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ABSTRACT
Partial differential equations posed on surfaces arise in a number of applications. In
this survey we describe three popular finite element methods for approximating solutions
to the Laplace-Beltrami problem posed on an n-dimensional surface γ embedded in
Rn+1: the parametric, trace, and narrow band methods. The parametric method entails
constructing an approximating polyhedral surface Γ whose faces comprise the finite
element triangulation. The finite element method is then posed over the approximate
surface Γ in a manner very similar to standard FEM on Euclidean domains. In the trace
method it is assumed that the given surface γ is embedded in an n + 1-dimensional
domainΩ which has itself been triangulated. An n-dimensional approximate surface Γ is
then constructed roughly speaking by interpolating γ over the triangulation of Ω, and the
finite element space over Γ consists of the trace (restriction) of a standard finite element
space on Ω to Γ. In the narrow band method the PDE posed on the surface is extended
to a triangulated n + 1-dimensional band about γ whose width is proportional to the
diameter of elements in the triangulation. In all cases we provide optimal a priori error
estimates for the lowest-order finite element methods, and we also present a posteriori
error estimates for the parametric and trace methods. Our presentation focuses especially
on the relationship between the regularity of the surface γ, which is never assumed better
than of class C2, the manner in which γ is represented in theory and practice, and the
properties of the resulting methods.
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1.1 INTRODUCTION

Partial differential equations (PDEs) posed on surfaces play an important role
in many domains of pure and applied mathematics, including geometry, mod-
eling of materials, fluid flow, and image and shape processing. The numerical
approximation of such surface PDEs is both practically important and the source
of many mathematically rich problems.

We consider a closed, compact and orientable surface γ in Rn+1 of co-
dimension 1. The Laplace-Beltrami operator−∆γ, which acts as a generalization
of the standard Euclidean Laplace operator, plays a central role in both static
and time-dependent surface PDE models arising in a wide range of applications.
Because of this a wide variety of numerical methods have been developed for
the Laplace-Beltrami equation

−∆γũ = f̃ ,

where f̃ is a given forcing function satisfying
∫
γ

f̃ = 0. In this article we first lay
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out some important notions from differential geometry. We then describe three
important classes of finite element methods (FEMs) for the Laplace-Beltrami
problem: the parametric method, the trace method, and the narrow bandmethod.
In all three cases we focus on the simplest case of piecewise linear finite element
spaces and give an in-depth discussion of the effects of geometry on error
behavior.

The parametric finite element method was introduced in 1988 by Dziuk
[Dzi88], with some important related techniques appearing in earlier works on
boundary element methods [Néd76, Ben84]. This method is the simplest of the
many FEM that have been developed for solving the Laplace-Beltrami problem.
The given PDE is first written in weak form as: Find ũ ∈ H1(γ) such that

∫
γ

ũ = 0
and

a(ũ, ṽ) :=
∫
γ
∇γũ · ∇γ ṽ =

∫
γ

f̃ ṽ ∀ṽ ∈ H1(γ).

Here H1(γ) is the set of functions ṽ in L2(Ω) whose tangential gradient ∇γ ṽ ∈
[L2(γ)]

n+1. The continuous surface γ is approximated by a polyhedral surface
Γ whose faces serve as a finite element mesh, and the finite element space V
is made of continuous piecewise linear functions over Γ. The finite element
method then consists of finding U ∈ V such that

A(U,V) =
∫
Γ

∇ΓU · ∇ΓV =
∫
γ

FV ∀V ∈ V,

where F is a suitable approximation (lift) of f defined on Γ. In its conception
and implementation, the resulting method is very similar to canonical FEM
for solving Poisson’s problem on Euclidean domains. To quote Dziuk, “...the
numerical scheme is just the same as in a plane-two dimensional problem.
The only difference is that in our case the computer has to memorize three-
dimensional nodes instead of two-dimensional ones.” [Dzi88, p. 143]. The
strategy underlying parametric surface finite element methods –direct translation
of FEM on Euclidean spaces to triangulated surfaces– has subsequently been
applied to a variety of methods. These include higher-order standard Lagrange
methods [Dem09], various types of discontinuous Galerkin methods [ADM+15,
DMS13, CD16], and mixed methods in classical, hybridized, and finite element
exterior calculus formulations [Ben84, HS12, CD16, FFF16]. A posteriori
error estimation and adaptivity have been studied in [DD07, WCH10, BCMN13,
DM16, BCM+16, BD19]. Finally, we refer to the survey article [DE13].

In many applications in which surface PDEs are to be solved, a background
volume (bulk) mesh is already present. A paradigm example is two-phase fluid
flow, in which effects on the interface between the two phases such as surface
tension are coupled with standard equations of fluid dynamics on the bulk. In
these cases it is advantageous to utilize the background volume mesh to solve
surface PDEs instead of independently meshing γ. This is especially the case
when γ is evolving, since the meshes needed for the parametric method typically
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distort as γ changes and periodic remeshing is thus necessary. The trace and
narrow band methods both employ background bulk meshes in order to solve
surface PDEs.

Trace (or cut) FEMs for the Laplace-Beltrami problem were first introduced
in [ORG09]. In this method an approximating surface is constructed as in the
parametric method, but using a different approach. An implicit representation
of γ as the level set of some function φ is used, that is, it is assumed that

γ =
{

x ∈ Rn+1 : φ(x) = 0
}
.

A discrete surface Γ is then defined as the zero level set of an interpolant of φ
on the background mesh, and the finite element space is taken to be the trace
of the bulk finite element space on Γ. The FEM is posed and solved on Γ
as in the parametric method. Note that the finite element space in the trace
method consists of continuous piecewise linear functions over the faces of Γ.
However, because the faces of Γ are arbitrary intersections of n-dimensional
hyperplanes with n + 1-simplices, they are not shape regular, and in particular
may either fail to satisfy a minimum angle condition or be much smaller than the
bulk simplices from which they are derived. Counter to natural intuition about
the quality of a finite element method posed on such a mesh, the trace method
satisfies optimal error bounds and works well in practice. In addition to the
basic analysis of piecewise linear methods that we present below, the literature
on trace methods for the Laplace-Beltrami problem includes study of matrix
properties [OR10], adaptive versions [DO12, CO15], and extensions to higher-
order [Reu15, GR16, GLR18], stabilized [BHL15, BHL+16], and discontinuous
Galerkin [BHLM17] methods. We refer to the recent survey article [OR17].

Narrow band methods also employ a bulk mesh in order to approximate
surface PDEs, but extend a surface PDE to the bulk instead of restricting a bulk
finite element space to a surface. This idea appeared first in [BCOS01] and is
based on an extension of the PDE into a tubular neighborhoodN(δ) of width 2δ
about γ that reads

L(uδ) = −div
(
(I − ∇d ⊗ ∇d)∇uδ

)
+ uδ = fδ .

Here fδ is an extension of f̃ from γ to N(δ) and d is the distance function γ.
The latter is chosen for simplicity over a generic level set function φ to represent
γ throughout this article. Because ∇d is the unit outward normal to γ, the
coefficient matrix I −∇d ⊗∇d is degenerate in the direction normal to γ, and the
operator L is thus elliptic but degenerate. We emphasize that in contrast to most
previous literature on narrow band FEM we do not include a zero order term
in our presentation, thereby adding extra difficulty due to the need to account
for the non-trivial kernel of L on closed surfaces. In narrow band FEMs, the
Galerkin approximations to uδ are posed over a discrete approximationNh(δ) to
the narrow bandN(δ). Related methods that involve extending surface PDEs to
bulk domains include the closest point method [RM08].
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Narrow-band unfitted finite element methods have been proposed and ana-
lyzed by different authors. In [Bur09], the aforementioned degenerate extension
is shown to be well posed and error bounds in the weighted bulk energy norm
are derived. Subsequently, error estimates in the H1(γ) norm are obtained in
[DDEH10] for the lower order method. An alternate nondegenerate extension
L(uδ) = −∆uδ + uδ is then proposed in [DER14] leading to optimal H1(γ) and
also L2(γ) error estimates for the lower order method when fδ is (or is close to)
the constant normal extension of f̃ . Independently, higher order methods are
proposed and analyzed in [OS16] using the extension

L(uδ) = −div
(
µ(I − dD2d)−2∇uδ

)
+ uδ,

with µ := det
(
I − dD2d

)
and fδ the constant normal extension of f̃ . Note also

that the associated FEM requires a sufficiently accurate approximation of D2d
(if not known explicitly). For the case of lowest order (piecewise linear) finite
element spaces, it is enough to approximate D2d with zero and thereby retrieve
the discrete formulation in [DER14].

In the construction of all three FEMs above, we incur on variational crimes
(consistency errors) due to the approximation of geometry. In the parametric
and trace methods, these errors arise because the finite element method is posed
over a discrete approximation Γ to γ, thereby leading to different bilinear forms
(a and A) used to compute the continuous and finite element solutions (ũ andU).
In the narrow band method the finite element equations are posed over a discrete
narrow band Nh(δ) instead of over the domain N(δ) on which the extended
solution uδ is defined. This again entails the use of different bilinear forms
in the definitions of the continuous and discrete solutions. A core problem in
surface FEMs is understanding and controlling these errors, which are typically
called geometric consistency errors or geometric errors. In order to analyze
these errors, it is necessary to define a map P : Γ→ γ and then compare a(̃v, w̃)
with A(̃v ◦ P, w̃ ◦ P) for given functions ṽ, w̃ ∈ H1(γ). This is done via a change
of variables argument for the map P. There may be several competing demands
of both theoretical and practical nature that come into play when choosing the
map P, and a main focus of this article is to elucidate how this choice affects
analysis and implementation of surface FEMs.

The canonical choice of themapP is defined via the so-called signed distance
function d : N → γ. The distance function is defined on a tubular neighborhood
N of γ and is of the same regularity class as γ provided that γ is at least C2

andN is sufficiently narrow. In such a case, the map (also called distance-lift or
orthogonal closest point projection)

Pd(x) := x − d(x)∇d(x) ∀ x ∈ N

is well defined and is of class C1. The maps d and Pd play a crucial role in
analyzing and in some cases defining the numerical algorithms presented below.
In particular, the distance function is a critical tool in proving error estimates
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that are of optimal order with respect to geometric consistency errors. When a
generic map P : Γ → γ is instead used to analyze surface FEMs, the predicted
behavior of geometric errors is of one order less than is seen in practice and also
than may be proved using the closest point projection. More precisely, when
quasi-uniform meshes of size h are used with affine surface approximations in
the parametric and trace methods, arguments which use special properties of the
closest point projection predict an O(h2) geometric errors, and these are in fact
observed in practice. On the other hand, standard proofs employing a generic
map P instead of the distance function map Pd predict only order h geometric
errors. This increase in convergence order due to the properties of the closest
point projection may be viewed as a superconvergence effect.

Reliance on Pd may however also constitute a serious drawback for several
reasons. First, Pd has a closed form expression only for the sphere and torus, so
it is in general not directly available to the user. We thus discuss how to use the
distance function only as a theoretical tool for the parametric FEM and yet retain
the superconvergence properties of Pd . On a practical level, the user is still free
to choose from a much more general class of lifts to implement an algorithm.
Our presentation includes optimal a priori and a posteriori estimates in H1 and
optimal a priori estimates in L2 for an algorithm whose implementation only
requires access to a generic lift P; the latter appear to be new in the literature
even for smooth surfaces. Second, if γ is merely C1,α for α < 1, then the
closest point projection Pd is not uniquely defined in any neighborhood of γ.
We thus also provide an analysis of parametric FEMs for γ of class C1,α that
instead makes use of a generic parametric map. The price we pay is a possible
order reduction of the method due to the loss of superconvergence properties of
Pd . Finally, previous proofs of optimal-order error estimates employing Pd have
required that Pd is of class C2 and thus γ of class C3; cf. [Dzi88]. However, the
solution u to the Laplace-Beltrami problem already possesses the H2 regularity
needed to ensure optimal convergence of piecewise linear finite element methods
when γ is of class C2. In this survey we bridge this gap by giving a novel error
analysis for the three FEMs which is based exclusively on C2 regularity of d
and γ, but which also preserves the superconvergence property in the geometric
error. In the case of the trace and narrow band methods we achieve this by a
regularization argument.

This article is organized as follows. In section 1.2 we introduce surface
gradient, divergence and Laplace-Beltrami operators along with the signed dis-
tance function and its most relevant properties. In section 1.3 we quantify the
geometric effects of perturbing surfaces γ of class C1,α and C2. We also present
H2 extensions to a tubular neigborhood N(δ) ⊂ N of width δ

‖u‖H2(N(δ)) . δ
1
2 ‖ũ‖H2(γ)

of functions ũ ∈ H2(γ) provided γ is of classC2. This turns out to be essential for
our later error analysis of the trace and narrow band methods for C2 surfaces. In
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section 1.4 we give a selfcontained exposition of parametric FEMs for surfaces
of classC1,α andC2, including a priori and a posteriori error analyses. In section
1.5 we describe the trace method and conclude in section 1.6 with the narrow
band method. Both discussions assume C2 regularity of γ.

