

/Vy(ﬁ—lj)~VyZ=/(f Fﬂ)z+/vyl7-EvyZ
Y Y Qd Y

with F = F o P4. Changing variables first via the lift P; and next via P, we get

/FZ— /FZ /FoPIZ P—lq’r /fzoP—

Consequently, we have derived the following error representation:
W—@@mzjﬁmpﬁyw@—z
Y

+‘/y]7(ZoP;1—ZoP_1) (1.98)

+/vyﬁ-EvyZ
Y

The first term is standard and the next two account for the mismatch between P
and P, and geometric consistency. We examine them separately now.

Step 2: Bounds. Since v is of class C?, Lemma 3 (regularity) gives for z
120y S 11— Uillagy)-

Combining Theorem 37 (H 1 a-priori error estimate) for 7 with Lemma 17 (norm
equivalence) yields the following estimate in L,(y) instead of L(I")

IV,@ = 2l S hrllit = Usllragy)-

Applying Theorem 37 again, this time for u, implies
/Vy(ﬁ— U) V@~ 2) S W2l fllap 1T = Usllye)-
4

On the other hand, Proposition 34 (mismatch between P and P;) with w =
Z o P! leads to

[f(zopit =20 ") S DTy IZ o P iy
Y

S IBT(F)||ﬂ|L2(y) IVrZllL, @)

because Z has a zero mean on I'. Since P is of class C2, one sees that S7(I') <
7'|P|W2(F) Hence the a-priori bound ||VrZ||L,r) S llu — Ul implies

[ f(zorit - 2o P) € Pyl s = Ul
Y
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Finally, Corollary 33 (geometric consistency error for C> surfaces), in conjunc-
tion with Lemma 17 (norm equivalence), allows us to tackle the geometric error

/ V,0-EV,Z < IVeU o Ve Zllom Elo) < B2 ol — Ullw
Y

where again we have used a priori bounds for VrU and VrZ. Lemma 17
(norm equivalence) and the nondegeneracy property (1.74) of ;—r imply that

llug — Ullp,ay Sl — 17#|| Ly@y)- Collecting the previous estimates and dividing
through by ||u — Usll La(y)» We thus arrive at

|l — ﬁ#”Lz(y) S hg]’”flle(V)'

Step 3: Discrepancy between U and U# and final estimates. We still need to deal
with the discrepancy between U and Uy = qr U. Using Lemma 33 (geometric

consistency errors for C? surfaces) and Lemma 17 again, we find that

1U = Ugllraty) < 111 = qrg  Neeo)l0lliag) S W2l fliag)-

Applying the triangle inequality followed by Lemma 17 gives the intermediate
estimate

7 0Py = Ulleyry S o= Ullryiy S B2 Flliaey)-

To conclude the proof, we simply note that

£ Py —uoPllym) ~ la—woPyo P i) S BrDllallyig) S Kl fllaw

according to Proposition 34 (mismatch between P and P;) and the estimate
Br(T) < h|[Plly2 ) for P of class C* (see definition (1.86) of B¢-(I)). Finally,
the triangle inequality leads to the asserted estimate. O

The estimate (1.97) is known for surfaces y of class C 3 and the distance
function lift P; [Dzi88]. We insist that (1.97) appears to be new even for P = P,
for surfaces of class C? and is optimal both in terms of regularity of u and y as
well as order.

The C? regularity of y enters in three distinct places in Step 2 of the proof to
tackle the right hand side of (1.98) as well as in Step 3. The first instance is via
Lemma 3 (regularity) to handle the H? regularity of both u and z in terms of the
L, norm of the forcing terms: it turns out that (1.20) becomes

|E|H2(y) S |d|WD%(N)||f||Lz(7)’

whence the factor |d|> appears. The same happens with the term involving

W (N)
E||L..¢y) in view of (1.94), whereas a factor |P|y,2 . shows up for the middle
oo () ws(I)
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term in (1.98) and the end of the proof due to Proposition 34 (mismatch between
P and P;). The complete estimate thus reads

7o P = Ulleyry S Bl o I lao)- (1.99)

A-Priori Error Estimates for C*® Surfaces. We end this section proving H'
error estimates for surfaces y of class C® and solutions # of class H'*5(y) for
0 < s < 1. We recall Lemma 4 (regularity for Wf, surfaces) that establishes this
regularity for s = 1, provided n < p < oo, along with

g2y S I1f1ae)-

In general, however, the relation between a and s is not well understood; we refer
to [BDO] where it is proved the existence of s = s(a) > 0 such that z € H'*5(y).
We start with a variant of Lemma 36 (approximability in H'(T')).

Lemma 39 (approximability in H'(I')). Let y be a surface of class C* and
u e H"S(y), where0 < s <a < 1or0<s<a= 1. Thenwe have

Veiglzﬂ IVr@ o P = V)l S hlulgivs ). (1.100)
Proof. Werecall thatu = woPand Vruo yr = Dygr' Dx'Vyiio y, according
to (1.35), and that Dy, gr' and Dy are uniformly of class C*; here x = X.
Given T € 7, a direct calculation using the definition of the seminorm | - |gs ()
shows that the composition of a Lipschitz map with a H* function as well as the

product of a C%® function with a H* function belong to H* provided s < @ or
s < a = 1. Consequently, we infer that Vru € H'**(T) for all T € 7~ along with

|”|H1+°‘(T) S |mH1+s(f)-
A scaling argument guarantees that the constant hidden in this inequality is
independent of T € 7. We next apply the localized interpolation estimate of
Vesser [Veel5] to deduce

inf ||Vr(u— V)2 < inf VoG = V2 < K210
y Bl IV )”LZ(”N;rvé%m” e =Vl S 7l

which is the asserted estimate. O

We now compare Lemma 39 with Lemma 36 (approximability in H'(T)).
We stress that the lift P = y o X! is of class C® for surfaces of class C?,
whereas the distance lift P is just of class C' for surfaces of class C>. This is
why the proof of Lemma 39 is considerably simpler than that of Lemma 36. The
virtue of P is reflected in a higher order geometric error u4(I") in Theorem 37
(H" a-priori error estimate for C? surfaces) relative to the next H' error estimate.
This is also responsible for the optimal Theorem 38 (L, a-priori error estimate
for C? surfaces) which does not have a counterpart in this context.
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Theorem 40 (H' a-priori error estimate for C1® surfaces). Let y be of class
Ch? 0<a <1, and assume that the geometric assumptions (1.69), (1.90), and
(1.91) are valid. Let f € Ly 4(y) and u € H'*(y) be the solution of (1.18) and
satisfy _

Nl fies oy < 1 o)
provided 0 < s <a <1lor0<s <a=1 IfU € Vy(T) is the solution to
(1.78) with F = f o P% defined via the lift P, then

Ve o P = U)llymy S By llilligies gy + A7 Fllae) S Bl Fllag).

Proof. We proceed along the lines of Proof 1 of Theorem 37 (H' a-priori error
estimate for C? surfaces), which splits the error into an approximation and a
perturbation term. For the former we simply resort to Lemma 39 instead of
Lemma 36 (approximability in H'(T")). For the latter we argue exactly as in
Theorem 37 and thus employ (1.82) (uniform Poincaré-Friedrichs constant),
Lemma 19 (perturbation error estimate for C'® surfaces) and Corollary 32
(geometric consistency for C*@ surfaces). This shows the first asserted estimate.
The second bound follows from the standard interpolation estimate

A7) S hllxllcre )

and the condition @ > s. This ends the proof. O

1.4.4 A-Posteriori Error Analysis

In contrast to the previous section, we now derive error estimates in H ! which
rely on information extracted from the computed solution U of (1.78) and data,
but do not make use of the exact solution u of (1.18). They are a-posteriori
estimates of residual type, are fully computable, and are instrumental to drive
adaptive procedures. In this vein, we mention [BCM*16, BCMN13] but we do
not elaborate on this issue any longer.

The a-posteriori analysis requires a quasi-interpolation operator acting on
H'(T') functions, i.e. functions without point values. We use the Scott-Zhang
operator 1* : H (') — V(7") and recall its local approximability and stability
properties for all T € 7~

Ilo —Ir;-ZW”[}(T) N hT”VFT/”LZ(wT), ||VFI;-ZU||L2(T) < ||V1“W||L2(wr), (1.101)

where wr is a macro patch defined in (1.65) associated with 7. We do not require
that 770 € Vy(7) evenif v € H, #15 (T), as it happened earlier in the a-priori error
analysis of Section 1.4.3.

In order to derive a posteriori error estimates, we first introduce the inferior
and jump residuals for any V € V(7):

RT(V) =F |T +ArV |T VT €T
Js(V):=VrV* |s -us + VYV |s ug VS €St
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where for S =T NT _is the face shared by T* € 7 and pg := pr- are pointing
outward co-normals to the elements T (see Section 1.2.6). We point that when
using piecewise affine functions V = VoX ! on polyhedral surfaces I', the
Laplace-Beltrami operator (1.13) vanishes within elements

1 —~
ArV = —div (qrgI?IVV) -0 VTeT,
qr

and that, in contrast to the flat case, pu§ # —puy in general. If Jor(V) denotes the
jump residual on 97, then we define the element indicator to be

(V. TV := W | Re (Vo) + hrllor W2y YT €T,

and the error estimator to be

(VY= > nr(V, 1)
TeT

Theorem 41 (a-posteriori upper bound for C surfaces). Lety be of class C"?,
be parametrized by y = P o X and satisfy the geometric assumption (1.69). Let
RS H# (y) be the solution to (1.18) and U € Vu(T") be the solution to (1.78) with

F=fo P% € Ly y(T'). Then, for U:=UoP!:y — R we have

IV, @ = DIy, S 1) + ZAONFIE .