1.2 CALCULUS ON SURFACES

In this section we discuss basic concepts of differential geometry. We start in
section 1.2.1 by describing the paramatric representaton of γ via charts. This
classical point of view is critical to introduce the first fundamental form g, the
area element q, and the unit normal ν of γ. We present in section 1.2.2 the
tangential operators (gradient ∇γ, divergence divγ, and Laplace-Beltrami ∆γ) as
well as the Weingarten map; we also discuss H2-regularity for ∆γ on surfaces
γ of class C2. We introduce the distance function d in section 1.2.3 and derive
several important properties of it; this intrinsic approach avoids parametrizations
and allows for implicit representions of γ. We devote section 1.2.4 to the second
fundamental form of γ and its principal curvatures using both parametric and
intrinsic approaches.

1.2.1 Parametric Surfaces

We assume that γ is a closed, compact, orientable manifold of class C1,α,
0 < α ≤ 1, and co-dimension 1 in Rn+1. It can be represented parametrically by
an atlas {(Vi,Ui, χi)}i∈I , where the individual charts χi : Vi →Ui ∩γ ⊂ R

n+1

are isomorphisms of class C1,α compatible with the orientation of γ; the open
connected sets Vi ⊂ R

n are the parametric domains. Unless stated otherwise,
it will be often sufficient to consider a single chart and resort to a partition of
the unity. We thus drop the index i for convenience. For x ∈ U ∩ γ, we set
y := χ−1(x) ∈ V.

Let ∂jχ(y) be the column vector of j-th partial derivatives of χ(y) for 1 ≤
j ≤ n at y ∈ V. By definition, the rank of Dχ(y) =

(
∂jχ(y)

)n
j=1 ∈ R

(n+1)×n is n
(full rank). This implies that {∂jχ(y)}nj=1 are linearly independent and span the
tangent hyperplane to γ at x.

The first fundamental form is the symmetric and positive definite matrix
g ∈ Rn×n defined by

g(y) := Dχ(y)tDχ(y) ∀y ∈ V . (1.1)

If g = (gi j)ni, j=1, then the components gi j read

gi j = ∂iχ
t∂jχ = ∂iχ · ∂jχ,

which depends on the choice of parametrization. A normal vector N(y) to γ at
x can be written as N(y) =

∑n+1
j=1 Aj(y)ej , where Aj := det(ej,Dχ) and {ej}n+1

j=1



888

is the canonical basis of Rn+1. In fact, since

N·∂iχ =
n+1∑
j=1

ej ·∂iχ det(ej,Dχ) = det
( n+1∑
j=1
(ej ·∂iχ)ej,Dχ

)
= det(∂iχ,Dχ) = 0,

and Aj , 0 for at least one j because Dχ has rank n, we deduce that

ν(y) :=
N(y)
|N(y)| ∀y ∈ V (1.2)

is a well-defined unit normal vector to γ. Therefore, the matrix

T(y) := [Dχ(y), ν(y)] ∈ R(n+1)×(n+1) ∀y ∈ V

has rank n + 1 and so is invertible. We write its inverse as

T−1 =

[
B
vt

]
, B ∈ Rn×(n+1), v ∈ Rn,

and note that

I(n+1)×(n+1) = T−1T =
[
B Dχ Bv
vt Dχ vtν,

]
whence

B Dχ = In×n, vtDχ = 0, vt ν = 1.

The last two equalities imply v = ν. Reversing the order of multiplication yields

I(n+1)×(n+1) = T T−1 = Dχ B + ννt,

whence the projection matrix Π ∈ R(n+1)×(n+1) on the tangent hyperplane to γ
has the form

Π := I − ν ⊗ ν = Dχ B. (1.3)

To obtain an explicit expression for B note that

Dχ = (I − ν ⊗ ν)tDχ = BtDχtDχ = Btg ⇒ B = g−1Dχt .

This leads to the following useful expression of Π defined in (1.3):

Π = Dχ g−1Dχt . (1.4)

The area element q(y) is the ratio of the infinitesimal volume at y ∈ V and
area of γ at x = χ(y), namely the volume of the parallelotope in the tangent
plane to γ spanned by the vectors {χ j}

n
j=1:

q(y) := det
(
[ν(y),Dχ(y)]

) ∀y ∈ V . (1.5)
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To obtain a more familiar form of q we argue as follows:

q =
1
|N |

det
(
[N,Dχ]

)
=

1
|N |

det
(
[N,Dχ]t [N,Dχ]

) 1
2 =

√
det g, (1.6)

because det
(
[N,Dχ]t [N,Dχ]

)
= |N|2 det(DχtDχ) = |N|2 det g. Moreover,

exploiting that |N |2 =
∑n+1

j=1 Aj det([ej,Dχ]) = det([N,Dχ]), we deduce

q = |N|. (1.7)

An integrable function v : V → R induces an integrable function ṽ : γ → R
by composition v = ṽ ◦ χ, or equivalently ṽ(x) = v(y) for all y ∈ V. The area
element allows for integration over γ via the formula∫

γ
ṽ =

∫
V

vq ∀v ∈ L1(V). (1.8)

This definition does not depend on the parametrization: if χ1, χ2 are parametriza-
tions of γ, then χ1 = χ2 ◦ (χ

−1
2 ◦ χ1) and Dχ1 = Dχ2D(χ−1

2 ◦ χ1) whence

q1 =
�� det

(
D(χ−1

2 ◦ χ1)
) ��q2 ⇒

∫
V1

vq1 =

∫
V2

vq2.

1.2.2 Differential Operators

If a function v : V → R is of class C1, we can define the tangential (or surface)
gradient of the corresponding function ṽ : γ → R as a vector tangent to γ that
satisfies the chain rule

∇v(y) = Dχ(y)t∇γ ṽ(x) ∀y ∈ V . (1.9)

Since ∇γ ṽ is spanned by {∂jχ}nj=1, we get ∇γ ṽ = Dχw for some w ∈ Rn whence
w = g−1∇v and

∇γ ṽ(x) = Dχ(y)g(y)−1∇v(y) ∀y ∈ V . (1.10)

If ṽ = (̃vi)n+1
i=1 : γ → Rn+1 is a vector field of class C1, we define its tangential

differential Dγṽ ∈ R(n+1)×(n+1) as a matrix whose i-th row is (∇γ ṽi)t . If γ is of
class C2, then the unit normal vector ν is of class C1 and its differential

W(x) = Dγν(x) ∀x ∈ γ (1.11)

is called the Weingarten (or shape) map of γ. In addition, the tangential diver-
gence of ṽ is the trace of Dγṽ

divγṽ(x) = trace
(
Dγṽ(x)

)
=

n∑
i, j=1

gi j(y) ∂iχ(y) · ∂jv(y) ∀y ∈ V, (1.12)
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provided g−1 = (gi j)n
i, j=1. If both γ and v : γ → R are of class C2, then the

Laplace-Beltrami (or surface Laplace) operator is now defined to be

∆γ ṽ =
1

q(y)div
(
q(y)g(y)−1∇v(y)

)
∀y ∈ V . (1.13)

The following lemma shows that (1.13) is designed to allow integration by parts
on γ, exactly as it happens in flat domains with the Laplace operator ∆.

Lemma 1 (weak form of the Laplace-Beltrami operator). If ϕ̃ is of class C1 with
compact support in γ, then∫

γ
ϕ̃∆γ ṽ = −

∫
γ
∇γ ϕ̃ · ∇γ ṽ . (1.14)

Proof. In view of (1.8), which allows us to switch from γ toV back and forth,
we can write ∫

γ
ϕ̃∆γ ṽ =

∫
V

ϕ div
(
qg−1∇v

)
= −

∫
V

∇ϕ · g−1∇v q

= −

∫
V

Dχg−1∇ϕ · Dχg−1∇v q

= −

∫
γ
∇γ ϕ̃ · ∇γ ṽ .

This proves (1.14) as desired.

In viewof (1.14), we are now in the position to introduce theweak formulation
for the Laplace-Beltrami operator. We first define the space of square integrable
functions on γ with vanishing mean value by

L2,#(γ) :=
{
ṽ ∈ L2(γ)

�� ∫
γ

ṽ = 0
}

and its subspace H1
# (γ) containing square integrable weak derivatives defined as

for example in Section 3 of [JK95] by

H1
# (γ) := H1(γ) ∩ L2,#(γ), H1(γ) :=

{
ṽ ∈ L2(γ)

�� ∇(̃v ◦ χ) ∈ [L2(V)]
n
}
.

Our next result shows that the natural norm ‖∇γ ṽ‖L2(γ) + ‖ṽ‖L2(γ) in H1
# (γ) is

equivalent to the semi-norm ‖∇γ ṽ‖L2(γ). The proof essentially hinges on the
Peetre-Tartar Lemma [Pee66, Tar78], but we proceed with a slightly more direct
proof as in [Eva98, Section 5.8.1].
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Lemma 2 (Poincaré-Friedrichs inequality). Let γ be a compact Lipschitz sur-
face. There exists a constant C only depending on γ such that

‖ṽ ‖L2(γ) ≤ C‖∇γ ṽ ‖L2(γ) ∀ ṽ ∈ H1
# (γ). (1.15)

Proof. We prove by contradiction the more general estimate

‖ṽ ‖L2(γ) ≤ C
(
‖∇γ ṽ ‖L2(γ) +

��� ∫
γ

ṽ
���) ∀ ṽ ∈ H1(γ). (1.16)

Suppose that there is a sequence ṽk ∈ H1(γ) such that

‖ṽk ‖L2(γ) = 1, ‖∇γ ṽk ‖L2(γ) +

��� ∫
γ

ṽk
���→ 0

as k → ∞. We deduce that {ṽk}k is uniformly bounded in H1(γ). Since the
embedding H1(γ) ⊂ L2(γ) is compact (because H1(V) ⊂ L2(V) is compact, see
the proof of [Aub82, Theorem 2.34]), there is a Cauchy subsequence (with abuse
of notation not relabeled) of {ṽk}k in L2(γ). This, together with ‖∇γ ṽk ‖L2(γ) →

0, implies that {ṽk}k is a Cauchy sequence in H1(γ). Let ṽ ∈ H1(γ) be the limit
of ṽk in H1(γ), which yields ∇γ ṽ = limk→∞ ∇γ ṽk = 0 whence ṽ is constant on
γ. Moreover,

∫
γ

ṽ = limk→∞

∫
γ

ṽk = 0 whence v = 0. This gives rise to the
contradiction 0 = ‖ṽ ‖L2(γ) = limk→∞ ‖ṽk ‖L2(γ) = 1, and finishes the proof.

We emphasize that the Poincaré-Friedrichs constant depends on the surface
γ. Later we shall consider perturbations Γ of γ and derive Poincaré-Friedrichs
type estimates on Γ where the constant depends on γ provided the geometry of
γ is minimally approximated by Γ. This is proved in Lemma 18 for Lipschitz
surfaces and only requires that the L2 and H1 norms on γ and Γ are equivalent.

We will not deal explicitly with functionals in the dual space H−1
# (γ) of

H1
# (γ), but occasionally need its norm for f̃ ∈ L2,#(γ)

‖ f̃ ‖H−1
# (γ)
= sup

ṽ ∈H1
# (γ)

∫
γ

f̃ ṽ

‖∇γ ṽ ‖L2(γ)
. (1.17)

Lemma 2 (Poincaré-Friedrichs inequality) implies that ‖ f̃ ‖H−1
# (γ)
≤ C‖ f̃ ‖L2,#(γ).

The weak formulation of −∆γũ = f̃ reads: for f̃ ∈ L2,#(γ), seek ũ ∈ H1
# (γ) so

that ∫
γ
∇γũ · ∇γ ṽ =

∫
γ

f̃ ṽ ∀ ṽ ∈ H1
# (γ). (1.18)

Since the Dirichlet bilinear form in (1.18) is coercive, according to Lemma
2, existence and uniqueness of a solution ũ ∈ H1

# (γ) is a consequence of the
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Lax-Milgram theorem. We observe that thanks to the property f̃ ∈ L2,#(γ), the
solution ũ ∈ H1

# (γ) satisfies∫
γ
∇γũ · ∇γ ṽ =

∫
γ

f̃ ṽ ∀ ṽ ∈ H1(γ). (1.19)

It turns out that ũ exhibits the usual regularity pick-up provided γ is of class C2.

Lemma 3 (regularity). If γ is of class C2, then there is a constant C only
depending on γ such that

‖ũ‖H2(γ) ≤ C‖ f̃ ‖L2(γ). (1.20)

Proof. We use a localization argument to the parametric domain. We assume,
without loss of generality, that the atlas {(Vi,Ui, χi)}

I
i=1 satisfies the following

property: there exist domainsWi such thatWi ⊂ Ui and {Wi}
I
i=1 is still a

covering of γ. Let now {ψ̃i}Ii=1 be a C2 partition of unity associated with the
covering {Wi}

I
i=1. The functions ui = uψi satisfy

∆γũi = ψ̃i f̃ + 2∇γũ · ∇γψ̃i + ũ∆γψ̃i =: g̃i .

In light of the estimate ‖∇γũ‖L2(γ) ≤ ‖ f̃ ‖H−1
# (γ)

and (1.15) we deduce that
‖g̃i ‖L2(γ) ≤ C‖ f̃ ‖L2(γ∩Ui )

. Recalling (1.13) we can rewrite ∆γui in the paramet-
ric domainVi as

div
(
qi(y)gi(y)−1∇u(y)

)
= qi(y)g̃i(χ(y)) ∀ y ∈ Vi,

and observe that this is a uniformly elliptic problem with C1 coefficients. Ap-
plying interior regularity theory [Eva98], we deduce

‖ui ‖H2(χ−1(Wi ))
≤ C‖gi ‖L2(Ui ).