Proof. Using definitions (1.19) and (1.79), along with the consistency relation
(1.34), enables us to write for any 7 € H'(y),v =2oP e H{(')and V € V(T)

/vy(ﬁ—ﬁ)-vy;=11+12+13 (1.102)
Y
with

I =- VFU~VF(U—V)+/F(U—V),
r r
L LU -EV,7,
Fuo.
r

fo-

T

Employing the definition F = fo P% and changing variables we deduce I3 = 0.
On the one hand, decomposing I; over elements 7 € 7, and resorting to
Corollary 13 (integration by parts) on T, leads to

I = Z /TRT(U)(U—V)+ Z/SJS(U)(W—V) (1.103)

TeT SeS
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and so

S Y 0T (7 llo = Vil + 190G = Ve )
TeT

because of the scaled trace inequality

_1 1
IWllaor) S hy? Wllisory + B2 IVEwlliaory  Yw € HY(T).

We now choose V = 7o to be the Scott-Zhang quasi-interpolant of v. The
local approximability and stability properties (1.101) imply

L S nr@)IIVrollzay S nr@)IVy 22, (1.104)

where we have used the finite ovelapping properties of the patches {wr }res
and Lemma 17 (norm equivalence). Regarding term I, we apply Corollary 32
(geometric consistency errors for C@ surfaces) to arrive at

b S A7) 1V, Ull ) 1953l 26y S A7) 1 Fll2g) 19y 2226,

because of the estimates
||VyU||L2(y) S ||VFU||L2(F) S ”F”H#’I(I‘) S ||f||L2(y)

which are a consequence of Lemma 17 (norm equivalence), F = fo qu—r,

Lemma 2 (Poincaré-Friedrich inequality) and A f = 0. Combining the above
estimates, we end up with the assertion. O

To assess the tightness of the upper bound in Theorem 41 it is customary to
show a lower bound. To this end, we introduce the so-called data oscillation

osc(F,T) := h%llF —flliz(r), oscy(F)? := Z osco(F,T)?,
TeT

where F is the piecewise average of F. This quantity accounts for the fact that the
residual is evaluated in a weighted L,-norm rather than the natural H~'-norm.
This in turn makes the estimator 7-(U) computable but perhaps at the expense
of overestimation. This is the subject of our next estimate, proved in [BCMN13].
We recall that for T € 7, wr denotes the union of elements in 7 that intersect
T and wr stands for the lift of wy to y via P. Moreover, we set

F,wr)* = F T, A = 2.
oscy(F, wr) T;u oscy(F,T") 7(wr) nax Ag
T

Theorem 42 (a-posteriori lower bound for C surfaces). Under the same
conditions of Theorem 41 (a-posteriori upper bound for C? surfaces), we have

r(U.TV < 1@~ O)l 5, + 05er(F. wr)? + lwr).
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Proof. The proof of the lower bound is standard and is only sketched here. It
relies on an argument due to Verfiirth [Ver13]. The starting point is the error
relation (1.102) localized to T € 7 via the test function » = fbr, where by €
HO1 (T) is the cubic bubble taking value 1 at the element barycenter. Employing
the norm equivalence (1.44) (valid elementwise), we realize that

IV, 31,7 S 1902 lar) S B Il

whence taking V = 0 in (1.102) yields

IFI12, ) < /T Fo S 1t (IV,@ = DIy, + 0ser(F.T) + IEll_ ) 1 Fllacry

upon recalling that I3 = 0 with our choice of F and the expression (1.103) for /;.
Corollary 32 (geometric consistency errors for C¢ surfaces), combined with a
triangle inequality, then leads to the desired estimate for the bulk term

W F oy S IV, @ = O

21 S +oscy(F,T)* + /l%.

2(T)
As for the jump term, we define for a side S € S with adjacent elements 7%,
bs € Hg (ws) as the quadratic bubble taking value 1 at the barycenter of S and
0 at all other quadratic nodes in wg := TT UT~. We also let wg := P(ws) be
the lift of wg to y by the map P. Taking v = Js(U)bs and V = 0 in (1.102), and
recalling the expression (1.103) for /; and that I3 = 0, yields

Vs 5,5 [ Js(0)o
< (195 @ = Dlla@sy + I Fllzagos) + max(ire, ) 197l s)-
Finally, it suffices to use the preceding estimate for A7 || F||r,(r), together with

~ -1/2
1Yy 7,y S NVr2lliaws) S B2 Is@)llLys),
to conclude the proof. O

One important observation to make is that oscq(F) is generically of higher
order than ns(U) for f € Ly(7y), whence this term can be ignored relative to
ny(U) asymptotically. However, the geometric estimator A4(T") is linear and
thus of the same order as n4(U), thereby making the lower bound of Theorem
42 questionable. This estimator comes from the estimate (1.89) of Corollary
32 (geometric consistency errors for C@ surfaces), which cannot obviously
be improved for surfaces of class C?. However, Corollary 33 (geometric
consistency errors for C? surfaces) shows that this effect becomes of second
order for surfaces of class C2. Practically, the estimator 14T") is pessimistic and
leads to unnecessary and thus suboptimal refinements for C? surfaces [BD19].
We discuss the impact of this superconvergence estimate next following [BD19].
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Theorem 43 (a-posteriori upper bound for C? surfaces). Let y be of class C?
and (1.67), (1.74), (1.90), and (1.91) hold. Let u be the solution of (1.18) with
f € Loy(y) and U € V(T) be the solution to (1.78) with F = f o qu—r, where q
corresponds to the parametrization ¥ = P o X of y. Then

IV, = U o PO,y S 17U + 1 I F1I7 -

Proof. We proceed as in the proof of Theorem 41 (a-posteriori upper bound for
che surfaces) but using the distance function lift to represent the errors. We
denote U = UoP !, v = 5oP, fora generic v € H'(y) and get forany V € V(7")

/Vy(ﬁ—fj)-vyzzll +h+1 (1.105)
y
with

I =—- VrU-Vr(V—V)+/F(V—V),
r r

<l

wU-EV

/

where we have used again (1.34) but with the error matrix E now defined with
respect to Py and given by (1.51) of Lemma 21 (geometric consistency). We
tackle 77 and I, exactly as in Theorem 41, thereby obtaining

~<\a~<\g

L 7OV alley b S e Fllza) 1V 7l

except that we resort to (1.94) of Corollary 33 (geometric consistency errors for
C? surfaces) to estimate E. N

On the other hand, /3 no longer vanishes because F = f o Pir is defined via
P and the function v via P4. Using P to change variables back to y we obtain

/FFU=/F<foP><’5oPd>;’—F=/yf<‘aoPdoP'>,

whence I3 becomes
13 :/f(;—;opdopil). (1106)
Y

Invoking Proposition 34 (mismatch between P and P;) yields

B < BrO) 1 o) 19, 7l

and concludes the proof because S7(I") < uqs(D). O
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We conclude with a lower bound for C? surfaces. We point out that, compared
with the existing results in the literature, see e.g. [DDO07], we account for the
mismatch between the two lifts P and P,.

Theorem 44 (a-posteriori lower bound for C? surfaces). Under the same con-
ditions as Theorem 43 (a-posteriori upper bound for C* surfaces), we have

nr(UT) S IV = D7 g, + 0ser(F,wr)” + pr(or),

where pg(wr) = Maxy: cyp K-

Proof. The proof follows along the lines of Theorem 42 (a-posteriori lower
bound for C® surfaces) with the following variants. We use Corollary 33
instead of Corollary 32 in the error representation (1.105) to tackle I, and
account for the fact that I3 # 0 via (1.106) for a generic lift P. O

1.5 TRACE METHOD

In this section we present a class of methods which are known as trace finite
element methods or cut finite element methods [ORG09, BHL15, Reul5]. The
setting for these methods is situations in which a PDE posed on an n-dimensional
hypersurface y embedded in R"*! must be solved numerically, and a bulk or
volume background mesh of some domain Q c R"*! is present with y c Q.
It is often more convenient to describe y and solve associated PDE employing
the background mesh instead of independently meshing y. A paradigm physical
example is a two-phase flow problem. There Q is subdivided into subdomains
Q; and Q; (one for each phase) and 7 is the interface between Q; and Q;. In
simulations Q is typically meshed in order to solve equations of fluid dynamics
(e.g., Stokes or Navier-Stokes), while accounting for interfacial effects such as
surface tension also requires solving a surface PDE on y. It can be particularly
inconvenient to independently mesh Q and y in dynamic simulations in which
y evolves as either a specified or free boundary. In addition to the overhead
associated with transferring information between unrelated bulk and surface
meshes, remeshing is generally necessary from time to time when parametric
methods are used to describe dynamic interfaces because mesh degeneracies
may occur as the surface deforms.

Trace and cut FEMs were introduced by Olshanskii et al [ORG09] and have
been further developed over the past decade as one option for circumventing
these difficulties. In order to describe them more precisely, first let 7 := T be
a simplicial decomposition of Q@ ¢ R™! n > 1. We let hy := |T|ﬁ for any
T € 7 and set h := maxy g hr for the mesh-size of 7. We will omit to mention
the explicit dependence on the shape regularity constant of 7~

diam(T)
0 = max
TeT  hr
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in most estimates below. Assume that y C Q is a closed, C? n-dimensional
surface. As outlined in Section 1.2.3, y is then the zero level set of a C? distance
function d defined on a tubular neighborhood A of y. Let V(7)) ¢ H'(Q) consist
of the continuous piecewise linear functions over 7. In order to fix thoughts, let
dp, € V(7") be the Lagrange interpolant I7d of d satisfying

lld = dillLon) + Blld = dillwi vy S P21l -
The discrete computational surface I is then defined by
I':={xeQ:dyx)=0}.

Below we also discuss how to derive I' from more general implicit representations
of y. Because dj, is piecewise linear, I" consists of intersections of hyperplanes
with simplices and is thus a polyhedron having triangular and quadrilateral faces
for n = 2 (see Figure 1.3). We denote by 7 the collection of faces of I'. In
addition, the conditions placed on dj, ensure that ||d||r )+ 2|V =vrllL @) S h?,
so the perturbation results for C? surfaces outlined in Section 1.3.2 hold on T
with order 4”> geometric perturbation error.

The surface finite element space V(%) is simply the restriction of V(7)) to I':

V(F) :={VIr: V e V(T)}.

By its definition V(7) ¢ H'(T') consists of the continuous functions which are
affine over each face F € . We also denote by V() := V(F) N Lyu(I)
its subspace consisting of functions with vanishing mean values. In order to
approximate the solution # to the Laplace-Beltrami problem —A,u = f ony, we
first define a suitable approximation Fr to f and then seek U € V() such that

/vru-vrv: /FrV, YV € Vi(F). (1.107)
r T

This is the trace method and has two notable advantages:

e Only single mesh: The main advantage is that both bulk and interfacial effects
can be computed using the same mesh.

e Error estimates: Optimal-order and regularity error estimates hold in the H'
and L, norms.

On a practical and theoretical levels the method exhibits three main challenges:

o Implicit surface representation: The simplest option of taking the distance
function d to define y and its Lagrange interpolant of dj, to define I is not
generally practical as d is rarely available in applications. It is generally more
practical to assume that the discrete surface I' is derived from a more general
level set representation ¢ of y. We provide a brief discussion of general level
set representations below.
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FIGURE 1.3 Bulk mesh cutaway with associated trace mesh (left); blowup of a trace mesh showing
small and narrow elements (right).

e Surface integration: Computing the finite element system is more cumber-
some than in standard parametric surface FEMs since both the mesh 7 and the
finite element space V() are derived from their corresponding bulk coun-
terparts. These difficulties are manageable in the case of the piecewise linear
method presented here, but become significantly more cumbersome when a
higher-order surface approximation is used.

e Linear algebra and stabilization: In contrast to parametric surface FEMs
there is no obvious practical basis for V(¥), only spanning sets derived from
subsets of the bulk space V(77). In practice such a spanning set is derived
from the degrees of freedom for V(7") corresponding to elements touching I'.
Degenerate modes arise from this procedure. These are either handled at the
linear algebra level or by various stabilization procedures.

Theoretical study of trace FEMs is also more involved than for parametric
surface FEMs. One prominent issue is that the surface mesh ¥ does not consist
of shape regular elements, as is documented in Figure 1.3. This is because
the faces in ¥ consist of arbitrary intersections of hyperplanes with simplices
(planes and tetrahedra for n = 2). Thus elements may be arbitrarily small with
respect to the bulk mesh-size & or fail to satisfy a minimum angle condition,
and it is not possible to directly employ standard error estimation techniques.
Properties of the “high-quality” bulk mesh 7~ and finite element space V(7")
must be invoked instead, which in turn requires careful use of extensions and
restrictions of functions to and from y and I'. For purposes of intuition, it is
however useful to note that the surface mesh ¥ does inherit some structure
from the regularity of the bulk mesh 7. Elements in # for example satisfy a
maximum-angle condition [ORX12], and each element in ¥ also shares a vertex
with a shape-regular element of diameter equivalent to 2 [DO12].
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Below we prove a priori and a posteriori error estimates for a piecewise linear
trace FEM. In keeping with the previous section, we concentrate on surface
representations and regularity in our discussion. In particular, we only assume
that y is C?, whereas previous approaches require that ¥ be C3. The recent
article [OR17] provides a broader survey of trace FEMs, including discussion
of topics such as higher-order versions, stabilization procedures, and space-time
trace FEMs that we omit here.

1.5.1 Preliminaries

Bulk and Surface Meshes. Below we need to carefully distinguish between
mesh structures defined relative to the surface mesh ¥ and those defined relative
to the volume mesh 7. First note that we shall consistently denote by F (n-
dimensional) surface elements lying in ¥, which as we have noted above may
not be shape-regular. In addition, 7" will be used to denote (n + 1)-simplices
lying in 7. Given a face F' € ¥, we denote by Tr the simplex in which F' lies
(or one of them if F is a face shared by two bulk elements). In addition, given
T € 7 we denote by a)1¢(T) the patch of elements of 7~ surrounding 7 (first ring)

w}(T)::U{T’e‘T: T'NT # 0},

and by wgr(T) the patch of elements of 7~ surrounding wlr(T) (second ring). We
also define
hp = diam(Tp) F € F,

whence the local mesh size of the face element F is taken to be the diameter of
the corresponding bulk element. Note that it is possible that diam(F) << hp.
We will also denote by hr the diameter of elements 7 € 7. We finally let

Tr={TeT: TNT+#0orynT # 0}

be the set of elements of 7 touching either I" or y.

Geometric Assumptions. Above we described I' as the zero level set of an
approximate distance function dj,. In this section we first place abstract require-
ments on I that are sufficient to obtain optimal-order and regularity a priori error
estimates and then prove that these requirements are satisfied on sufficiently fine
bulk meshes 7~ when I is built from a suitably general level set description of
y. We now list three main geometric assumptions.

e Description of I'. We assume that I is a polyhedral surface whose faces
F € ¥ consist of the intersection of hyperplanes with simplices T € 7. We
further assume thatI' ¢ A with NV the tubular neighborhood defined in (1.31).

o Geometric resolution of y. Let d be the distance function to y, v = Vd and
vr be the outward unit normal on I'. We assume that

Il + hEllY = vollLor) S BEldlwzyy F€F. (1.108)



The Laplace-Beltrami Operator 67

This assumption is sufficient to ensure optimal decay of the geometric con-
sistency error in a priori error estimates.

e Local flattening. We assume that for each T € 7 with T Ny # 0, there is a
ball B of radius R with R ~ 1 (independent of A7) such that T C B/, and
there is a uniformly bi-C> map

®: Bg — R, ®(yn Bg) lies in a hyperplane. (1.109)

The flattening assumption (1.109) follows from the C? nature of the surface
v provided elements 7 € 7 intersecting vy are sufficiently fine with respect to
the inverse of the maximum principal curvature. The flattening map @ may be
constructed by expressing y as a C> graph over tangent hyperplanes of y, with
the radius of the domain of these graphs bounded by the inverse of the maximum
principal curvature of y (cf. [Eva98, Appendix C] for the construction of @; the
bound for R follows from the definition of curvature).

Level set representations. While we prove our results below under the ab-
stract geometric resolution assumption (1.108) involving the distance function,
in practice trace methods often build the discrete surface I' from a more general
implicit representation of y. Such a representation may be obtained by assuming
that y is the zero level set of a level-set function ¢ : N — R

y={xe N: ¢(x)=0}.

Broadening our assumptions concerning implicit representation of y is important
in many practical applications. Because the distance function d has a closed form
expression only if y is a sphere or a torus, there are many settings where y may
easily be represented as a level set even if d is not available. A simple example is
the ellipsoid given by y = {x eR?: ;C—i + Z—z + z—i -1= O}. Level set methods
in which an evolving free boundary is computationally approximated by the level
set of a discrete function are also popular in many applications. In this case it
is also natural to define y via a generic level set function ¢ rather than restrict
attention to the distance function d.
Our essential assumptions concerning ¢ are that ¢ € C2(N) and

Vo(x)-v(x) 2 cy >0 Vxevy. (1.110)

Because v is a level set of ¢, [Vp| = |V¢ - v| on 7, so the assumption (1.110)
is equivalent to assuming that V¢ is nondegenerate on y and points in the same
direction as v = Vd. Let ¢, € V(7°) be an approximation to ¢ satisfying

16— Gullar + hrlld — Sullwicry S Bilidllweyy TET,  (LI1D)
and define the discrete surface I' by

I:= {xeN: gbh(x):O}.
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Lemma 45 (geometric resolution). Let y be C2. Under the above assumptions,
the inequality (1.108) holds for h := maxycq hr sufficiently small, namely

ldllLoir) + hElly = vellor) S hplldlwey, F e F. (1.112)

Proof. Firstlet x € N, for which the projection P;(x) on v is uniquely defined.
Let £(s) := V@(sx + (1 — s)P4(x)) - v(x) and compute

1
(V¢ - v)(x) = (Vo - v)(Pa(x))| = [£(1) = £(0)] = ’/0 {'(s)ds

i
= './0 V(V(sx + (1 = 5)Pg(x)) - v(x)) - (x = Pp(x))
< X =PaX)[IV(VP - V)L ato.x)-

Since (V¢ - v)(Py(x)) 2 ¢4 >0, ¢ € C%(N), and v € C'(N), there thus exists a
constant Cy < ﬁ (depending on [|¢lly2(n) and |dlyz2 ) such that

(V6 -v)(x) = %’ Vxe Ny = {yeQ: |dy) < Cyl C N,

according to (1.31). Therefore, for any x € Ny we have ¢(P4(x)) = 0 and

1
lp(x)[ = '/0 Vo(sx + (1 = $)Py(x)) - (x = Py(x))| = |x - Py(x)| = |d(x)],

because x — Py(x) = |x — P4(x)|v(x). Given any face F € ¥ of I, we realize
that ¢y, (x) = 0 for all x € F and

6] = 16(x) = pn(X)] < M3l Bllwz -

If h > hr is sufficiently small, then x € Ny and |d(x)| = |¢(x)] < h12?|¢|W§,(N)'
This is the desired bound for the first term on the left hand side of (1.112).
To prove the remaining bound in (1.112), we note that for x € F € ¥, we

have vp(x) = |§iﬁ§§| and v(x) = v(Pg4(x)) = %. Consequently, for such

x € I', we use (1.111), the bound |d(x)| < h? already proved, and the C? nature
of ¢ to obtain

Von(x)  Vo(Py(x))
Ver(®)]  [Vo(Pa(x))]

| Y® V) || Vo) | Vé(Pa(x)
TIVer®|  [Ve®I| Vo) [VoPa(x))]
S (he + he) 18llwz o S hellllwz -

|(vr =v)(x)| =

This completes the proof. O
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Thus we have shown that it is possible to define the discrete surface I" using a
generic level set representation of vy in such a way that I" has the same geometric
approximation properties as if it were derived more directly from the distance
function d. Below we assume practical access to the distance function d and
associated geometric properties (curvatures and normal vectors) in two further
places: the first one is the definition of the right hand side Fr in formulating the
trace FEM and the second one is the definition of geometric a posteriori error
estimators. As outlined in [DDO7], it is computationally feasible to accurately
approximate d(x), P4(x), and v(x) for x € T" under the assumption that we have
access to a level set function ¢ with the properties assumed above. In outline,
the foundational building block of this procedure is a numerical approximation
to P4(x). Two such algorithms are proposed in [DDO07], one being Newton’s
method and the other an ad hoc first order method; cf. [Gral7] for generalizations
and analysis of these methods. Once P;(x) is computed, we then have

Vo (Py(x)) Vo (Py(x))
[Vo(Pa(x)|’ IVo(Pa(x))”

These relationships allow for the computation of all geometric information re-
quired to bound geometric errors in the trace method a posteriori. In addition,
because we may reasonably assume access to Py it is in turn reasonable to as-
sume a consistent definition of the right hand side Fr, that is, Fr = % foPy.
A different definition of Fr would lead to an additional consistency term in the
results below.

ldX)| = x - Pa(x)], v(x) = W(P,(x)) =V

Harmonic Extension and Traces. Here we collect instrumental results for our
proofs of a priori and a posteriori error estimates. For the latter we use the
fractional-order space H>/2(Q), so we first define the seminorm of H'*5(Q)

2 . |D*v(x) — D*v(y)|?
|W|HI+S(Q) T Z -/-]QXQ |x _y|n+2s dXdy

la|=1

for a Lipschitz domain Q ¢ R" and 0 < s < 1, and corresponding norm

2

2 2
& = 121210y + 12 10s0)-

HH—.\‘(Q) - HI(Q)

Our first lemma is a standard extension result which may for example be
found in [Gri85, Theorem 1.4.3.1].