Therefore, adding over i and using the finite overlap property of the setsUi , we
end up with

‖ũ‖H2(γ) ≤

I∑
i=1
‖ũi ‖H2(Wi )

≤ C
I∑

i=1
‖g̃i ‖L2(Ui ) ≤ C‖ f̃ ‖L2(γ),

as asserted.

In view of our discussion below of surfaces of class C1,α with 0 < α ≤ 1,
it is natural to ask whether the regularity estimate (1.20) is still valid in this
more general context. We now show that this is indeed the case provided the
surface γ is of classW2

p with p > n, or equivalently the parametrizations {χi}
I
i=1

and partitions of unity {ψ̃i}Ii=1 subordinate to the covering {Wi}
I
i=1 of γ are of

class W2
p . In this case a Sobolev embedding implies γ is of class C1,α with

0 < α = 1 − n
p ≤ 1.
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Lemma 4 (regularity for W2
p surfaces). If γ is of class W2

p with n < p ≤ ∞, then
there is a constant C > 0 depending on γ, p and n such that

‖ũ‖H2(γ) ≤ C‖ f̃ ‖L2(γ). (1.21)

Proof. We argue with one chart (V,U, χ) and thus suppress the index i in g, χ,
etc. Since f̃ ∈ L2(γ) and ũ ∈ H1(γ), the right-hand side g = g̃ ◦ χ in the proof
of Lemma 3 (regularity) satisfies

g ∈ Lr0 (V)
1
r0
=

1
2
+

1
p
.

On the other hand, the definitions (1.1) and (1.5) of the first fundamental form g
and area element q imply that they are bounded in L∞(V) as well as

g, q ∈ W1
p(V) ⇒ A := qg−1 ∈ W1

p(V).

Therefore, the Laplace-Beltrami equation in the parametric domain V can be
written in non-divergence form as follows:

A : D2u = qg − div (A) · ∇u = ` ∈ Lr0 (V). (1.22)

Since A is uniformly continuous, the Calderón-Zygmund regularity theory ap-
plies (cf. [GT98, Theorem 9.15 and Lemma 9.17]) and gives the interior regu-
larity u ∈ W2

r0
(Z) with

‖u‖W 2
r0 (Z)

. ‖`‖Lr0 (V)

where Z := χ−1(W) and W ⊂ U as in the proof Lemma 3 (regularity).
Invoking Sobolev embedding again, we deduce

u ∈ W1
t1
(Z),

1
t1
=

1
r0
−

1
n
,

and ũ ∈ W1
t1
(γ) upon pasting these local estimates together over γ; hence u ∈

W1
t1
(V). We now iterate this argument and prove a recurrence relation by

induction. Suppose that a sequence of real numbers {rk, tk} is governed by the
relations t0 = 2 and

1
rk
=

1
p
+

1
tk
,

1
tk+1
=

1
rk
−

1
n
,

and the right hand side of (1.22) satisfies ` ∈ Lrk (V); note that this is the case
for k = 0. Calderón-Zygmund theory thus implies u ∈ W2

rk
(Z) with

‖u‖W 2
rk
(Z) . ‖`‖Lrk

(Z).

Sobolev embedding in turn yields u ∈ W1
tk+1
(V) whence ` ∈ Lrk+1 (V), which

proves the recurrence relation. Iterating these relations we see that for k ≥ 0

1
rk
=

1
rk−1

+
1
p
−

1
n
=

1
2
+

1
p
+ k

( 1
p
−

1
n

)
,
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and that every step increases the value of rk , because 1
p −

1
n < 0. Since f̃ ∈ L2(γ),

the iteration stops once rk ≥ 2 or equivalently

k =
⌈ n

p − n

⌉
.

This concludes the proof.

1.2.3 Signed Distance Function

We now take advantage of the ambient space Rn+1 and use standard calculus in a
suitable tubular neighborhood N of γ to derive useful expressions of geometric
quantities; we postpone momentarily the precise definition of N . The surface
γ splits Rn+1 into two disjoint sets, the interior and exterior of γ. The signed
distance function d : N → γ is defined for every x ∈ N to be the distance of x
to γ, dist(x, γ), if x belongs to the exterior of γ and − dist(x, γ) if x belongs to
the interior of γ, whence

|d(x)| = dist(x, γ) ∀ x ∈ N .

It turns out that d belongs to the same regularity class as γ so long as γ is at
least C2, which we henceforth assume in our discussion of d. While the distance
function exists for surfaces of regularity less than C1,1, as we explain in Section
1.2.5 below its properties are drastically different and it is not immediately useful
for purposes of defining and analyzing surface FEM. Returning to the setting of
C2 surfaces, ∇d(x) is well defined for all x ∈ N and computed on γ gives the
unit normal ν(x) pointing outwards:

ν(x) = ∇d(x) ∀ x ∈ γ.

Since ∇d is defined in N it provides a natural extension of ν to N . This
neighborhood N is sufficiently small that for every x ∈ N there is a unique
closest point projection Pd(x) ∈ γ defined by

Pd(x) = x − d(x)∇d(x) ∀ x ∈ N . (1.23)

An important property is that ∇d coincides at x ∈ N and Pd(x) ∈ γ:

∇d(x) = ∇d
(
Pd(x)

)
= ∇d

(
x − d(x)∇d(x)

) ∀ x ∈ N . (1.24)

Since |∇d(x)|2 = 1, we deduce that the Hessian D2d(x) satisfies

D2d(x) ∇d(x) = 0 ∀ x ∈ N . (1.25)

This implies that D2d(x) can be regarded as an operator acting on the tangent
hyperplane to γ at x ∈ γ and thus gives an alternative representation to the
Weingarten map (1.11):

W(x) = D2d(x) ∀ x ∈ γ.
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This has two important consequences. First it provides a natural extension of W
toN and second shows that W is symmetric, which is not apparent from (1.11).

Given a generic function ṽ : γ → R, the distance function d provides a
natural way to extend it to the neighborhood N upon writing

v(x) = ṽ
(
Pd(x)

)
= ṽ(x − d(x)∇d(x)) ∀ x ∈ N . (1.26)

Differentiating and using the definition (1.3) of orthogonal projection, we obtain

∇v(x) =
(
I − ∇d(x) ⊗ ∇d(x) − d(x)D2d(x)

)
∇γ ṽ

(
Pd(x)

)
=

(
Π(x) − d(x)D2d(x)

)
∇γ ṽ

(
Pd(x)

)
=

(
I − d(x)D2d(x)

)
Π(x)∇γ ṽ

(
Pd(x)

) (1.27)

where the last equality hinges on (1.24), which implies Π(x) = Π(Pd(x)) and
D2d(x) = D2d(x)Π(x). In particular, ∇v(x) = ∇γ ṽ

(
Pd(x)

)
for x ∈ γ because

(1.26) provides a normal extension of ṽ .
Suppose now that v is an extension of ṽ toN , but not necessarily in the normal

direction. An intrinsic definition of tangential gradient of ṽ is the orthogonal
projection of ∇v to the tangent hyperplane of γ:

∇γ ṽ(x) =
(
I − ν(x) ⊗ ν(x)

)
∇v(x) = Π(x)∇v(x) ∀ x ∈ γ. (1.28)

This definition is consistent with (1.10): ∇γ ṽ(x) is orthogonal to ν(x) and

∇γ ṽ(x) · ∂iχ(y) = ∇v(x) · ∂iχ(y) = ∂i ṽ(χ(y))

obeys the chain rule, whence it must coincide with our previous definition based
on these two properties. An important consequence of this property follows.

Remark 5 (parametric independence). The definition (1.28) is independent of
the extension: if v1, v2 are two extensions of ṽ then v1 − v2 = 0 on γ and the
only non-vanishing component of ∇(v1 − v2) is in the normal direction ν. Since
definitions (1.28) and (1.10) agree, we deduce that the tangential gradient ∇γ ṽ is
independent of the parametrization χ chosen to described γ. The same happens
with the tangential divergence (1.12) as well as the Laplace-Beltrami operator
(1.13), the latter because of (1.14) and the fact that (1.8) is independent of χ.

Given a vector field ṽ : γ → Rn+1 and corresponding extension to N , the
tangential divergence can be written as

divγ (̃v(x)) = trace
(
∇γṽ(x)

)
= div (v(x)) − ν(x)t ∇v(x)ν(x) ∀ x ∈ γ,

and gives an alternative expression to (1.12). Likewise, the Laplace-Beltrami
operator ∆γ ṽ = divγ

(
∇γ ṽ

)
, written parametrically in (1.13), can be equivalently

written in terms of the extension v as follows

∆γ ṽ = trace
(
(I − ν ⊗ ν)D2v

)
− (∇v · ν) divγ (ν) ,

because ∇γ(∇ν · ν) · ν = 0. This implies the expression

∆γ ṽ(x) = ∆v(x) − ν(x)tD2v(x)ν(x) − (∇v · ν)(x) divγ (ν(x)) ∀ x ∈ γ.
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1.2.4 Curvatures

We again assume that γ is of class C2. In view of (1.11), the Weingarten map
is symmetric and its n + 1 eigenvalues are real. Except for the zero eigenvalue
corresponding to the eigenvector ν(x), according to (1.25), they are called the
principal curvatures of γ at x and are denoted by κi(x) for 1 ≤ i ≤ n. The eigen-
vectors of W corresponding to the principal curvatures are called the principal
directions.

We stress that κi(x) is well defined for all x ∈ N because so is W(x). This
allows us to make the definition of N precise. Given δ > 0, first let

N(δ) := {x ∈ Rn+1 : |d(x)| < δ}. (1.29)

Let also

K(x) := max
1≤i≤n

|κi(x)| ∀ x ∈ γ; K∞ := ‖K ‖L∞(γ). (1.30)

We may now set

N :=
{
x ∈ Rn+1 : dist(x, γ) < 1

2K∞

}
= N (K∞/2) . (1.31)

Note that the distance function, closest point projection, and related properties are
defined and hold on the larger setN(1/K∞). We adopt themore limited definition
of N in order to avoid degeneration of some quantities such as curvature of
parallel surfaces (see below) that occurs near the boundary of the larger set.

Given ε small so that |ε | ≤ 1
2K∞ , we define the parallel surface γε to be

γε :=
{
x ∈ N : d(x) = ε

}
.

The following statement relates the principal curvatures of γε with those of γ.

Lemma 6 (curvatures of parallel surface). If γ is of class C2 so are all parallel
surfaces γε and their principal curvatures satisfy

κi(x) =
κi(Pd(x))

1 + ε κi(Pd(x))
∀ x ∈ γε, (1.32)

whereas the principal directions at x and Pd(x) coincide.

Proof. Differentiate (1.24) to get

D2d(x) = D2d
(
Pd(x)

) (
I − ∇d(x) ⊗ ∇d(x) − d(x)D2d(x)

)
,

whence, since ∇d(x) = ∇d
(
Pd(x)

)
again from (1.24),(

I+d(x)D2d
(
Pd(x)

) )
D2d(x) = D2d

(
Pd(x)

) (
I−∇d(x)⊗∇d(x)

)
= D2d

(
Pd(x)

)
.
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Therefore, for x ∈ γε we see that the eigenvalues of
(
I + εD2d

(
Pd(x)

) )
are

κi
(
I + εD2d

(
Pd(x)

) )
= 1 + εκi

(
Pd(x)

)
≥

1
2
,

according to (1.31). This implies that I + εD2d
(
Pd(x)

)
is nonsingular and the

previous relation reads as follows in terms of the Weingarten map:

W(x) =
(
I + εW

(
Pd(x)

) )−1W
(
Pd(x)

)
.

This shows that the eigenvectors of W(x) and W
(
Pd(x)

)
coincide and the eigen-

values are related via (1.32).

The second fundamental form h = (hi j)ni, j=1 of γ is defined by

hi j(y) := −∂iν(y) · ∂iχ(y) = ν(y) · ∂i jχ(y) ∀ y ∈ V,

where the last equality relies on the fact that ν and ∂jχ are orthogonal for
1 ≤ j ≤ n. The next result connects h with the Weingarten map (1.11).

Lemma 7 (second fundamental form). The symmetric matrix W = Dγν defines
a selfadjoint operator on the tangent hyperplane to γ that can be represented in
the basis {∂jχ}nj=1 by the generally non-symmetric matrix

s = −hg−1.

The eigenvalues of s are the principal curvatures of γ.

Proof. Since Dγν ν = 0, we can regard Dγν as an operator acting on the tangent
plane to γ and represent its image in terms of {∂kχ}nk=1 as follows

∂iν(y) = Dγν(x) ∂iχ(y) =
n∑

k=1
sik(y) ∂kχ(y) ∀ y ∈ V .

Let s(y) := (si j(y))nij,=1 and multiply both sides by ∂jχ(y) to see that

hi j(y) = −∂iν(y) · ∂jχ(y) =
n∑

k=1
sik∂kχ(y) · ∂jχ(y) =

n∑
k=1

sikgk j .

This implies h = −sg and thus the assertion.