Lemma 46 (H'*S extension). Let D be a bounded Lipschitz domain in R",
n > 2. Then there is an extension operator E : H'*$(D) — H'"S(R™) such that

IEv|lggies@ny S Nollgiesy Vs €[0,1), Yoe H'(D). (1.113)

We also state a trace result relating H'(R?) and H3/?(R3); this is a special
case of [Ada75, Theorem 7.58].
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Lemma 47 (trace). If v € H>*(R"), n > 2, and P is any (n — 1)-dimensional
hyperplane in R", then

lollg @) S 1ollasngn- (1.114)

The following is an important technical lemma which expresses traces rela-
tionships between norms on surface elements (flat or curved) and corresponding
norms on bulk elements. An essential component of these estimates is that they
allow for surfaces to cut through bulk elements in an arbitrary fashion. Such
estimates were essential in the proof of the first a posteriori estimates for trace
methods in [DO12]. In the context of a priori error estimates for trace methods,
these provide a substantially simplified proof of error bounds when compared
with the original proofs given in [ORG09]; cf. [HH02, HHO04, BHL15, Reul5].

Lemma 48 (trace estimates for cut elements). Let D C R" (n > 2) be a (not
necessarily bounded) Lipschitz domain, and let D,_, be the intersection of D
with an arbitrary hyperplane of dimension n — 1. Then

lolltan) S Nollgipy Yo e H(D), (1.115)

where the hidden constant depends on the Lipschitz nature of D but not on the
orientation or size of Dy_1. In particular, let F € F with F C T € 7. Then

Iollzary S By Pllolliary + by 2V olliyey Yo € HY(T). (1.116)
In addition, given T € T there hold

Iollaroy) < Hy Pl + hy 21V ollaey Yo e HI(T),  (1.117)
and

e N olaoy) + 19y 2llaray)

(1.118)
-3/2 -1/2
< 1P ol + b Vol + 19l Yo € HYAT).

Proof. The estimate (1.115) is a special case of [Ada75, Lemma 5.19]. The
scaled result (1.116) follows by a standard scaling argument.

To prove (1.117) and (1.118) we employ a flattening argument. First let
K be the unit reference simplex in R” with standard affine reference mapping
¢ : K — T satisfying ||Voll, ) S hr and (Vo) Loy S hy'. Let now
@ be the flattening map in assumption (1.109). It is possible to extend @ to
all of R" so that the resulting extension is also C2, still flattens T N v, and has
derivative bounded above and below away from 0. To see this, take a smoothly
weighted average of @ and the identity with weight 1 for ® on Bg/, and weight
0 outside of Bg. Having thus extended @, we define O = e lo®og. Itis easy
to check that @ and ®~! are uniformly bounded in C? and that ®(¢~'(T N ¥))
lies in some (n — 1)-dimensional hyperplane P.
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For v € H'(T) with T € 7 satisfying [T Ny| > 0, let now 7 = v o ¢. We first
prove (1.118) upon transforming to the reference element back and forth. We
start with a simple scaling argument

e TNl 1
IT Nyl e

regardless of the actual size and orientation of T N y relative to T € 7. Hence,
applying a standard change of variables involving ¢ yields

1- 2 2 2 —~12
W (1912 ey + B3IV 00 ) = s ety

We next resort to the extension operator E : H3*(K) — 113/ 2(R™) in Lemma
46 (H'™*S extension), the smoothness of ®~!, the fact that O(e (T ny)) cP,
the trace inequality (1.114), the smoothness of ®~! again, and the boundedness
(1.113) of E in H3/?(K), in this order, to arrive at
12l 1wy = NE I o1 my))

< ||E7o®! _

SUET© B s (3 romy)

SNETo @ g

S|IEvo@™! 32 mmy

S NED| g

5 ||’77||H3/2(I€)'
The desired estimate (1.118) finally follows from a scaling argument from K to
T employing again the map ¢:

“alip/z(k) S hj_"n(”’””%z(r) + h%llv’”||%2(r) + h;h’léz/z(n)-

To prove (1.117), we argue similarly to above except that we now employ
E : H(K) — H'(R") and (1.115) instead of (1.114). Doing so yields

1-n)/2 v
he ™" Pllollaroy) S 1Pl oy

= 1E9l L, (rry)

SNET o 7M@)

SNET0 &7 |y)

SNET o 07l

S NE? | g )

S@llg gy

< K9l + BV ol Ly

Multiplying both sides by h(T" -2 gives the desired bound (1.117). U
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1.5.2 A Priori Error Estimates

We recall that we use the notation / := maxy <4 hr and that we omit to mention
the explicit dependence on the shape regularity constant of 7~ in most estimates.

Geometric resolution and extensions. Given a surface y of class C? and
u € H?(y), Proposition 28 (H? extension) yields the existence of an extension
u of u to a tubular neighborhood N (8) with ¢ sufficiently small with respect to
ﬁ lying in H*(N(6)) and satisfying

lullzzovsy S 672 1dlwz o 1@l 2. (1.119)

¢ First assumption on geometric resolution by the bulk mesh. We assume

U {Wh(T): T e Tr} c N(S) (1.120)

with 6 ~ h sufficiently small so that (1.119) holds.
¢ Second assumption on geometric resolution by the bulk mesh. We assume
that the layer Dr,, := {sx+ (1 — 5)P4(x) : x € T'and 0 < s < 1} satisfies

Dr, C U {T:Te}. (1.121)

This clearly holds for 4 sufficiently small because the Hausdorff distance
between y and T satisfies disty (y, ) < h? according to (1.108).
e Uniform Poincaré-Friedrichs estimate on I'. We assume that

N9l S IVoll,a Vo e Hy(D) (1.122)

holds with uniform constant. According to the discussion below (1.82) (uni-
form Poincaré-Friedrichs constant), this only requires that ' ¢ N(1/2K)
and that v - vr > ¢ > O onI'. These conditions are easily checkable and valid
asymptotically.

Approximation properties of trace finite element space. We next state a
fundamental approximation bound for the trace FEM, which we prove under the
regularity assumption that y is of class C2. We emphasize that this assumption
is less restrictive than the hypotheses of previous approximation bounds for trace
estimates, which assume that 7y is of class Cc3.

Lemma 49 (trace approximation). Let y be of class C* and the geometric
resolution assumptions (1.108), (1.109), (1.120), and (1.121) hold. Then

Vei{\llf(ﬂ IVr@ o Py = V)L, S Allullgzg)- (1.123)

Proof. Let 6 ~ h be sufficiently small so that (1.120) is valid. Let Z* be
the standard Scott-Zhang interpolation operator on 77, and take V = Z*u with
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u € H*(N(6)) given by Proposition 28 (H? extension) and satisfying (1.119).
We then denote uy = u o Py, V; = V o Py, add and subtract multiple terms, and
apply the triangle inequality to find that

IVr (g = Vi S D i

7
i=1

where

I = [ Vr(ug = Va)llyr),

b = |[IIp[VVg = (VV) o PalllLy(r)s

I3 := |IIr[VV o Py = Vu o Pya]llL, ),

Iy := | [Vu o Py = (Z57Vu) o Palllryr),

Is := |{r[(Z7*Vu) o Py — I Vull|r,(r),

Is := |1Ir[Z3*Vu — Vulllr,m),

Iz = [[Hr[Vu = VV]|lyr).
Here we have applied the interpolation operator Z* componentwise to the (n+1)-
vector Vu and used that Vi = TI-V. We next estimate each term separately.

In order to bound terms /; and I3, we employ Lemma 17 (norm equivalence)
between y and I" and recall that |V, | < |V| pointwise to find that

1/2
BB (Y VG-V )
TeTr

We next apply the trace estimate (1.117), utilize standard approximation proper-
ties of 7%, and finally use the bound (1.119) to obtain

~ 1/2
B+l s () i IV = V)R gy + hrllD2ul )
TeTr

S Pl ovsy S Rl

Here we have used that VVV = 0 elementwise since V is piecewise linear.
Similar arguments lead to the following estimate for /4

_ 172
L < ( > g IV = ZEVull? ) + b [V (Ve ~ I,;.Zvu)niz(r)) :
TeTr
as well as Iy < hlullg2,) provided [[VIZVull,7) S ||D2M”L2(w,]/_(T))' To show

this estimate we let Vuy := |a).lT(T)|_1 fw Vu be the meanvalue of Vu in

(T)

L

wé_(T) and exploit the stability of 7* in H 1)
IVZ53Vullryry = IV Vu = Vurlllymy S b 1254 Vu = Vur |l

—1 . 2
S b lIVu = Vurli Ly S 1Pl @) -
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Moreover, applying the trace estimate (1.116) directly to the terms Is and I;
yields

, 1/2
lo 5 ( ) 123Vu = Vul )
FeF

-1 Sz 2 Sz 2 12 ~
S (D0 m NIV = Vul )+ VLV =Vl ) S Al
T e9r

and

12
B S ( DIV = V)

FeF

i e _
S (D B IV =V g+ hrlDPul ) S Bl
TeTr

In order to bound term I, we first note that
Hr[VV,; = (VV) o Py] = II(I1 — dD*d — I)(VV) o P,.
An easy computation using the assumption (1.108) yields
ITIr(IT — dD*d - X)| < TPl —Tp| + |d| = |(v - ve)vr @ v —v @ v| + h> < h.

Thus employing the equivalence of norms on y and I', the trace estimate (1.117),
the H' boundedness of 17%, and the boundedness (1.119) of the extension yields

L S hlIVV o Pyl S AIVV g
SV S B ullg vy S Rl

We finally bound term /5. Given x = P4(x) + d(x)Vd(P4(x)) € T', we infer that

|75V u(x) — IVu(Py(x))| < w
T T d X))| = 0

V[ZVu(Py(x) + sVA(P4(x))) | |ds
and |d(x)| < h? according to (1.108), whence

d(X)
rJo

In view of assumptions (1.121) and (1.120), and the bound (|VZ*Vullr,r) S
||D2u||L2(w(}_(T)), we deduce

v[J;Zvu(Pd(x)+sw(Pd(x)))]|2dsda(x) <n? / |VIS“Vul?.
Dr’y

2 < n?|D? < W||\D*al?

2
ullz, sy H2(y)

and conclude the proof. U
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Theorem 50 (a-priori error estimates). Let y be of class C* and let T be so that
the geometric assumptions (1.108), (1.109), (1.120), (1.121), and (1.122) are
satisfied. Let f € Ly 4(y) and i € H*(y) solve (1.19). If U € Va(F) is the finite
element solution of (1.107) with Fr = %f o Py, then

&0 Py = UllLyry + hlIVe(@@ o Pa = Ullywy S P21 Fllagy)-

Proof. With the geometric resolution estimate (1.108) and Lemma 49 (trace
approximation) in hand, the proof is nearly identical to those of Theorem 37
(H! a-priori error estimate) and Theorem 38 (L? a-priori error estimate) for
parametric surface FEM. We thus sketch the proof without details.

Step 1: H' error estimate. Let V € V() achieve the infimum in (1.123),
W :=V = U, u = uo Py, and write the error representation formula as

190V = )y = [ Fru EeWew s [0 —u)- 9w,
r I

because Fr = %fo P,. In view of Lemma 21 (geometric consistency) and the

geometric resolution estimate (1.108) we deduce |Er| < h?|d lwz () and

“/FVFM ' EFVFW‘ S PP ldly 2 @l o) Ve Wy S AL o) Ve W -

On the other hand, Lemma 49 (trace approximation) yields

| [0 =0 50| W10 W

The desired estimate follows from Lemma 3 (regularity).

Step 2: L, error estimate. Let P;] denotes the inverse of P, restricted to I'. Let
U:= UoP,':y — Rand Uy = %[7 € Hj(y); likewise, let uy := (;1—ru e Hy(I).
We now solve dual problems on y

ZeHi(y): /Vyf-Vywz/(ﬁ—U#)w Vw e Hy(y)
Y Y
andon I’

yAS V#(T) : ‘/F‘VFZ VW = A(u# - U)W VW e V#(T)

Note that the right-hand sides uy — U = %(ﬁ— Uy) o P4 are compatible and Step

1 applies. We set Z = Z o P, and proceed as in Theorem 38 (L, a-priori error
estimate) to deduce the error representation

1% = Ugll7, ) = /vy(u— U) -V, (T~ Z)+/vyz7.1«:vyz
Y Y
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because FT = %fo P,. Applying Lemma 3 (regularity) to 7 yields ||Z]|p2,) S
|| — ﬁ#H L»(y)- This together with Step 1 implies

| [%,@-0)-9,G- D] S Ul llT - Dol
Y

Making use again of Lemma 21 (geometric consistency) and the geometric
resolution estimate (1.108) we deduce |E| < h?|d lwz (n)» Whence

|/Vyﬁ : EV)/Z‘ < W2\ Fll oo llus = Ullym)-
4
Consequently,

N7 = U2, S W21 Flliaon (117 = Usllag) + s = Ullyr
2(y)

and the asserted bound follows from Lemma 17 (norm equivalence) and the
auxiliary estimate

10 = Uslltaey < W21 F -

The latter hinges on Corollary 33 (geometric consistency errors for C2 surfaces)
and the geometric resolution estimate (1.108), as in the proof of Theorem 38.
This completes the proof. O

1.5.3 A Posteriori Error Estimates

A posteriori error estimates for the trace FEM were first proved in [DO12], while
a posteriori estimates for a trace FEM based on octree meshes were proved in
[CO15]. The proof of the estimates given in [DO12] is significantly different
than that of the a priori estimates given above. A main reason for the difference
is that, in contrast to the framework above that deals with quasi-uniform meshes,
we assume that the bulk mesh 7 is merely shape-regular. This is necessary
to allow for meaningful mesh grading in adaptive algorithms. Moreover, the
extension used in Proposition 28 (H? extension) is not immediately useful here
because the parameter § specifying the width of the tubular neighborhood about
v is taken to be proportional to & when 7 is quasi-uniform; such a global mesh
size parameter is no longer meaningful on graded meshes. A local counterpart
of Proposition 28 on graded meshes, that uses the normal extension instead of
the regularized normal extension, is employed in [CO15] to prove a posteriori
bounds, but with the drawback that the constants in the estimates depend on the
difference in refinement depth between the largest and smallest elements in the
bulk mesh. We thus present here the framework of [DO12], which relies on
the harmonic extension of » € H'(y) into H>/2(R?) instead of either the normal
extension 7y or the extension of Proposition 28.

Notation and surface resolution assumptions. We make the following two
assumptions concerning resolution of y by the bulk mesh 7
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e Resolution of skin layer between y and I'. Given a discrete surface element
FeF,let

D ={yeQ: y=tx+(1-1)Py(x)forsome 0 <t < 1and some x € F}.

The set D is the collection of all points lying on line segments connecting
points in X € F and their images P4(x) € y. We assume that

Dr € wi(Tr), (1.124)

that is, D lies in the volume element patch w.lr(Tp) (first ring) corresponding
to the face element F, which is defined in section 1.5.1.
e Normal projections of elements have finite overlap. We assume that

P, (wi(TF)) Cc wiTF) VF €, (1.125)

where the second ring w2¢(Tp) is also defined in section 1.5.1.

The above assumptions hold if y is sufficiently resolved by the bulk mesh 7.
To see this, note first that ||d||r pp) S h% by (1.108), so that dist(y, F) < h%
for all y € Dgr. On the other hand, dist(F, 6w}(T 7)) 2 hp. Thus there is a
constant C such that the assumption (1.124) is satisfied when hr < C; C here
depends on geometric properties of y, the shape regularity constant of 7~ and
properties of the Lagrange interpolant. In principle an upper bound for C could
be computed and this condition checked, but this has not been attempted in the
literature and we do not do so here. A similar but more involved argument holds
for the assumption (1.125).

Extension for a posteriori error estimates. The next essential result states that
a given a function 7 € H'(y) can be boundedly extended to v € H3/2(R"*1),

Lemma 51 (harmonic extension). Let y be a closed surface of class C* and
dimension n embedded in R"" for n > 1. Given v € H'(y), there is v €
H3/2(R™) such that trace(v) = v and

l2llzsr@ney S 2llag)- (1.126)

Proof. First let v € H'(D) solve Av = 0 on the bulk domain D comprising
the interior of y, with » = v on y. By [JK95, Theorem 5.15], we have that
v € H**(D), trace(v) = 7, and ||2||ga2py S |7llar1(,)- Boundedly extending
v to H3?(R™1) via the extension operator E defined in Lemma 46 (H'*S
extension) completes the proof. U

Preliminary results. We now give a technical lemma that quantifies the evalu-
ation mismatch between I' and y for a discrete function.
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Lemma 52 (evaluation mismatch between y and I'). Let V € V(7"), and let the
conditions (1.108), (1.109), and (1.124) hold. For all F € F, we have

IV =VoPallur) S heldlwz Il VIl w))- (1.127)

Proof. Fix x € F, and let g(t) = V(ex + (1 — 1)P4(x)), 0 < ¢t < 1. Then
2(0) = V(P4(x)) and g(1) = V(x). Since Py(x) = x — d(x)v(x), we see that

g'(t) = VV(tx + (1 = 1)P4(x)) - (x = Py (x)) = d(x)VV(ix + (1 = 1)P4(x)) - v(x),
whence V(x) — V(P4(x)) = g(0) — g(1) = /01 g’'(¢)dt and

[V(x) = VP4x))| S [dIVV o)

The assertion follows from assumptions (1.108) and (1.124). O

A posteriori upper bound. First we define a residual error indicator
AU, F) = hellFr + ArUlLye + 2 IVeUDor)  F € 7,

and corresponding estimator

12

nr(U) = | 3, nr(U.F)

FefF

Here [-]] denotes the jump in the normal component of the argument over dF.
Because we have assumed access to the closest point projection P4, we also
employ a geometric indicator that directly accesses information from Py

ér = o) IK ooy + 1V =vrli gy F €T,

and COI'l‘eSpOl’ldil’lg geometric estimator
é“?—( I') := max .
) o é: F

Theorem 53 (a-posteriori upper estimate). Let y be of class C* and let T be
defined so that the geometric assumptions (1.108), (1.109), (1.124), and (1.125)
hold. Let f € Lyy(y) and u € H#(y) solve (1.19). If U € V(F) is the finite
element solution of (1.107) with Fr = ‘;irfo Py, and Uy =U o P;] where P;ll
is the inverse of P, restricted to T', then

IVy(u = U)oty S ne(U) + EADIIVEU | Lyr)- (1.128)
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Proof. We proceed in several steps.