1.2.5 Surface regularity and properties of the distance function

In the previous two sections we have seen that when γ is of class C2, the closest
point projection is uniquely defined in a tubular neighborhood of γ whose width
is related to the principal curvatures of the surface. We shall see below that the
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closest point projection plays a pivotal role in analyzing finite element methods
on C2 surfaces. On the other hand, some applications may require solving PDE
on surfaces that are less regular thanC2. Thus it is natural to askwhich properties
of the distance function and closest point projection carry over to less regular
surfaces. It turns out that the properties of these maps change drastically and
fundamentally when crossing the threshold from C2 to less regular (C1,α with
α < 1) surfaces.

In order to make this statement precise, we begin by restating for compar-
ison from [GT98, Lemma 14.16] some fundamental properties of the distance
function for Ck surfaces (k ≥ 2).

Lemma 8 (properties of distance functions for Ck surfaces). Let γ be a Ck

surface, k ≥ 2. Then there exists a positive constant δ depending on γ such that
d ∈ Ck(N(δ)). In addition, the closest point projection Pd(x) = x − d(x)∇d(x)
is defined and of class Ck−1 on N(δ) with δ < 1

K∞
.

We now ask whether a similar statement holds for k < 2, and in particular
for k = 1. Note first that the distance function d to any closed set γ ⊂ Rn+1 is
defined and Lipschitz continuous [Fed59, Theorem 4.8.1], so the first question
at hand is whether distance functions for C1,α surfaces (0 ≤ α < 1) are more
than Lipshitz continuous.

In order to understand the relationship between surface regularity and the
distance function map, we first define the reach of a surface γ:

reach(γ) := sup
{
δ ≥ 0 : all x ∈ N(δ) have a unique closest point Pd(x) ∈ γ

}
.

For aC2 surface γ, we have already seen that reach(γ) = 1/K∞. We now explore
the connection between the reach and properties of the distance function for less
regular surfaces. We first define

U(γ) := {x ∈ Rn+1 : x has a unique closest point in γ}.

The following result may be found in [Fed59, Theorem 4.8.3].

Lemma 9 (properties of differentiable distance functions). If γ is a C1 surface,
x ∈ Rn+1 \ γ, and d is differentiable at x, then x ∈ U(γ). In particular, if d is
differentiable in a neighborhood of γ, then reach(γ) > 0.

Next we define several constants from the technical report [Luc57]. Given
x ∈ γ and ρ ≥ 0, we first define the closed normal segment

S(x, ρ) := [x − ρν(x), x + ρν(x)].
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Let Bρ(y) denotes the ball in Rn+1 of center y and radius ρ > 0, and

1
r0

:= sup
x,y∈γ,x,y

|ν(x) − ν(y)|
|x − y| ,

1
r0 ′

:= sup{ρ ≥ 0 : S(x, ρ) ∩ S(y, ρ) = ∅ ∀x, y ∈ γ, x , y},

1
r0 ′′

:= sup{ρ ≥ 0 : Bρ(x ± ρν(x)) contain respectively no points

interior or exterior to γ for all x ∈ γ},
1

r0 ′′′
:= sup

x,y∈γ,x,y

|2(y − x) · ν(x)|
|y − x|2

.

Combining [Luc57, Theorem 1] and noting that r0 bounds the Lipschitz
constant of γ (cf. the comment on p. 15 of [Luc57]), we have the following.

Lemma 10 (further properties of C1 surfaces). If the surface γ is of class C1,
then the constants r0, r0

′, r0
′′, and r0

′′′ are all equal. In addition, if r0 > 0 then
γ is of class C1,1.

Combining the previous lemmaswith the statement in [Fed59, Theorem 4.18]
that r0

′′′ = reach(γ) yields the following result.

Theorem 11 (C1 distance function implies C1,1 surface). If the distance func-
tion d associated to a C1 surface γ is continuously differentiable in a tubular
neighborhoodN(δ) of γ for some δ > 0, then γ is of class C1,1. In addition, any
C1 surface with positive reach is of class C1,1.

The preceding results establish that the properties of the distance function
and the associated closest point projection for C2 surfaces that we previously
discussed are inherently connected with surfaces of bounded curvature. This
can be seen both in Theorem 11 (since the curvatures are defined and bounded
almost everywhere on a C1,1 surface) and in the definition of the constant r0

′′

(since for x ∈ γ, the supremum over the radii ρ for which Bρ(x ± ρν(x)) ∩ γ = ∅
is the inverse of the maximum principal curvature at x).

For our purposes, Theorem 11 is essentially a negative result in that it es-
tablishes that the distance function and closest point projection are of limited
immediate use for surfaces that are less regular than C1,1. In particular, in this
case the closest point projection is not uniquely defined on any tubular neigh-
borhood of γ. In addition, the regularity of the distance function does not vary
continuously with that of γ, since for a C1,α surface with α < 1 Theorem 11
establishes that d is only Lipschitz. Thus we must use different tools when
considering surface finite element methods on less regular surfaces than C2.
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1.2.6 Divergence Theorem on Surfaces

We conclude this section with an application of calculus in Rn+1 to derive an
integration by parts formula on not necessarily closed surfaces.

Proposition 12 (divergence theorem). Let γ be a compact, oriented surface of
class C2 with Lipschitz boundary ∂γ. Let H =

∑n
i=1 κi be the total curvature of

γ and µ be the unit outward normal to ∂γ lying in the tangent hyperplane to γ.
If ṽ : γ → R ∈ H1(γ), then∫

γ
∇γ ṽ =

∫
γ

ṽ Hν +

∫
∂γ

ṽµ.

Proof. Given ε < 1
2K∞ we define the tubular set

Ωε :=
{
z = x + ρν(x) : x ∈ γ, |ρ| < ε

}
;

note that Pd(z) = x for all z ∈ Ωε . We decompose the boundary ∂Ωε of Ωε into

γ±ε :=
{
x ± εν(x) : x ∈ γ

}
, λε := ∂Ωε \ (γε ∪ γ−ε).

The sets γ±ε are parallel surfaces to γ whereas λε is the lateral boundary of size
2ε. We first assume that ṽ is of class C1, let v be an extension of ṽ toΩε of class
C1(Ωε), and apply the divergence theorem in Ωε to obtain∫

Ωε

∇v =
∫
∂Ωε

vνε =
∫
γε

v ν ◦ Pd −

∫
γ−ε

v ν ◦ Pd +

∫
λε

v µ ◦ Pd,

where νε is the unit outward normal of ∂Ωε . We divide both sides of this
equality by 2ε, the thickness ofΩε and compute the limits as ε → 0. According
to (1.27) we first see that

1
2ε

∫
Ωε

∇v =
1
2ε

∫
Ωε

(
I − d(x)D2d(x)

)
∇γ ṽ(Pd(x))dx−→

ε→0

∫
γ
∇γ ṽ .

Likewise
1
2ε

∫
λε

v µ ◦ Pd −→
ε→0

∫
∂γ

ṽ µ.

Moreover, since ν ◦ Pd = ∇d, we infer that

lim
ε→0

1
2ε

( ∫
γε

v ν ◦ Pd −

∫
γ−ε

v ν ◦ Pd

)
=

d
dρ

∫
γρ

v ∇d
���
ρ=0

=
d
dρ

∫
V

v(x) ∇d
(
x + ρ∇d(x)

)
qρ(y)dy

���
ρ=0

with x = χ(y) ∈ γ and qρ(y) denotes the infinitesimal area associated with
the surface γρ := {z = x + ρν(x) : x ∈ γ}. Since d

dρ∇d
(
x + ρ∇d(x)

)
=
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D2d
(
x + ρ∇d(x)

)
∇d(x) = 0, it remains to evaluate d

dρqρ. We resort to (1.53)
(shown below) with Γ = γρ and use that νρ · ν = 1 as well as (1.32) to write

qρ(y)
q(y) =

1

det
(
I − ρD2d(x)

) = 1∏n
i=1

(
1 − ρκi(x)

) = n∏
i=1

(
1 + ρκi(Pd(x))

)
.

We finally observe that

d
dρ

qρ(y)
���
ρ=0
= q(y)

n∑
i=1

κi(Pd(x)) = q(y)H(Pd(x))

to conclude the proof for t̃v of class C1. The assertion for ṽ ∈ H1(γ) follows by
density of C1(γ) in ṽ ∈ H1(γ).

Applying Proposition 12 (divergence theorem) to a vector field ṽ : γ → Rn+1

and computing the trace yields the more familiar expression∫
γ
divγṽ =

∫
γ

Hṽ · ν +
∫
∂γ

ṽ · µ.

Corollary 13 (integration by parts). Let γ be a surface of classC2 with Lipschitz
boundary ∂γ. If ṽ, w̃ : γ → R satisfy ṽ ∈ H2(γ) and w̃ ∈ H1(γ), then∫

γ
w̃ ∆γ ṽ + ∇γw̃ · ∇γw̃ =

∫
∂γ

w̃ ∇γ ṽ · µ.

Proof. Apply the previous equality to ṽ = w̃ ∇γ ṽ .

1.3 PERTURBATION THEORY

In most surface finite element methods, the approximate problem is not posed on
the continuous surface γ. This may occur either for convenience, or because γ
is not known precisely. Examples of only incomplete information being present
in simulations include free boundary problems such as two-phase flow and cases
where γ is reconstructed from some sort of imaging data.

The purpose of this section is to investigate how geometric quantities change
under perturbation of the surface γ. To this end, suppose that Γ is a closed
Lipschitz surface (not necessarily C2). We use a subscript Γ to denote geometric
quantities associated with Γ: χΓ (parametrization), gΓ (first fundamental form),
qΓ (area element), νΓ (unit normal), ∇Γ (tangential gradient), andΠΓ (orthogonal
projection onto Γ).

Let ũ ∈ H1
# (γ) solve (1.19) and uΓ ∈ H1

# (Γ) solve∫
Γ

∇ΓuΓ · ∇Γv =
∫
Γ

fΓv ∀ v ∈ H1
# (Γ), (1.33)
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for a given forcing fΓ ∈ L2,#(Γ). To examine the error between u and uΓ, we first
have to study how the bilinear forms in (1.19) and (1.33) changewhen changing γ.
This amounts to deriving expressions for the error matrices E,EΓ ∈ R(n+1)×(n+1)

in the error equations∫
Γ

∇Γv · ∇Γw −
∫
γ
∇γ ṽ · ∇γw̃ =

∫
γ
∇γ ṽ · E∇γw̃ =

∫
Γ

∇Γv · EΓ ∇Γw, (1.34)

valid for all v,w ∈ H1(Γ) and ṽ, w̃ ∈ H1(γ) the corresponding lifts. We carry
out this program below within two scenarios depending on the regularity of γ.
We alert the reader about the following abuse of notation: the matrix E (resp.
EΓ) is defined in γ (resp. Γ), but we will often write them in the parametric
domainV thereby identifying E (resp. EΓ) with E ◦ χ (resp. EΓ ◦ χΓ).

1.3.1 Perturbation Theory for C1,α Surfaces

Let γ be of class C1,α and χ and χΓ be the parametrizations of γ and Γ. They
dictate the relation between ṽ and v , the former defined on γ and the latter on Γ,

v = ṽ ◦ χ ◦ χ−1
Γ .

In the sequel, we first establish a relation between ∇γ ṽ and ∇Γv and next use it
to characterize E and EΓ.
Lemma 14 (relation between tangential gradients). If ṽ : γ → R is of class H1,
then the tangential gradients ∇γ ṽ and ∇Γv satisfy

∇Γv = DχΓ g−1
Γ Dχt ∇γ ṽ, ∇γ ṽ = Dχ g−1 Dχt

Γ
∇Γv . (1.35)

Proof. We concatenate (1.10) and (1.9) to write

∇Γv = DχΓ g−1
Γ ∇(v ◦ χΓ) = DχΓ g−1

Γ ∇(̃v ◦ χ) = DχΓ g−1
Γ Dχt ∇γ ṽ,

which is the first asserted expression provided ũ is of class C1. Using the density
of C1(γ) in H1(γ) for a surface γ of class C1,α, the first assertion follows. The
second one follows similarly.

Lemma 15 (geometric consistency). The error matrices E and EΓ read onV

E = Dχ
( qΓ

q
g−1
Γ − g−1

)
Dχt, (1.36)

EΓ = DχΓ

(
g−1
Γ −

q
qΓ

g−1
)
Dχt
Γ
. (1.37)

Proof. Using (1.35), together with the definition (1.1) of gΓ = Dχt
Γ

DχΓ, yields∫
Γ

∇Γv · ∇Γw =
∫
γ
∇γ ṽ ·

qΓ
q

(
Dχg−1

Γ Dχt )∇γw̃.
Since ∇γ ṽ = Π∇γ ṽ = Dχ g−1 Dχt∇γ ṽ , according to (1.4), the first equality in
(1.34) follows immediately. The proof of the second equality is similar.
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Our task now is to relate g − gΓ and q − qΓ with D(χ − χΓ). We accomplish
this next but first we introduce some additional concepts. For any y ∈ V, we
denote by |Dχ(y)| (resp. |D−χ(y)|) the largest (resp. smaller) singular value of
Dχ(y). Given the relation g = Dχt Dχ, these quantities are the square roots of
the largest and smallest eigenvalues of g. We define the stability constant

Sχ := sup
y∈V

max
{
|Dχ(y)|, |DχΓ(y)|

}
min

{
|D−χ(y)|, |D−χΓ(y)|

} (1.38)

and point out that it is a measure of non-degeneracy of Dχ and DχΓ. We further
define the following relative measure of geometric accuracy

λ∞ := sup
y∈V

|D(χ − χΓ)(y)|
min

{
|D−χ(y)|, |D−χΓ(y)|

} . (1.39)

Lemma 16 (error estimates for g and q). The following error estimates are valid

‖I − gΓg−1‖L∞(V), ‖I − g−1
Γ g‖L∞(V) . Sχ λ∞, (1.40)

‖1 − q−1qΓ‖L∞(V), ‖1 − q−1
Γ q‖L∞(V) . Sn

χ λ∞. (1.41)

Proof. Since |Dχ | = |Dχt |, |g−1 | ≤ |D−χ |−2 and

(g − gΓ)(y) = Dχ(y)tD(χ − χΓ)(y) + D(χ − χΓ)(y)tDχΓ(y) ∀ y ∈ V,

the first assertion in (1.40) follows; the second one is similar. To prove (1.41),
we write

q(y) − qΓ(y) =
det g(y) − det gΓ(y)

q(y) + qΓ(y)
∀ y ∈ V,

and note that q =
√

det g =
√∏n

i=1 λi(g) where {λi(g)}ni=1 are the eigenvalues of
g. Utilizing the definitions of |Dχ | and |D−χ | we end up with

|D−χ(y)|n ≤ q(y) ≤ |Dχ(y)|n ∀ y ∈ V . (1.42)

Since det g − det gΓ is the sum of terms of the form ∂iχ · ∂jχ − ∂iχΓ · ∂jχΓ
multiplied by n − 1 factors bounded by |Dχ |, we deduce

|q(y)−1(q − qΓ)(y)| . |D−χ(y)|−n |D(χ − χΓ)(y)| |Dχ(y)|n−1 ∀ y ∈ V .

This is the first assertion in (1.41) in disguise. The second one is similar.

Lemma 17 (norm equivalence). Let γ and Γ be Lipschitz surfaces which are
related via a bi-Lipschitz map P = χ ◦ χ−1

Γ
: Γ → γ. Then there is a constant

C ≥ 1, depending on the stability constant Sχ in (1.38), such that

C−1‖v ‖L2(Γ) ≤ ‖ṽ ‖L2(γ) ≤ C‖v ‖L2(Γ) ∀ ṽ ∈ L2(γ), (1.43)

C−1‖∇Γv ‖L2(Γ) ≤ ‖∇γ ṽ ‖L2(γ) ≤ C‖∇Γv ‖L2(Γ) ∀ ṽ ∈ H1(γ). (1.44)
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Proof. Use (1.9) and (1.10) in conjunction with (1.8).

Lemma 2 (Poincaré-Friedrichs inequality) holds on the perturbed surface Γ
but with a constant depending on Γ. In order to avoid this dependence, and
thus obtain a uniform constant in Γ, it is only necessary that Lemma 17 (norm
equivalence) be valid. Before stating our result, we first define a class of surfaces.
Given a Lipschitz surface γ, we let Seq be the class of Lipschitz surfaces Γ such
that Lemma 17 (norm equivalence) holdswith uniform equivalence constantCeq .
Note that implicit in this definition is the existence of a bi-Lipschitz bijection
P : Γ→ γ for each Γ ∈ Seq , for instance P = χ ◦ χ−1

Γ
.

Lemma 18 (uniform Poincaré-Friedrichs constant). Given a Lipschitz surface
γ, for every v ∈ H1

# (Γ) with Γ ∈ Seq there holds that

‖v ‖L2(Γ) . ‖∇Γu‖L2(Γ) (1.45)

with the constant hidden in . depending only on γ and Ceq .

Proof. We argue by contradiction the validity of

‖v ‖L2(Γ) ≤ C‖∇Γv ‖L2(Γ) ∀ v ∈ H1(Γ)

and all Γ ∈ Seq with uniform constant C. We thus assume the existence of a
sequence of surfaces Γk ∈ Seq and functions vk ∈ H1

# (Γk) such that

‖vk ‖L2(Γk ) = 1 ‖∇Γk vk ‖L2(Γk ) → 0

as k →∞. We denote by Pk : Γk → γ the associated bi-Lipschitz bijections and
by ṽk = vk ◦ P−1

k
the lifts of the functions vk to γ. Since Γk ∈ Seq , the estimates

of Lemma 17 (norm equivalence) hold with uniform constant Ceq for each Γk ,
whence ṽk ∈ H1(γ) and

‖ṽk ‖L2(γ) ' 1, ‖∇γ ṽk ‖L2(γ) → 0

as k → ∞. Proceeding as in Lemma 2 (Poincaré-Friedrichs inequality), we
deduce that a subsequence of {ṽk}k , still denoted {ṽk}k , converges in H1(γ) to
a function ṽ ∈ H1(γ) with ∇γ ṽ = 0; this implies that ṽ is constant. To show that
ṽ = 0, let ε > 0 be arbitrary and k sufficiently large so that ‖ṽk − ṽ ‖L2(γ) ≤ ε .
Exploiting that ṽ is constant and

∫
Γk

vk = 0, we use Lemma 17 to compute

|ṽ | = |Γk |−1
����∫
Γk

ṽ
���� = |Γk |−1

����∫
Γk

ṽ − vk

����
≤ |Γk |

−1/2‖ṽ − vk ‖L2(Γk ) ≤ Ceq |Γk |
−1/2‖ṽ − ṽk ‖L2(γ) ≤ Ceq |Γk |

−1/2ε .

Applying again Lemma 17, now to the function 1, yields |Γk | ' |Γ | with constant
depending only on Ceq , so that |ṽ | . ε . Since ε is arbitrary, we must thus have
ṽ = 0. This contradicts ‖ṽk ‖L2(γ) ' 1 because ‖ṽk ‖L2(γ) → ‖ṽ ‖L2(γ) = 0.
Consequently, the desired statement is proved.
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Lemma 19 (perturbation error estimate for C1,α surfaces). Let ũ ∈ H1
# (γ) solve

(1.19) and uΓ ∈ H1
# (Γ) solve (1.33). Then, the following error estimate for u−uΓ

holds

‖∇γ(ũ − ũΓ)‖L2(γ) . λ∞‖ fΓ‖H−1
# (Γ)
+ ‖ f qq−1

Γ − fΓ‖H−1
# (Γ)

, (1.46)

where the hidden constant depends on Sχ defined in (1.38).

Proof. We proceed in several steps.
Step 1: error representation. Let ṽ = ũ − ũΓ and make use of (1.34) to write

‖∇γ(ũ − ũΓ)‖2L2(γ)
=

∫
γ
∇γũ · ∇γ ṽ −

∫
Γ

∇ΓuΓ · ∇Γv +
∫
γ
∇γũΓ · E∇γ ṽ .

We next employ the equations (1.19) and (1.33) satisfied by ũ and uΓ to obtain

‖∇γ(ũ − ũΓ)‖2L2(γ)
=

∫
Γ

(
f

q
qΓ
− fΓ

)
v +

∫
γ
∇γũΓ · E∇γ ṽ,

where we have also employed (1.8) to switch the domain of integration of f .

Step 2: geometric error matrix. To derive a bound for ‖E‖L∞(γ), we rewrite E

E = Dχ
( (

q−1qΓ − 1
)
g−1
Γ − g−1 (I − gg−1

Γ

) )
Dχt .

Since |g−1 | = |D−χ |−2, |g−1
Γ
| = |D−χΓ |

−2, applying (1.40) and (1.41) leads to
the error estimate

‖E‖L∞(γ) . λ∞. (1.47)

Step 3: final estimates. The Cauchy-Schwarz inequality yields∫
γ
∇ũΓ · E∇γ ṽ ≤ ‖∇γ ṽ ‖L2(γ)‖∇γũΓ‖L2(γ)‖E‖L∞(γ).

To derive a bound for ‖∇γũΓ‖L2(γ), we first combine (1.17) with (1.33) to obtain
‖∇ΓuΓ‖L2(Γ) ≤ ‖ fΓ‖H−1

# (Γ)
, and next appeal to Lemma 17 (norm equivalence).

On the other hand, we recall that f q
qΓ
− fΓ has vanishing mean-value on Γ, let

v = |Γ |−1
∫
Γ

v be the mean-value of v , and use (1.17) to arrive at∫
Γ

(
f

q
qΓ
− fΓ

)
v =

∫
Γ

(
f

q
qΓ
− fΓ

) (
v − v

)
≤ ‖ f qq−1

Γ − fΓ‖H−1
# (Γ)
‖∇Γv ‖L2(Γ).

Finally, applying Lemma 17 ends the proof.
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1.3.2 Perturbation Theory for C2 Surfaces

Let γ be of class C2 and the tubular neighborhood N satisfy (1.31), namely

N =
{
x ∈ Rn+1 : |d(x)| < 1

2K∞

}
, (1.48)

so that parallel surfaces to γ within N are also C2. We further assume that
Γ ⊂ N and the distance function projection Pd = I−d∇d : Γ→ γ is a bijection.
The parametrizations of γ and Γ are given by χ := Pd ◦ χΓ so that

v = ṽ ◦ Pd .

Lemma 20 (relation between tangential gradients). If ṽ : γ → R is of class H1,
then the tangential gradients ∇γ ṽ and ∇Γv satisfy for all x ∈ Γ

∇Γv(x) = ΠΓ(x)
(
I − dW

)
(x)Π(x)∇γ ṽ(Pd(x)), (1.49)

and

∇γ ṽ(Pd(x)) =
(
I − dW

)−1
(x)

(
I − νΓ(x) ⊗ ν(x)

νΓ(x) · ν(x)

)
∇Γv(x). (1.50)

Proof. Let us assume that ṽ ∈ C1(γ). Recalling (1.27) and (1.28), we readily
get

∇Γv(x) = ΠΓ(x)∇v(x) = ΠΓ(x)
(
I − dW

)
(x)Π(x)∇γ ṽ(Pd(x)),

hence (1.49). Since I − d(x)W(x) is invertible for all x ∈ N , according to the
definition (1.31) of N and shown in Lemma 6 (curvature of parallel surfaces),
(1.27) can be rewritten as

∇γ ṽ(Pd(x)) =
(
I − dW)(x)

)−1
∇v(x) ∀ x ∈ N .

To prove (1.50) we must relate ∇v and ∇Γv . First note that for x ∈ Γ

∇v = (I − νΓ ⊗ νΓ)∇v + νΓ ⊗ νΓ∇v = ∇Γv + (∇v · νΓ)νΓ .

Exploiting next that ∇v(x) · ν(x) = 0, because v(x) is constant in the normal
direction to Pd(x), yields

∇Γv · ν + (νΓ · ν)∇v · νΓ = 0 ⇒ ∇v · νΓ = −
1

νΓ · ν
∇Γv · ν .

Since ∇v = ∇Γv + (∇v · νΓ)νΓ, we deduce

∇v(x) =
(
I − νΓ(x) ⊗ ν(x)

νΓ(x) · ν(x)

)
∇Γv(x) ∀ x ∈ Γ.

Inserting this into the previous expression for∇γv(Pd(x)) leads to (1.50). Finally,
a density argument of C1(γ) in H1(γ) for γ of class C2 concludes the proof.



The Laplace-Beltrami Operator Chapter | 1 27The Laplace-Beltrami Operator Chapter | 1 27The Laplace-Beltrami Operator Chapter | 1 27

The following result mimics Lemma 15 (geometric consistency) except that
now it quantifies the effect of perturbing the surface γ on the bilinear forms
written in (1.34) in terms of Pd .

Lemma 21 (geometric consistency). The error matrices E,EΓ ∈ R(n+1)×(n+1) in
(1.34) are given on Γ by

E ◦ Pd :=
qΓ
q
Π

(
I − dW

)
ΠΓ

(
I − dW

)
Π − Π, (1.51)

EΓ :=
q
qΓ

(
I −

ν ⊗ νΓ
ν · νΓ

)
(I − dW)−2

(
I −

νΓ ⊗ ν

ν · νΓ

)
− ΠΓ . (1.52)

Proof. In view of (1.8), (1.49), and the fact that all matrices involved are sym-
metric and Π2

Γ
= ΠΓ, we can write∫

Γ

∇Γw · ∇Γv =
∫
γ
∇γw̃ ·

( qΓ
q
Π

(
I − dW

)
ΠΓ

(
I − dW

)
Π

)
∇γ ṽ

Noticing that ∇γw̃ = Π∇γw̃ the first equality on (1.34) follows immediately. The
second equality proceeds along the same lines but using (1.50) instead.

It is clear from Lemma 21 that the ratio of area elements q/qΓ matters. We
next derive a representation for q/qΓ for any dimension n, proved originally for
n = 2, 3 in [DD07, Dem09]. We stress that, in view of Remark 5 (parametric
independence), the solution u of the Laplace-Beltrami equation (1.18) is inde-
pendent of the parametrization of γ. This allows us to consider a convenient
parametrization χ for theory because it does not change the geometric objects
under consideration. We exploit this flexibility next.