Step 1: Error representation via the residual equation. First we note that
IV, - Ud)llay = sup / V(T - Ug)- V)7
veH' ), 11V, ?llL,0)=1 VY
and then write as in (1.102) that

/Vy(if— Ud) . Vy;; =L+hL+1
Y

with

I :=—/VrU'Vr(vd—V)+/Fr(7/d—V),
T T

J
Iz :=/~;—/Frvd.
y r

Here Eis asin (1.51), vy = vo Py, and V € V(7)) is a suitable approximation of
the H3/? extension » of 7 given by Lemma 51 (harmonic extension). Note that
I3 = 0 because of the definition Fir = ;—rf o Py.

Step 2: Bounding the geometric error terms. Using (1.56) (or more accurately
the corresponding pointwise bound from which it is derived) directly yields

IEllL.F) SéF E€F.
Thus making use of Lemma 17 (norm equivalence) implies

L] < EXDIVyUallan 1V 2l 6 < EFON oV, 2l L6)-

Step 3: Bounding the residual term. In order to bound I;, we first decompose
the integrals over faces ' € ¥ and then integrate by parts to arrive at

_ -1/2
FARS Z ne(U, F)(hFIHUd =Vl + hp Plloa - V||L2([)F))~
FeF

We may thus complete the proof upon showing that

1/2
(Z Wi loa = VIE, ) + hE lloa - vniz(m) S Flliy)-
FeF

Given F € ¥, we begin by considering the quantity h;l ll7g = V| 1,(e) for any
edge e C JF. We first use the triangle inequality to obtain

-1/2 -1/2 -1/2
W0 = Ve S B 12 = Vallae + B2 1V = Ve
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with V; = V o Py, and examine the last term first. Since e is an (n — 1)-
dimensional edge with diam(e) < A, combining Holder inequality and Lemma
52 (evaluation mismatch between y and I') with an inverse estimate over the
(n + 1)-dimensional patch U).17-(TF) yields

-1/2 -2)/2
WP Vi = Ve S B2 1Va = Vil r
(n+2)/2
< kel IVl 1

12
S w2z IVl Lyl e

For the first term h;l/ 2||vd — Vullz,e) we argue as follows. Let P be the
n—dimensional hyperplane containing F. While it may be that diam(e) << hp,
the shape regularity of 7 implies that

dist(e, Ba)(lr(TF)) > dist(TF, ﬁwlr(TF) ~ hg.
Thus there exists an n—dimensional ball B ¢ PN a);_(Tp) C Psothate C B and

diam(B) =~ hp. This ball B is the candidate for applying the hp-scaled version
of (1.115) of Lemma 48 (trace estimates for cut elements), namely

—1/2 -
W2 P loa = Vallae) S hetllea = Valleas) + 1196 (2a = Va)llzas)-

Since vy — Vy = (v — V) o P4, we change variables from B to y while employing
Lemma 17 (norm equivalence) to get

-1/2 . _
hp P lloa = VallLae) S hE 17 = Viieamy + 1953 = Vlle,o)-
We observe that Py(B) C Py(wi(Tr)) C wZ(7F) in light of (1.125), whence
-1/2 -1
hF / loa = VallLye) < he v - V“Lz((u;(TF)ﬂ'y) +[1Vy(v = V)HLZ(wEr(TF)my)-

We now carry out a similar but more direct computation for the term h;l |lza—
VL F) appearing in I;. Again using Lemma 52 we obtain

hi o = Valloiry S BE17 = Vileaaroy)
_ 2)/2
he Va = Vil S B2V ooy S 1YV b @)

Combining the previous estimates we end up with

_ -1/2
Welloa = Vs + B llva = Vilaor)

71 _~
S he 17 =Vl @eyoy) + V9@ = V@@ ey T 1VVIlLw) -
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Summing over F € ¥ while using finite overlap of the patches sz(TF) yields

1/2
(Z hl_«"z”’”d - V”iz(F) + hl_«"l ||7/d - V”iz(ap))
FefF

1/2
S ( S hRNT = VIR gy + 195G - mn@w) +IVVllz@)-
TeTr

Step 4: Interpolation. We next apply (1.118) to the function v — V while
realizing that |V|g3/2) = 0. Doing so yields | = V|gs2(ry = |2|g327) and

B 17 = Viiey@oy) + 11V,(@ = V)i,
-3/2 -1/2
S o = Vi) + 121V = V) + olgsna.

Next let V = Ilfv, where [}/ is the Scott-Zhang interpolation operator on the
bulk space V(7). Standard approximation theory in V(7") then yields

-3/2 -1/2
2l = Vil + by 1900 = Vo + elmsaa) < lellysepr,

and
||VV||L2(T) s ”V””Lz(wf'r(T))

for every T € 9t. Using the finite overlap of the patches wlr(T) and the bound
lollg3@nay S [7llg1 ) of Lemma 51 (harmonic extension), we finally obtain

12

D Rl = VIE ) + Bt loa = VIE ory| S Iollange) S WPlne)-
FeF

This completes the proof. O

Remark 54 (efficiency). In a posteriori error analysis it is standard to prove
lower (efficiency) bounds such as those in Theorems 42 and 44. For trace
methods such estimates would ideally take the form

n# (U, F) < llua - U”H'(g)#(F)) + osc#(Fr, a);.(F))
1
+ e L NI Uy

where a);(F) is the patch of elements about F € F and osc#(Fr, a);(F)) isa
heuristically higher-order term measuring the deviation of Fr from the piecewise
constants. However, the standard proof of this result does not work for trace
methods due to the irregular structure of the surface mesh ¥. The paper [DO12]
contains partial efficiency results for the volume residual but none for the jump
residual term. Numerical experiments suggest that a local efficiency result may
hold, but also show a slight degeneration of the constant as the mesh is refined.
Thus it is not clear whether the estimators we have studied for the trace method
are efficient, and if so what form an efficiency estimate would take.
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1.6 NARROW BAND METHOD

In the narrow band approach, the partial differential equation (1.19) on y
~Ayi = f
is extended to the tubular neighborhood N(6) of y defined in (1.29)
N@©) = {x e R™": |d(x)| < 6} c R™;

we refer to the original papers [BCOS01, Bur09]. The finite element method is
then posed over a discrete approximation to N(5). We assume that 7 is of class
C?and 0 < 6 < ﬁ so that (1.61) holds, namely N(§) C Ng(d¢), and all the
properties of the distance function detailed in Section 1.2 are valid in N(9).

A natural / standard way to extend u and f to N(6) is to use the constant

extensions along the normal direction
u=iaoPy f=foPgy

We use the latter to design the FEM. However, we need u € H>(N(6)) to derive
optimal a-priori H! error estimates for the FEM, which entails y € C> when
using the closest point projection P;. We circumvent this extra regularity on y
via Proposition 28 (H 2 extension), which defines u as a normal extension relative
to a perturbation . of y constructed as a zero level set of a regularized distance
function d,. We will show below in Lemma 57 (narrow band PDE consistency)
that such a function u satisfies

'/ Vu - Vv - / fv
N(&) N(&)

The specific choice of u adds several technicalities to the proof of (1.129) but
reduces the regularity of y to C2. This seems to be a new result in the literature
consistent with the underlying regularity # € H?(y). This also motivates the
narrow band FEM as a straightforward (bulk) finite element approximation of
(1.129) upon replacing N(6) by a polygonal approximation N (5) dictated by
dy, the Lagrange interpolant of d in the bulk. We discuss this next. We refer to
[OS16] for higher order FEMs and [DDEH 10, DER14] for an algorithm based on
a level-set function, rather that the less practical distance function. The essential
ideas, however, are similar to those below but are more technical.

< PN F o) IVl vy - (1.129)

1.6.1 The Narrow Band FEM

We assume that N is enclosed in a n + 1 dimensional polyhedral domain D and
denote by 7~ a partition of D made of simplices. We omit to mention the explicit
dependence on the shape regularity constant of 7~

diam(T)
0 = max
TeT  hr




The Laplace-Beltrami Operator 83

in most estimates below; we use the notation sy = |T| w and h = maxreq hr.
Let dj, stand for the Lagrange interpolant of the distance function d by continuous
piecewise linear functions over 7. The discrete distance function dj, induces the
discrete narrow band

Nn(6) :={xe D : |d,(x)| < 6}.
Notice that standard interpolation estimates imply
lld = dnllLov) + BRIV = di)llon < crh*ldly2op (1.130)
where c; is a constant only depending on o. This implies the non-degeneracy
property
\Vdy| > ||Vd| - |V(d - dp)l| > |1 = |V(d - dp)l| > % (1.131)

provided 4 is sufficiently small so that c;h|d|y2 ) < % Combining estimates
(1.130) and (1.131) we deduce that the Hausdorff distance between N(J) and
N3 (0) satisfies

distyy (N(8), Nu(6)) < 2¢rh?|dly2 - (1.132)

Moreover, to guarantee that N, (6) C N, we observe
ldX)| < |dp(X)| + [(d = dp)(X)] < 6+ crldlyzph® ¥ x € Niu(6).
In view of (1.31), it thus suffices to restrict § and & so that

1

2
6 +crldlyzah” < K (1.133)

Hereafter we make the structural assumption
Cih <6 <Gh (1.134)

with ¢; < C; < G, so that (1.133) holds for £ sufficiently small.
We denote by 75 the restriction of 7~ to AV, (6) in the sense that

TIs = {TGT : TﬁNh((S)#(Z)}.
The finite element space associated with 75 is then constructed in the usual way
V(T5) = {V e CXNM(®) : VIr € P, T e T},

where we recall that P stands for the space of polynomials of degree 1. The
subspace of functions with vanishing mean value is denoted V(7).

With this notation at hand and inspired by (1.129), we define the narrow band
finite element solution U € Vu(75) to satisfy

/ VU -VV = / FV, VYV € Vu(75), (1.135)
Ni(6) Ni (6)
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where F is an approximation to f = fo P, satisfying f Ni () F = 0. In order to
make a convenient choice of F, we first define My, : N, (6) — N(6) by

M, (x) = Py (X) + dp(x)Vd(x);
the properties of M), are explored thoroughly later in this section. With this
definition in hand, we let
1
T f
INL(O)| I v 6)

This requires having access to d, dj, and P4, which we assume hereafter. Since F
has vanishing meanvalue, (1.135) is also valid for all V € V(7). The existence
and uniqueness of U € Vy(75) follows directly from the Lax-Milgram lemma.