Lemma 22 (relation between q and qΓ). Given any parametrization χΓ of Γ, let
χ := Pd ◦ χΓ be the parametrization of γ. If ν(x) · νΓ(x) ≥ 0 for all x ∈ Γ, then
the ratio of area elements q(y)/qΓ(y) with y = χ−1

Γ
(x) satisfies

q(y)
qΓ(y)

= det
(
I − d(x)W(x)

)
(ν(x) · νΓ(x)) ∀ x ∈ Γ. (1.53)

Proof. We start with the formula (1.5) for the area elements q and qΓ to get

q
qΓ
= det

(
[ν,Dχ] [νΓ,DχΓ]

−1
)
.

Wewrite [νΓ,DχΓ]
−1 = [v,A]t for some v ∈ Rn+1 andA ∈ R(n+1)×n to be found.

The identity [v,A]t [νΓ,DχΓ] = I yields v = νΓ while [νΓ,DχΓ][v,A]t = I gives
DχΓAt = I − νΓ ⊗ νΓ = ΠΓ and

[ν,Dχ] [νΓ,DχΓ]
−1 = ν ⊗ νΓ + Dχ At .
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To obtain an expression for Dχ, let x = χΓ(y) ∈ Γ and χ(y) = Pd(x) =
x − d(x)∇d(x) ∈ γ, and utilize the chain rule

Dχ(y) =
(
I − d(x)W(x)

)
Π(x)DχΓ(y) ∀ y ∈ V,

where we have argued as in (1.27). Compute now DχAt and use that DχΓAt =

ΠΓ together with Wν = 0 to arrive at

q
qΓ
= det

(
ν ⊗ νΓ + (I − dW)Π ΠΓ

)
= det

(
(I − dW)

(
ν ⊗ νΓ + Π ΠΓ

) )
= det

(
(I − dW)

)
det B.

where B := ν ⊗ νΓ + Π ΠΓ. It thus remains to show that det B = ν · νΓ.
We now embark on a spectral analysis of B. We first note that the statement

is trivial if ν = νΓ. We thus assume that {ν, νΓ} are linearly independent and
that the space X = span{ν, νΓ} is generated by two orthonormal vectors ν and
e. We consider the orthogonal decomposition Rn+1 = X ⊕ X⊥ and a rotation
R ∈ R(n+1)×(n+1) on X that maps ν into νΓ, namely

Rν = νΓ = cos θ ν + sin θ e, Re = − sin θ ν + cos θ e;

thus the rotation angle θ satisfies cos θ = ν · νΓ and det R = 1. Consequently,

B =
(
ν ⊗ ν + ΠRΠ

)
Rt ⇒ det B = det

(
ν ⊗ ν + ΠRΠ

)
.

The proof concludes upon realizing that ν and e are eigenvectors of ν⊗ν+ΠRΠ
with eigenvalues 1 and cos θ, and the remaining eigenvalues are 1with eigenspace
X⊥.

We are now ready to compare solutions u and uΓ of (1.19) on two nearby
surfaces γ and Γ. In essence, weak solutions u and uΓ are close in H1 provided
γ and Γ are close in a Lipschitz sense. Therefore, to make this statement
quantitative we introduce the following geometric quantities

d∞ := ‖d‖L∞(Γ), ν∞ := ‖ν − νΓ‖L∞(Γ), K∞ := ‖K ‖L∞(γ), (1.54)

where Γ ⊂ N is a Lipschitz surface. Our goal is to bound ‖u−uΓ‖H1
# (Γ)

in terms
of the forcing functions f , fΓ, and d∞, ν∞,K∞ in (1.54).

Lemma 23 (perturbation error estimate for C2 surfaces). Let u solve (1.19) and
uΓ solve (1.33) with Γ ⊂ N . Let χΓ and χ := Pd ◦ χΓ be the parametrizations
of Γ and γ that give rise to the area elements qΓ and q. If the normal vectors
satisfy ν · νΓ ≥ c > 0, then

‖∇γ(u − uΓ)‖L2(γ) .
(
d∞K∞ + ν2

∞

)
‖ fΓ‖H−1

# (Γ)
+ ‖ f qq−1

Γ − fΓ‖H−1
# (Γ)

. (1.55)
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Proof. We proceed along the lines of Lemma 19 (perturbation error estimate for
C1,α surfaces) and realize that Steps 1 and 3 are exactly the same. Therefore, we
only deal with the estimate of the geometric error matrix E. If we prove

‖E‖L∞(γ) . ν2
∞ + d∞K∞ , (1.56)

then the assertion will readily follow. We first write E ◦ Pd = I1 + I2 + I3 with

I1 :=
( qΓ

q
− 1

)
Π (I − dW)ΠΓ (I − dW)Π,

I2 :=
(
Π (I − dW)ΠΓ (I − dW)Π − Π ΠΓ Π

)
,

I3 :=
(
Π ΠΓ Π − Π

)
.

We now estimate these three terms separately. In view of (1.53) we deduce

q(y)
qΓ(y)

− 1 =
(
(ν(x) · νΓ(x) − 1)

n∏
i=1

(
1− d(x)κi(x)

) )
+

( n∏
i=1

(
1− d(x)κi(x)

)
− 1

)
,

where x = χΓ(y) ∈ Γ. Since 1 − ν · νΓ =
1
2 |ν − νΓ |

2 ≤ 1
2 ν

2
∞ and Γ ⊂ N , we

readily obtain ��� q(y)
qΓ(y)

− 1
��� . ν2

∞ + d∞K∞ ∀ y ∈ V, (1.57)

and a similar bound for qΓ
q because qΓ

q is bounded inV thanks to the assumption
ν · νΓ ≥ c > 0. The desired estimate for ‖I1‖L∞(γ) follows from the fact that
Π,ΠΓ and W are bounded. This property again, now combined with

I2 = −Π ΠΓ dWΠ − Π dWΠΓ Π + Π dWΠΓ dWΠ,

yields ‖I2‖L∞(γ) . d∞K∞. Finally, term I3 reads

I3 = −ΠνΓ ⊗ ΠνΓ = −
(
νΓ − (ν · νΓ)ν

)
⊗

(
νΓ − (ν · νΓ)ν

)
Since νΓ − (ν · νΓ)ν = (νΓ − ν)+ (1− ν · νΓ)ν we infer that ‖I3‖L∞(γ) . ν2

∞. This
ends the proof.

It is worth comparing Lemmas 19 and 23 (perturbation error estimates). To
do so, we next give an estimate for ν∞ in terms of λ∞.

Lemma 24 (error estimate for normals). The errors ν∞ and λ∞ defined in (1.54)
and (1.39) satisfy

ν∞ . λ∞, (1.58)

where the hidden constant depends on Sχ defined in (1.38).
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Proof. In view of the definition (1.2) of ν, we realize that

ν − νΓ =
N − NΓ
|N| +

|NΓ | − |N|
|N|

NΓ
|NΓ |

⇒ |ν − νΓ | ≤ 2
|N − NΓ |
|N| .

Since N =
∑n+1

i=1 det([ei,Dχ])ei and det([ei,Dχ]) − det([ei,DχΓ]) is a sum of
products of ∂j(χ − χΓ) · ek with k , i times n − 1 factors ∂`χm, we have�� det([ei,Dχ]) − det([ei,DχΓ])

�� . |D(χ − χΓ)| |Dχ |n−1.

We finally resort to |N| = q, proved in (1.7), as well as q ≈ |Dχ |n, showed in
the proof of Lemma 16, to conclude (1.58).

We now stress the advantage of using the distance function liftPd to represent
the error u − uγ whenever the surface γ is of class C2. Comparing (1.46) and
(1.55) we see that the geometric error becomes of order ‖d‖L∞(Γ) plus a quadratic
term in λ∞ rather than linear. In the context of finite element methods, Γ is often
a polyhedral approximation to γ having faces of diameter h. In this case ‖d‖L∞(Γ)
essentially becomes a Lagrange interpolation error measured in L∞ and λ∞ a
Lagrange interpolation error measured in W1

∞. The former error is of order h2

and the latter of order h. Consequently, the perturbation error for C2 surfaces
is of order h2, whereas for C1,α surfaces with α < 1 it is of order hα from
the analysis of the previous subsection. The increased approximation order for
C2 surfaces is a superconvergence effect. We also recall from Theorem 11 (C1

distance function impliesC1,1 surfaces) that the elegant properties of the distance
function and closest point projection that lead to this superconvergence effect are
not available when γ is not of classC2, thus the necessity of developing a separate
perturbation theory for less regular surfaces as in the previous subsection. It is
not clear whether the order of the perturbation error actually jumps in thismanner
when crossing from C1,α to C2 surfaces, or if this jump is an artifact of proof.

1.3.3 H2 extensions from C2 surfaces

The analysis of the trace and narrow band methods that we carry out in later
sections requires us to extend the solution ũ ∈ H2(γ) of (1.19) to tubular neigh-
borhoods N(δ) with the property

‖u‖H2(N(δ)) . δ
1
2 ‖ũ‖H2(γ); (1.59)

we recall thatN(δ) is defined in (1.29). The distance function lift Pd provides a
natural way to achieve this upon setting u = ũ ◦ Pd , namely

u(x) = ũ
(
x − d(x)∇d(x)

) ∀ x ∈ N(δ).

However, this is problematic because it requires Pd to be of class C2, and thus
γ of class C3, for (1.59) to hold. We now construct an extension that satisfies
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(1.59) for γ of class C2. Our approach employs a regularization dε of the signed
distance function d and construction of a regularized surface γε close to γ, with
the regularization parameter ε appropriately related to the desired value of δ
above. We begin by describing properties of this regularization.

Regularization. Recall that given γ of class C2 there exists a sufficiently thin
tubular neighborhood N so that the signed distance function d to γ satisfies
d ∈ C2(N). Let δ > 0 and ε = cδ ≤ δ

2 be sufficiently small so that the tubular
neighborhood N(δ) of width δ satisfies the property

N(δ + 2ε) ⊂ N .

Let Bε := B(0, ε) be the ball of center 0 and radius ε, ρε be a smooth and radially
symmetric mollifier with support in Bε and

dε(x) := d ? ρε(x) =
∫
Bε

d(x − y)ρε(y)dy ∀ x ∈ N(δ)

be a regularized distance function. This function dε induces the smooth surface

γε :=
{
x ∈ N : dε(x) = 0

}
,

but is not the signed distance function to γε , which we denote dε . The following
properties are immediate from the previous definitions.

Lemma 25 (properties of dε). If d ∈ C2(N), then dε satisfies

‖d − dε ‖L∞(N(δ)) + ε‖∇(d − dε)‖L∞(N(δ)) . ε2 |d |W 2
∞(N)

and ‖D2dε ‖L∞(N(δ)) . |d |W 2
∞(N)

. Moreover, the surface γε is smooth and the
Hausdorff distance distH (γ, γε) between γ and γε satisfies

distH (γ, γε) . ε2 |d |W 2
∞(N)

provided ε is small enough so that Cε |d |W 2
∞(N)
≤ 1

2 for a suitable constant C.

Proof. Since ρε is radially symmetric, we have that(
d − dε

)
(x) =

∫
Bε

(
d(x) − ∇d(x) · y − d(x − y)

)
ρε(y)dy

and
∇
(
d − dε

)
(x) =

∫
Bε

(
∇d(x) − ∇d(x − y)

)
ρε(y)dy.

These relationships imply the first assertion upon employing a Taylor expansion
of d and the Lipschitz nature of ∇d, respectively. We also note that

D2dε(x) =
∫
Bε

∇d(x − y) ⊗ ∇ρε(y)dy =
∫
Bε

∇

(
d(x − y) − d(x)

)
⊗ ∇ρε(y)dy
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because
∫
Bε
∇ρε(y)dy = 0 in view of the radial symmetry of ρε . The second

relationship bounding D2dε then follows from the Lipschitz nature of ∇d (i.e.
|∇(d(x− y) − d(x))| . ε, y ∈ Bε) and the standard property ‖∇ρε ‖L1(Bε ) . ε−1

of the mollifier.
To establish the smoothness of γε , note that the closeness of ∇d and ∇dε

implies that ∇dε is nondegenerate for Cε |d |W 2
∞(N)

≤ 1/2. The smoothness of
γε then follows from the implicit function theorem.

The last assertion is a consequence of the nondegeneracy of the distance
function: Given y ∈ γε let x = Pd(y) = y − d(y)∇d(y) ∈ γ be the closest point
to y and note that

|y − x| = |d(y)| = |d(y) − dε(y)| . ε2 |d |W 2
∞(N)

.

Likewise, given x ∈ γ let y(s) = x + s∇d(x). There is s ∈ (−ε, ε) such that
dε(y(s)) = 0. To see this, note that d(y(s)) = ±ε for s = ±ε and

dε(y(ε)) ≥ d(y(ε)) − Cε2 |d |W 2
∞(N)

= ε
(
1 − ε |d |W 2

∞(N)

)
> 0

provided Cε |d |W 2
∞(N)

≤ 1
2 ; similarly dε(y(−ε)) < 0. Letting y = y(s) be such

that dε(y(s)) = 0, we note that x = Pd(y), and so arguing as before we have that

|y − x| = |d(y)| = |d(y) − dε(y)| . ε2 |d |W 2
∞(N)

,

which concludes the proof.

We recall that dε is the signed distance function to the zero level set γε of
dε . Consider the C∞ lift

Pε(x) := x − dε(x)∇dε(x) ∀ x ∈ N(δ). (1.60)

It is natural and useful for later considerations to compare tubular neighborhoods
dictated by d and dε . Let

Nε(δε) := {x ∈ Rn+1 : |dε(x)| ≤ δε},

where we choose δε as follows depending on δ and ε. Given x ∈ N(δ) let
x̃ ∈ γ be the point at shortest distance, whence |x − x̃| ≤ δ, and let xε ∈ γε be
a point such that |̃x − xε | ≤ C |d |W 2

∞(N)
ε2 which is guaranteed to exist because

distH (γ, γε) ≤ Cε2 |d | ≤ ε in view of Lemma 25 (properties of dε). Therefore

|dε(x)| = dist(x, γε) ≤ |x−xε | ≤ |x−x̃|+ |̃x−xε | ≤ δ+C |d |W 2
∞(N)

ε2 ≤ δ+ε =: δε,

provided Cε |d |W 2
∞(N)
≤ 1; note that δε ≤ 3

2δ. This implies

N(δ) ⊂ Nε
(
δε

)
. (1.61)
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Similarly, using again Cε |d |W 2
∞(N)
≤ 1 in conjunction with Lemma 25 yields

Nε
(
δε

)
⊂ N(δε + ε) = N(δ + 2ε) ⊂ N .

The next lemma and corollary study important properties of dε and Pε , in
particular how derivatives degenerate with ε.

Lemma 26 (properties of dε). The function dε ∈ C∞(N(δ)) and satisfies

‖dε ‖W 2
∞(N(δ))

+ ε‖dε ‖W 3
∞(N(δ))

. |d |W 2
∞(N)

.

Moreover, the following error estimates hold

‖∇(d − dε)‖L∞(N(δ)) . δ |d |W 2
∞(N)

, ‖1 − ∇d · ∇dε ‖L∞(N(δ)) . δ2 |d |2
W 2
∞(N)

.

Proof. Since dε(x) = 0 and |∇dε(x)| ≥ 1
2 for all x ∈ γε , fix x0 ∈ γε and a system

of coordinates such that x = (x′, xn+1) is a generic point and ∇dε(x0) points in
the (n + 1)-th coordinate direction. The Implicit Function Theorem guarantees
the existence of a ball B in Rn centered at x′0 and a C∞ function ψ : B→ R such
that

dε(x′, ψ(x′)) = 0 ∀ x′ ∈ B.

In other words, γε is locally described in B as a graph xn+1 = ψ(x′) for x′ ∈ B.
It is not difficult but tedious to see that

‖ψ‖W 2
∞(B)

. ‖dε ‖W 2
∞(N(δ))

. ‖d‖W 2
∞(N)

,

‖ψ‖W 3
∞(B)

. ‖dε ‖W 3
∞(N(δ))

.
1
ε
‖d‖W 2

∞(N)
,

which translates into the first estimates for dε

‖dε ‖W 2
∞(N(δ))

. ‖d‖W 2
∞(N)

, ‖dε ‖W 3
∞(N(δ))

.
1
ε
‖d‖W 2

∞(N)
.

To prove the error estimates, let x ∈ N(δ) ⊂ N and note that

∇dε(x) = ∇dε(y) =
∇dε(y)
|∇dε(y)|

, ∇d(x) = ∇d(w)

with y = x − dε(x)∇dε(x) ∈ γε and w = x − d(x)∇d(x) ∈ γ. Hence,

|w − y| ≤ |w − x| + |y − x| ≤ δ + δε ≤
5
2
δ

because of (1.61). Since |∇d(y)| = 1, we now write

∇d(x)−∇dε(x) = ∇d(w)−∇d(y)+∇d(y)−∇dε(y)+
∇dε(y)
|∇dε(y)|

(
|∇dε(y)|−|∇d(y)|

)
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and estimate pairs of terms on the right hand side separately. Since d ∈ W2
∞(N),

we get ��∇d(w) − ∇d(y)
�� ≤ |w − y| |d |W 2

∞(N)
. δ |d |W 2

∞(N)
,

and using Lemma 25 (properties of dε) we also obtain��|∇d(y)| − |∇dε(y)|
�� ≤ ��∇d(y) − ∇dε(y)

�� ≤ ε |d |W 2
∞(N)

< δ |d |W 2
∞(N)

,

whence the first error estimate follows��∇d(x) − ∇dε(x)
�� . δ |d |W 2

∞(N)
∀ x ∈ N(δ).

To show the desired second error estimate we observe that
��1−∇d(x) · ∇dε(x)

�� =
1
2

��∇d(x) − ∇dε(x)
��2. This concludes the proof.

Corollary 27 (property of Pε). The lift Pε belongs to C∞(N(δ)) and satisfies

|Pε |W 2
∞(N(δ))

. |d |W 2
∞(N)

for suitable constants C1,C2 so that C1δ ≤ ε ≤
δ
2 and C2ε |d |W 2

∞(N)
≤ 1.

Proof. Differentiate the k-th component of Pε with respect to xi and xj to obtain

∂i jPε,k = −∂2
i jdε ∂kdε − ∂idε ∂2

jkdε − ∂jdε ∂2
ikdε − dε ∂3

i jkdε,

whence invoking Lemma 26 (properties of dε) yields

‖D2Pε ‖L∞(N(δ)) . |d |W 2
∞(N)
+
δ

ε
|d |W 2

∞(N)
. |d |W 2

∞(N)

because of |∇dε | = 1 and (1.61). This completes the proof.

Given a function ũ ∈ H2(γ) we are now ready to introduce an H2 extension
to N(δ). For this, we assume that δ is sufficiently small so that (1.61) is
valid. We first define the auxiliary function uε = ũ ◦ Qε : γε → R, where
Qε = Pε−1 : γε → γ, and then the extension u = uε ◦ Pε : N(δ) → R, namely

u(x) := uε
(
x − dε(x)∇dε(x)

) ∀ x ∈ N(δ). (1.62)

Consequently, we realize that u = ũ ◦Qε ◦ Pε . We introduce the notation Qε to
avoid confusion between Qε ◦ Pε : N(δ) → γ and the identity. We recall that
the coarea formula∫

N(δ)
g =

∫
N(δ)

g |∇d | =
∫ δ

−δ

∫
{d−1(s)}

gdσs, (1.63)

is valid for any integrable function g : N(δ) → R [Theorem 3.14, Evans and
Gariepy]. We will use this formula next and later in this chapter.
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Proposition 28 (H2 extension). Let ε and δ be as in Corollary 27 (property
of Pε), and assume that ε |d |W 2

∞(N)
≤ c for a sufficiently small constant c. If

ũ ∈ H2(γ), then u ∈ H2(N(δ)) and

‖u‖H2(N(δ)) . δ
1
2 |d |W 2

∞(N)
‖ũ‖H2(γ).

Moreover, the trace of u on γ coincides with ũ, that is u an H2 extension of ũ.

Proof. In view of (1.27), the i-partial derivative of u reads

∂iu =
n+1∑
j=1

(
δi j − dε ∂2

i jdε
)
∂ juε ◦ Pε

where ∂ juε stands for the j-component of ∇γεuε . We use again (1.27) to obtain

∇∂ju = −
n+1∑
j=1

(
∇dε ∂2

i jdε + dε ∂2
i j∇dε

)
∂ juε ◦ Pε

+

n+1∑
j=1

(
δi j − dε ∂2

i jdε
) (

I − dε D2dε
)
∇γε ∂ juε ◦ Pε .

Setting Λ := 1 + |d |W 2
∞(N)

and applying Lemma 26 (properties of dε) yields��D2u
�� . Λ(

|∇γεuε ◦ Pε | + |∇2
γε

uε ◦ Pε |
)
.

We reduce the computation of integrals in the bulkN(δ) to integrals on parallel
surfaces γε(s) := {x ∈ Rn+1 : dε(x) = s} via the coarea formula (1.63). Since
|∇dε | = 1 in view of (1.61) the co-area formula implies∫

N(δ)
|D2u(x)|2dx . Λ2

∫
N(δ)

2∑
k=1
|∇kγεuε(Pε(x))|2 |∇dε(x)| dx

≤ Λ2
∫ δε

−δε

∫
γε (s)

2∑
k=1
|∇kγεuε(Pε(x))|2 dσε,s(x) ds

. δΛ2
∫
γε

2∑
k=1
|∇kγεuε(x)|2 dσε(x),

Lemma 17 (norm equivalence) immediately yields∫
γε

|∇γεuε(Pε(x))|2 dσε(x) .
∫
γ
|∇γũ(x)|2dσ(x).

In order to relate second derivatives of uε on γε to those of ũ on γ, we apply
(1.50) with γε playing the role of γ and Γ = γ. Then

∇γεuε(Pε(x)) = (I − dεWε)
−1(x)

(
I −

νγ(x) ⊗ νε(x)
νγ(x) · νε(x)

)
∇γũ(x) x ∈ γ,
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and after applying this formula again to ∇γεuε(Pε(x)) we obtain

|D2
γε

uε(Pε(x))| ≤ |DγM(x)| |∇γũ(x)| + |M(x)| |D2
γũ(x)|,

where M(x) = (I − dεWε)
−1(x)

(
I − νγ (x)⊗νε (x)

νγ (x)·νε (x)

)
. We thus wish to bound

‖M ‖W 1
∞(γ)

. First we note that combining the bound on the Hausdorff distance be-
tween γ and γε fromLemma 25 (properties of dε) with ‖dε ‖W 2

∞(N(δ))
. |d |W 2

∞(N)

from Lemma 26 (properties of dε) yields for x ∈ γ that the eigenvalues of
dε(x)Wε(x) are bounded by Cε2 |d |2

W 2
∞(N)

, which is less than 1
2 under the as-

sumption that ε |d |W 2
∞(N)

is sufficiently small; thus ‖(I − dεWε)
−1‖L∞(N(δ)) ≤ 2.

In addition, combining the same assumption with ε ' δ and Lemma 26 yields

‖1 − νγ · νε ‖L∞(N(δ)) . δ2 |d |2
W 2
∞(N)

. ε2 |d |2
W 2
∞(N)
≤

1
2
,

so that νγ · νε ≥ 1/2 and 



I − νγ ⊗ νε

νγ · νε






L∞(N(δ))

. 1;

thus ‖M‖L∞(N(δ)) . 1. In order to bound the derivatives of M, we note that for
a matrix A there holds ∂iA−1 = −A−1(∂iA)A−1. For A = I − dεWε , we use
Lemmas 25 and 26, |∇dε | = 1, and the assumption C1δ ≤ ε to deduce in N(δ)

|∂iA| =
��(∂idε)Wε + dε ∂iWε

��
. ‖dε ‖W 2

∞(N(δ)
+ δ‖dε ‖W 3

∞(N)
. |d |W 2

∞(N)
.

Since we have already established that ‖A−1‖L∞(N(δ)) . 1, we infer that |(I −
dεWε)

−1 |W 1
∞(N(δ)

. |d |W 2
∞(N)

. A similar calculation for I − νγ ⊗νε
νγ ·νε

, while recall-
ing that νγ · νε ≥ 1/2, yields |M|W 1

∞(γ)
. |d |W 2

∞(N)
and, after applying Lemma

17 (norm equivalence), gives

‖D2
γε

uε ‖L2(γε ) . |d |W 2
∞(N)

(
‖∇γũ‖L2(γ) + ‖D

2
γũ‖L2(γ)

)
.

The asserted estimate follows from applying again the co-area formula (1.63),
which leads to∫

N(δ)
|u|2 + |∇u|2 + |D2u|2 . δΛ2

∫
γ
|ũ|2 + |∇γũ|2 + |D2ũ|2.

Finally, we take x ∈ γ, note that Qε(Pε(x)) = x, and compute

u(x) = ũ ◦Qε ◦ Pε(x) = ũ(x)

to realize that u is indeed an extension of ũ to N(δ).
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We now derive the elliptic PDE’s satisfied by uε on γε and u in N(δ). For
ũ ∈ H2(γ), let f̃ = −∆γũ ∈ L2,#(γ) and consider the extension f̃ε to γε

f̃ε := f̃ ◦Qε .

Lemma 29 (PDE satisfied by uε). If γ is closed and of class C2, then γε is also
closed and of class C∞, and the extension uε = ũ ◦Qε satisfies on γε

−µ̃εdivγε
( 1
µ̃ε

Ãε∇γεuε
)
= f̃ε,

where Ãε :=
(
I − dε D2dε

)
Π

(
I − dε D2dε

)
◦ Qε , Π stands for the orthogonal

projection Π = (I − ∇d ⊗ ∇d) on γ and µ̃ε := qε
q◦Qε

reads

µ̃ε = det
(
I − dε D2dε

) (
∇d · ∇dε

)
◦Qε .

Proof. Given ṽ ∈ H1(γ), let v = ṽ ◦Qε ∈ H1(γε). We resort to (1.49) to write

∇γũ = Π
(
I − dε D2dε

)
∇γεuε ◦ Pε on γ,

because ∇γεuε ◦ Pε = Πε∇γεuε ◦ Pε . This combined with (1.8) and Corollary
13 (integration by parts) on the closed surface γε yields∫

γ
∇γũ · ∇γ ṽ =

∫
γε

1
µ̃ε

Ãε∇γεuε · ∇γε v = −
∫
γε

divγε
( 1
µ̃ε

Ãε∇γεuε
)
v

with µ̃ε = qε
q◦Qε

given by (1.53). Likewise,∫
γ

f̃ ṽ =
∫
γε

1
µ̃ε

f̃εv .