FZfOMh— OMh. (1136)

1.6.2 PDE Geometric Consistency

We intend to prove (1.129) for the extension u € H*(N(6)) in Proposition 28
(H? extension) of i € H?(y). We recall Proposition 30 (PDE satisfied by )

—div (ueB:Vu) = fepe,

multiply by a test function v € H'(N(6)) and integrate by parts in AV(6) to obtain

/ B.Vu-Vou, = / fe 7//15+/ B.Vu-Vd v u,. (1.137)
N(S) N(5) ON(6)

Notice that we have used that v = Vd is the outward pointing normal to N (9).
We start by estimating geometric quantities appearing in (1.137).

Lemma 55 (properties of u, and B). Let y be of class C> and C§ < & < % be
sufficiently small. Then for all x € N(6) we have
I = pelleavey S Oldlwzn (1.138)

and
I = Beptellra vy S Oldlwza- (1.139)

Proof. We recall the definitions of u, from Proposition 30 (PDE satisfied by u)
and u, from Lemma 29 (PDE satisfies by u,)

1 N
He = ——-det (1 —d, Dzdg), [i. = det (1 —d, Dzdg)(Vd -Vd,) 0 Q.

Me 0 Fg

where P is the projection from N(6) onto Y. = {d.(x) = 0} and Q; is its
inverse when restricted to y. Note that in N(J)

1 1
1—ug=(l—~ )+~ (l—detI—dEDzdg )
Heo Py He o Py ( )
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We thus need to examine the eigenvalues (£;(x))!, of
I-d.(x)D*ds(x) VYx e N(S),
with {y(x) = 1 corresponding to the eigenvector Vd,. We infer that
Gi(x) =1-n;(x)

where
()| < 1de ()] |delwz nvsy S 0ldlwza

according to Lemma 26 (properties of d.) and (1.61) with §, < %6 . Hence

1- ﬁ Gi(x)
i=1

for all x € N(6). This takes care of the second term in the equation for 1 — p,.
It remains to estimate 1 — g, o P,. Since 1 — u, o P, reads as follows on y

)1 — det (I- dg(x)Dzdg(x))‘ - < Sldly2on

1= i = (1= det (1= doD?d;)) + det (I - deD?d, ) (1 - Vd - V),
combining the previous estimate with Lemma 26 (properties of d.) yields
|1 - /Ie(Pa(X))| S Sldlyzny VX € N(O).

This implies | (P4(x))| > 4 for § suficiently small and thus leads to (1.138).
We now prove (1.139) which, in light of (1.138), reduces to the estimate

ITLe = BellLw(nve) S 6ldlwzny- We recall from Proposition 30 that in N(6)
B. = (1-d. D*d.) ' TI,A, o P.I1, (I - d. D*d,)”".

Since dx(x) < & < 36 for x € N(8) and [|D?de |l (o) S ldly2(n thanks to
Lemma 26 (properties of d), the Taylor expansion of (I - td.D’d,)~" centered
att = 0 and computed at ¢ = 1 converges for ¢ sufficiently small. It reads

(I-d.D*d,)"" =1+ d,(1-¢éd.D*d,)>D?d,
for some 0 < ¢ < 1. The definition of A, given in Lemma 29 yields
B, =TI.(IT 0 Q. o P)II, + d.G,
where G : N(6) — RO+DX+D gatisfies |G|z sy S 1. Moreover,
I, - z(ITo Qg o P, = ,Vd 0 (Qz 0 Po) ® [1,Vd 0 (Q o Py)
whence for all x € N(6) we see that

I(x)Vd(Qs(P(x))) = Vd(Q(P4(x))) — Vdy(x)(Vd(Qs(P4(x))) - Vds(x)).
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Since

|Vdg(X) _ Vd(Qg(Pe(X)))l < |V(d3(X) - d(X))| + |Vd(X) - Vd(Qe(Ps(X)))l
< (6 + 1x = Qe Idlyz vy < Sldlwz )

thanks to Lemma 26 (properties of d,), we get

ITe = Bellrovey S 0ldlwza
as asserted. This concludes the proof. O

Remark 56 (estimate of u). Lemma 22 (relation between q and qr) gives the
expression u(x) = det(I — d(x)D?d(x)) for the change of infinitesimal area
between yg := {d”'(s)} and y = {d"'(0)}. Proceeding as in the proof of the
above lemma, we get

I = pllLavey S0 |d|W§,(N) (1.140)
provided 6 is sufficiently small so that N(6) C N.

We are now in position to prove a consistency estimate measuring the dis-
crepancy between f and Au in N(6).

Lemma 57 (narrow band PDE consistency). Let y be of class C* and u be the
extension of Proposition 28 (H* extension) with C§ < & < g sufficiently small.

Iffe Lo(y), then for all v € H'(N(5)), we have

'/ Vu-Vo - / fv
N(S) N(8)

Proof. In view of (1.137), we deduce

< 8 P1dls o I e llolln sy (1.141)

I(v) :=/ Vu-Vo-— fo=1()+ L)+ 1(v) YveH(N(®)),
N(S) N(6)
where
I = I - Bg & V * V )
) /N@( 1)Vt - Vo
1 = eMe — s
0= [ et =10

L(v) = / B.Vu-Vd v u,
IN(6)

with fo = fo Q. o P.. We now examine these three terms separately.
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Step 1: Term I)(v). Since u is constant along the direction Vd,, we realize that
Vu = I1.Vu and Lemma 55 (properties of u. and B.) directly yields

111(2)] < Sldly2 om0 IVullLyvon IV 2 Ly ves)-

Step 2: Term I(v). Let =6 < s < ¢ and consider the isomorphisms

Rs::QEOPgOQA‘:’y—)’y: R.‘_-l:PdOQg,sOPsi)’—)%

where Qg : ¥ — 7, is the inverse of P4 on ys and Q¢ 5 : v — 7, is the inverse
of P, on y,. Using the coarea formula (1.63) together with |Vd| = 1 we write

5
b= [ [ Goe= e
and combining with Lemma 22 (relation between ¢ and gr), we obtain
5
= ~o . o o Qq “lo
ho = [ [FeR)wo Q0 @) 000
6 —_—
- [ [Foo@u 0 Q) = 1h(0) + 11:0) + 11
-5 Jy
where
6 —_—~ —_—~
= [ [FoRwe)-FwoQu
-6 Jy
6 —_—~
= [ [foo@i-so)
-6 Jy
6 —_—~
)= [ [(FoRwo Q)00 Q! 0 Q) -1).
-6 Jy

We proceed to estimate each term separately. To manipulate /7;(v) we first
observe that changing variables from vy to y;, s to v, and y, to y and invoking
Lemma 22 (relation between g and gr) yields

/ (FoR)(w0Qy) = / (FoQu 0P, 0Qy)(v0Qy)
Y Y

= (fo QE © Ps)ylu
T (1.142)
= (f ° Qs)(vﬂﬂs_l) © Qs,s

Ye

Z/f(yﬂﬂa_l)oQa,soPgﬂg,
Y
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where
u=det(I-dD*d),  p. =det(I-d.D*d.)(Vd - Vdy).
Therefore, denoting by ug the infinitesimal change in area induced by R;! on y

MR = (U :us_l) 0Qg 5 0Py g,

we infer again from the coarea formula (1.63) that
6 —_—~
I]](’I/)Z/ /f((ons,SOPs)ﬂR_WOQs)
-5 Jy
5
- [ [ (7o QusoPe o Paimp = fon)ival
-6 Jys

- [ rtwer-oumut [ 7ol 1)
N(S) N(o)

where L is defined on each y, by L|,,, := Qg5 0P. 0Py : vy — v, . Notice that
the map L : N(6) — N(0) is a bi-Lipschitz perturbation of the identity with
perturbation constant

r = |T=Lllz. ey S 0ldlwz sy

because

L= Pallz. vy + 11— Qsllzo vy
+ 1T =Pellovey + 1T = Qeslliaivey) < 0ldlwzas)y-

Moreover, since ur — 1 = (upe"' = 1) 0 Qgs 0 Pg pte + (e — 1), (1.138) and
(1.140) imply

lur = Lo < 5|d|w020(N(5))-
These estimates in conjunction in Proposition 35 (Lipschitz perturbation) give

[11(2)| S Sldlwz sy 1 eavion 121z vy

we observe that to apply Proposition 35 we take Q; = Q; = N(§), which are
Lipschitz domains, and extend v to Q = N so that ||2||g1x) S 1211 (avs))-
Upon utilizing the coarea formula (1.63) once more, we obtain for 11(v)

Ih(o) = /N R

so that (1.140) yields

[15(0)| < 6ldlyw2 sy 1 laoven 121l vy -
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We proceed similarly for 7/3(v) but using in addition that

5 5
J N7 R s 5 [ 1lrds S 171, iy
-5 -0

and
(e © Qo)™ 0 Qy) = 1oy S Sldlw2 o))

thanks to (1.138) and (1.140) again. We thus obtain for //3(v) an estimate similar
to those for I1,(v) and I1,(v), whence

|1(2)] < Sldlwz vop I lLavsn 121 (vsy -
Step 3: Term I3(v). In view of [1, = I - Vd, ® Vd,, we first note that
Vd"Bepe = Vd" (Bepe — ) + V(d — d.)" +VdL(1-Vd-Vd,).

Invoking Lemma 55 (properties of u. and B.) and then Lemma 26 (properties
of d;) yields

||VdTBsﬂa||Lm(N(6)) 5 5|d|W020(N(5))«

It remains to use trace inequalities to obtain

I3(v) S oldlyw2 nvisy I Vullan eyl 7llL,on s)

S oldlwz vyl vepll2lla (vsy)-

Step 4: Normal extension. Gathering the above estimates we find that

10) S Sldlyz ey (el ooy + 1 aovion) 1ol ey

We finally deduce || f ||z, nvs) S 53 |dIW£(N(5))||f||L2(7) because f is the normal
extension of fto v, and

| _
IVullL,ivsy < 02 1d w2 an L f Lo

upon combining Proposition 28 (H? extension) with Lemma 3 (regularity). This
leads to the desired estimate. O

1.6.3 Properties of the Narrow Band FEM

To begin with, we recall the definition of My, : N, (6) — N(6), that accounts for
the mismatch between N}, () and N(6):

M;,(x) = Py(x) + dp(x)Vd(X) = X + (dp(X) — d(x))Vd(X). (1.143)
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Note that if x € N,(6) € N then P;(M(x)) = Py(x), because this is what
happens with all points in the line s — x + sVd(x) within N. Since |dj,(X)| < &,

ld(M,(x))] = [Mp(x) = PaMp(x))| = |dn(x)[ |Vd(x)| < &

implies that My (x) € N(J) and the map M}, is well defined. Further properties
of M, are discussed next. Before doing so, we mention that the results provided
below are not optimal (to avoid technicalities) but are sufficient for our analysis.
We refer to [DER14, OS16] for higher order estimates.

Lemma 58 (properties of My,). Let y be of class C* and h be sufficiently small.
Then, the map My, : N, (6) — N(9) is bi-Lipschitz with

IDMallz. w0 + IDMG llzoinion < L (1.144)
for some constant L independent of h and 6. Moreover, there holds

L= M|z o) + 21T = DMyl a6 S B ldlw2on (1.145)

and
| det(DMy,) = Ul (no) S hldlwz p- (1.146)

Proof. From the definition (1.143) of M, and the interpolation estimate (1.130),
we find that

Ix = M;,(®)] < |d(x) = dp®)] < e Pldly2 p0-
Furthermore, we compute
DM, (x) = I+ V(dj(x) — d(x)) ® Vd(x) + (dj,(x) — d(x))D*d(x)

to deduce

IT = DMy llz w6y < crhldlyzpy + C1h2|d|€VD%(N)~
The above two estimates yield (1.145) because cyhld|y2 5y < % for h sufficiently
small. Exploiting (1.145), we also deduce that M}, is invertible, bi-Lipschitz and
that (1.144) holds for 4 sufficiently small.

We are left to show (1.146). This follows from D det A = (det A)A™! for any
invertible matrix A and the first order Taylor expansion of

W(t) = det (1 —1 (V(d(x) — dy(x)) ® Vd(x) - (d(x) - dh(x))Dzd(x)))

about t = 0 and evaluated at r = 1, along with (1.145) and the fact that y/(1) =
det(DM,(x)). This concludes the proof. O
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The previous lemma is instrumental to estimate the consistency error
En(V) := / Vu-Vvv —/ FV VYV eV(7s), (1.147)
Ni(8) Ni(6)

due to the approximation of the narrow band N(6) by NV, (9) and to the use of F
in the discrete formulation (1.135). Since N(6) c N is of class C2, we assume
without loss of generality that the function u : N(6) — R constructed in Propo-
sition 28 (H? extension) extends to AV and satisfies ||u|| v S lullpzvs)- In
light of N}, (6) € N, the consistency error (1.147) is well defined.

Lemma 59 (narrow band geometric consistency). Let y be of class C* and
0_and h satisfy the structural condition (1.134) and be sufficiently small. Let
f € Lyu(y), u € H*(y) solve (1.18), and u € H*(N(6)) be the H? extension of
u given by (1.62) with Cé < € < %. Let also F be given by (1.136). Then the
consistency error (1.147) satisfies for all V € V(7s)

‘ / Vi vV - / FV'563/2|d|W;<N)||f||L2<y>||V||H1<Nh(5>).
Ni(6) Ni(6)

Proof. We compare the consistency errors (1.147) and (1.141) term by term.

Step 1: Dirichlet integrals. Utilizing the change of variables induced by the map
My, : Ni(6) — N(6) we end up with

/ Vu-VV - / Vu-V(VoM;)=L(V)+ L(V)+L(V),
Ni(6) N(9)

where

L) :=/ (Vi = Vo M) - WV det (DM},)
Nin(6)

L(V) = / Vu - VV (1 - det(DMy,))
Ni(0)

L(V) = -//;((5) Vu - (VVoM,;1 -~ V(VOM,;l)).

In view of Proposition 35 (Lipschitz perturbation) and Lemma 58 (properties of
M},), we infer that

L) ROV S Rldlwz el 2oy IV I (v 6) -
Similarly for 73(V), we observe that

VWoM,'-V(VoM,') = (I- DM, )VVo M, ',
so that employing Lemma 58 (properties of My,) yields

IO S hldlyz o IVl Lyovsy IV V o ov, o) -
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Recalling the structural assumption C1h < ¢, Lemma 3 (regularity) as well as
If Nl visy S 5t 11|z, (y)» the estimates for I{(V), I(V) and I3(V) guarantee

‘/ w-vv-/ Vu-V(VoM,h
Nir(6) N()

Step 2: Forcing. Recalling (1.136), we rewrite the forcing term in (1.147) as

< 8 dlyz ol F I IV e s -

/ FV- fVoM,' = IL(V)+IL(V),
Ni(6) N(9)
where

IL(V) = /N(&) fVoM,'(det(DM;)™! - 1),

1
IL(V) = ———— fth/ V.
INL (O J n(0) Ni(8)

We make use of (1.144) and (1.146), along with a change of variables, to compute
1L(V) < hldlyz a0 f laovisp IV © Myl oves))
S hldlwz ol f vy IV [ ovsy-
Since |NL(6)| = IN(8)| =~ &, the first equivalence resulting from (1.144) and the

second from the coarea formula, using (1.146) again we obtain

IL(V) < 6—1/2||V||L2(N,1<5)))/N (5)f o My, (det(DMj) — 1) —/ f‘
h

N(6)

S IV s (Htbzonll Moo + 677 [ 1)
5

To estimate the rightmost term we exploit the fact that fhas a vanishing mean
on y. Using the coarea formula (1.63), we see that

A/(d)fzxjégf:[:/yfﬂs=[z/7f(ﬂs—1)

< 26|15 = Uiz gxi-s.5p 1 FllLacs

where p; = det (I - dD*d )_1 o Qg according to Lemma 22 (relation between g
and gr). Remark 56 (estimate of u) in turn leads to

£| 5 1wz poll Pl
| /N(é) W2(N) 2(¥)

Consequently, collecting the previous estimates and using the structural assump-
tion C1h < ¢ again readily gives

N _
[IL(V)| < 62 1wz L o) 1V LoV (8))-
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Gathering the bounds for 77;(V) fori = 1,2, we discover

'/ FV- fVvoM;!
Ni(6) N(6)

Step 3: Conclusion. The assertion follows from the bounds derived in Steps 1
and 2 together with the estimate (1.141) of Lemma 57 (narrow band PDE con-
sistency) with v =V o M,;l € H'(N(9)). The proof is complete. O

N _
< 62 Mdly2 I o) IV Lt o, 8-

1.6.4 A Priori Error Estimates

All of the ingredients for a-priori error analysis in the narrow band norm are now
in place. We recall that the extension u# : N(6) — R constructed in Proposition
28 (H? extension) is further extended to AV and satisfies

1 _
lullzony S Nullzvesy < 02 dlwz o1l a2 (1.148)

Theorem 60 (a-priori error estimate). Let y be of class C and & and h satisfy
the structural condition (1.134) and be sufficiently small. Let u € H;(y) be

defined by (1.18) with f € Ly #(y) and u be its extension given by (1.62) with
Co<e< %. Let U € V4(7s) be the finite element solution to (1.135) with F
given in (1.136). Then, the following error estimate is valid

. 3 ~
IV = O)llLyovi ) S Velgll(f%) IV = V)llLyovn o) + h2 1wz ol o)

with hidden constant independent of h and 9.

Proof. The proof consists of a Strang type argument. For any V € V(75) the
equation (1.135) satisfied by U and the definition (1.147) of Ej(.) give

IV(V = O)IIZ 00 = / V(V —u)-V(V = U) + E,(V - U).
Ni(6)

Invoking Lemma 59 (narrow band geometric consistency), together with the
structural assumption (1.134), yields

3 —~
IV = O)llLanvi)) < VYV = Dlliynv ) + ch? [dlwz ol fllag)-
The desired error estimate follows from a triangle inequality. O

Corollary 61 (rate of convergence in Ny (6)). Under the assumptions of Theo-
rem 60 we have

s _
IV = O)llavi sy S h2 1wz ol flliag)-
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Proof. In view of (1.148) standard polynomial interpolation theory gives

IV(u = L)l va o) S Pllullmeony S hllull vy

where /;“u is the Scott-Zhang interpolant of u. It remains to use Proposition 28
(H? extension) and Lemma 3 (regularity) to arrive at

. 3 ~
IV = Ll v ) S P2 1dlwz ol fllLa6)-
The asserted estimate follows from Theorem 60 (a-priori estimate). O

In addition, we follow [OS16] to deduce a rate of convergence for ||V, (u —
U)llLo)-

Corollary 62 (rate of convergence on y). Under the assumptions of Theorem 60
we have

IV, (@~ Uiy S Bl Fllag)-

Proof. We recall the scaled trace inequality (1.117): for a bulk triangulation 7~
there exists a constant C only depending on the mesh shape regularity constant
of 7~ such that for T € 75 and v € H'(T), one has

1913 sy < € (7 101 ) + B IV 218, ) )

where hy = diam(T). We apply this inequality with v = V(u — U), and hy = h
sufficiently small, to obtain

190 = OIE, gy S (B 19 = O)IE 7y + Bl -

Summing up over all T € 75 with non-empty intersection with vy, Proposition 28
(H? extension) and Corollary 61 (rate of convergence in Nj,(8)) give

IV, (@ = U)llyo) < NIV = Dllyg) S h|d|W£(N)(||ﬂ|L2(y) + WHZ(y))-

The desired estimate follows from Lemma 3 (regularity). O
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