Since the last two equalities hold for all v ∈ H1(γε), the assertion follows.

We extend the function f̃ε to Nε(δε) as follows:

fε := f̃ε ◦ Pε = f̃ ◦Qε ◦ Pε .

Equivalently, given x ∈ Nε(δε) let x̃ ∈ γ be the unique point such that for some
s

x̃ = x + s∇dε(x) ⇒ fε(x) = f̃ (̃x).

Proposition 30 (PDE satisfied by u). Let ε and δ be as in Corollary 27 (property
of Pε). The extension u ∈ H2(N(δ)) of ũ of Proposition 28 satisfies the PDE

−
1
µε

div (µεBε∇u) = fε in N(δ),
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where
Bε :=

(
I − dε D2dε

)−1
ΠεAεΠε

(
I − dε D2dε

)−1
,

Aε := Ãε ◦Pε with Ãε given in Lemma 29, Πε = I−∇dε ⊗ ∇dε , µε is given by

µε :=
1

µ̃ε ◦ Pε
det

(
I − dε D2dε

)
,

and µ̃ε is defined in Lemma 29.

Proof. We proceed as in Proposition 28 (H2 extension). Let γε(s) be a parallel
surface to γε at distance s, and let |s | ≤ δε with δε = 3

2δ so that (1.61) holds. We
first employ (1.50) to obtain the bilinear form for u on γε(s). For δ sufficiently
small Lemma 26 (properties of dε) guarantees that

(
I − dε D2dε

)
is invertible

inNε(δε). Hence, if Dε =
(
I − dε D2dε

)−1
Πε and v ∈ C∞0 (N(δ)), we restrict v

to γε(s), define the auxiliary function ṽ := v ◦ Pε−1 ∈ C∞(γε) and observe that
(1.50) reads on γε(s)

∇γε ṽ ◦ Pε = Dε∇v,

where∇v is the full gradient of v ; this is because of the presence of the projection
matrix Πε on the tangent hyperplane to γε(s) in the definition of Dε . We get∫

γε

1
µ̃ε

Ãε∇γεuε · ∇γε ṽ =
∫
γε (s)

µεAεDε∇u · Dε∇v

where µ̃ε is given in Lemma 29 (PDE satisfied by uε) and µε is the surface
measure density on γε(s) due to the change of variables, namely

µε =
1

µ̃ε ◦ Pε
qε

qε,s
=

1
µ̃ε ◦ Pε

det
(
I − dε D2dε

)
according to (1.53). Similarly, the linear form for the forcing reads∫

γε

1
µ̃ε

f̃ε ṽ =
∫
γε (s)

µε fε v .

Since the left hand sides of the previous integral expressions coincide, in view
of Lemma 29, we now integrate over s ∈ (−δε, δε) and use the co-area formula
(1.63) to convert the resulting integrals into bulk integrals∫

Nε (δε )
µεAεDε∇u · Dε∇v =

∫
Nε (δε )

µεAεDε∇u · Dε∇v |∇dε |

=

∫ δε

−δε

∫
γε (s)

µεAεDε∇u · Dε∇v dσε,s ds

=

∫ δε

−δε

∫
γε (s)

fεv µε dσε,s ds

=

∫
Nε (δε )

fεv µε |∇dε | =
∫
Nε (δε )

fεv µε,
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because |∇dε | = 1 in Nε(δε). Since N(δ) ⊂ Nε(δε) according to (1.61),
integration by parts gives

−

∫
N(δ)

div
(
µεDεAεDε∇u

)
v =

∫
N(δ)

fε v µε ∀ v ∈ C∞0 (N(δ)),

whence the desired PDE follows after noticing that
(
I − dε D2dε

)−1 and Πε
commute. This completes the proof.

1.4 PARAMETRIC FINITE ELEMENT METHOD

The parametric method hinges on a surface approximation Γ “interpolating”
the exact surface γ. Recall that the latter is assumed to be a closed, compact,
orientable hypersurface in Rn+1. In the lowest order case of piecewise linear
polynomials, this corresponds to a polyhedral surface Γ whose vertices lie on
γ or, more generally, sufficiently close to γ. The finite element space is then
obtained in a classical way by mapping a finite element triplet defined on a
reference element in Rn to a facet of Γ in Rn+1. The FEM requires a bi-Lipschitz
map P : Γ→ γ which is not necessarily the distance function lift Pd . The latter
is used for numerical analysis purposes only even for smooth surfaces.

There are two sources of error: the approximation of the exact surface γ
by the polyhedral surface Γ, the so-called geometric consistency error, and the
Galerkin error arising from the actual finite element approximation on Γ. In
this section we quantify these two errors depending on the regularity of γ. For
the former we rely on the discussion of section 1.3 that addresses the effect of
perturbing γ. For γ of class C1,α we deal with a generic lift P : Γ → γ and
obtain a suboptimal geometric consistency error. For C2 surfaces, instead, we
resort to Pd for error analysis and restore geometric optimality.

1.4.1 FEM on Lipschitz Parametric Surfaces.

Lipschitz Parametric Surfaces. We adopt the viewpoint that the surface γ
is described as the deformation of an n-dimensional polyhedral surface Γ by a
globally bi-Lipschitz homeomorphism P : Γ → γ ⊂ Rn+1. Thus there exists
L > 0 such that for all x1, x2 ∈ Γ

L−1 |x1 − x2 | ≤ |̃x1 − x̃2 | ≤ L |x1 − x2 |, x̃i = P(xi), i = 1, 2. (1.64)

If γ is C2, we may take P = Pd , but our current definition allows for much
more flexibility in the choice of P. For example, if γ has nonempty boundary
and is given as the graph of a function ψ : Ω → Rn+1 with Ω ⊂ Rn, then
the map between x = (x, z) ∈ Γ with x ∈ Ω and z ∈ R could be given by
P(x, z) = (x, ψ(x)) ∈ γ, i.e., the “vertical” graph map.

The (closed) facets of Γ are denoted by T , and form the collection T = {T}.
We assume that these facets are all simplices and denote by ST the set of interior
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faces of T . Extension to other element shapes such as n-quadrilaterals and to
nonconforming discretizations is possible under reasonable assumptions with
minor modifications, but we do not elaborate them further. We let PT : T →
Rn+1 be the restriction of P to T . The partition T of Γ induces the partition
T̃ = {T̃}T ∈T of γ upon setting

T̃ := PT (T) ∀T ∈ T .

Note that this non-overlapping parametrization of γ allows for Lipschitz surfaces
rougher than globally C2. We additionally define macro patches

ωT = ∪
{
T ′ : T ′ ∩ T , ∅

}
, ω̃T = P(ωT ). (1.65)

Let hT := |T |
1
n and σ < ∞ be the triangulation shape-regularity constant, i.e.

σ := sup
T

max
T ∈T

diam(T)
hT

. (1.66)

We further assume that the number of elements in each patch ωT is uniformly
bounded. This assumption automatically follows from shape regularity for tri-
angulations of Euclidean domains, but the situation is more subtle for surface
triangulations as illustrated in Figure 1.1. Such a bound does for example hold if
Γ is obtained by systematic refinement of an initial surface mesh with a uniform
bound on the number of elements in a patch [DD07], or more generally using
adaptive refinement strategies [BCM+16, BCMN13]. In addition, this implies
that all elements in ωT have uniformly equivalent diameters, as it happens for
shape regular triangulations on Euclidean domains.

FIGURE 1.1 Two different configurations when n = 2 illustrating that the number of elements
sharing the same vertex could be arbitrarily large even when using triangles satisfying (1.67).

To provide a parametric description, let T̂ be the unit reference simplex,
sometimes called the universal parametric domain. We denote by XT : Rn →
Rn+1 the affine map such that T = XT (T̂) and note that (1.66) implies

hT |w| . |DXTw| . hT |w|, ∀w ∈ Rn. (1.67)
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Hereafter we omit to specify when the constants (possibly hidden in . signs)
depend on σ. As pointed out in [BP12], even if the initial surface approximation
satisfies (1.67), this property might not hold for refinements unless the initial
polyhedral surface approximates the exact surface well. We refer to [BCM+16,
BCMN13] for a discussion on how to circumvent this in an adaptive strategy.
However, since this work focusses on a-priori and a-posteriori error estimation
rather that adaptivity, we assume (1.67) directly.

We are now ready to introduce the local non-overlapping parametrization χ
of γ. Let χT := P ◦ XT : T̂ → T̃ be the corresponding local parametrization of
T̃ and χ := {χT }T ∈T ; see Figure 1.2. We record for latter use that thanks to the
Lipschitz properties (1.64) and (1.67), χT also satisfies

hT |w| . |DχT (y)w| . hT |w| ∀w ∈ Rn, y ∈ T̂ . (1.68)

T̂
XT

T ⊂ Γ

P

T̃ ⊂ γ

χT

FIGURE 1.2 Non-overlapping parametrizations XT : T̂ → T of Γ and χT : T̂ → T̃ of γ.

It turns out that it will be convenient to consider χT to be defined on a larger
domain than T , say ω̂T ⊂ R

n, so that χT = P ◦XT : ω̂T → ω̃T is a bi-Lipschitz
local parametrization of γ: there exists a universal constant L ≥ 1 such that for
each fixed T ∈ T and for all x̃1 = χT (y1), x̃2 = χT (y2) ∈ ω̃T ,

L−1hT |y1 − y2 | ≤ |̃x1 − x̃2 | ≤ LhT |y1 − y2 |; (1.69)

in this case χ := {χT }T ∈T is an overlapping parametrization of γ. We further
assume that P(v) = v for all vertices v of Γ, so that XT is the nodal Lagrange
interpolant of χT into linears.

We finally note that a function ṽT : T̃ → R defines uniquely two functions
v̂T : T̂ → R and vT : T → R via the maps χT and P, namely

v̂T (y) := ṽT (χT (y)) ∀ x̂ ∈ T̂ and vT (x) := ṽT (P(x)) ∀ x ∈ T . (1.70)
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Moreover, each one of these functions induces the other two uniquely. Accord-
ingly, we will use the symbol v for all three functions if no confusion arises.

DifferentialGeometry onPolyhedral Surfaces. Weuse the atlas {T̂, T̃, χT }T ∈T ,
induced by the non-overlapping parametrization χ := {χT }T ∈T , to describe γ
in the spirit of Section 1.2. Likewise, we employ the atlas {T̂,T,XT }T ∈T to de-
scribe the polyhedral surface Γ. In view of (1.68), the discrete first fundamental
form gT and area element qT of Γ are given elementwise by

gT := (DXT )
tDXT , qT :=

√
det gT , ∀T ∈ T . (1.71)

and satisfy
eigen(gT ) ≈ h2

T , qT ≈ hn
T , ∀T ∈ T . (1.72)

They give rise to the piecewise constant functions gΓ := {gT }T ∈T and qΓ :=
{qT }T ∈T . Similar properties are enjoyed by χ, which imply that the stability
constant Sχ defined in (1.38) is purely geometric and independent of meshsize:

Sχ ≈ 1. (1.73)

In addition, notice that (1.68) and (1.69) imply that

C1 ≤
q
qΓ
≤ C2 (1.74)

for constantsC1,C2 independent of discretization parameters. Moreover, the vec-
tor NT :=

∑n+1
i=1 det

(
[ej,DXT )]

)
ej is perpendicular to T ∈ T provided {ej}n+1

j=1
are the canonical unit vectors of Rn+1. This vector satisfies |NT | = qT and yields
the unit normal to T

νT :=
NT

|NT |
∀T ∈ T ,

and corresponding piecewise constant unit normal vector νΓ := {νT }T ∈T to Γ.
Given a function v : Γ→ R, its tangential gradient∇Γv andLaplace-Beltrami

operator ∆Γv over Γ obey the formulas

∇v̂ = (DX)t ∇Γv, ∇Γv = (DX) g−1
Γ ∇v̂, (1.75)

and
∆Γv =

1
qΓ

div
(
qΓ g−1

Γ ∇v̂
)
, (1.76)

where v̂ : T̂ → R is defined in (1.70). The strong form of ∆Γv is well defined
only elementwise because qΓ g−1

Γ
is piecewise constant and so discontinuous

over T . To find the correct strong form we start from the weak form (1.19), split
the integral over elements and use Corollary 13 (integration by parts) to obtain∫

Γ

∇Γv · ∇Γw =
∑
T ∈T

−

∫
T

w∆Γv +
∫
∂T

w∇Γv · µT

=
∑
T ∈T

−

∫
T

w∆Γv +
∑
S∈S

∫
S

w[∇Γv],
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where the jump residual is computed over each face S ∈ S of elements of T via

[∇Γv] := ∇Γv+ · µ+ + ∇Γv− · µ− (1.77)

and T± ∈ T are such that S = T+ ∩T− and v±, µ± are the restrictions of v and the
outer unit normal to ∂T± which is parallel to T±. We then see that ∆Γv consists
of the absolutely continuous part (1.76) with respect to surface measure defined
elementwise and the singular part (1.77) supported on the skeleton of T . This
formula makes sense for functions which are piecewise H2 and globally H1,
such as continuous piecewise polynomials.

Parametric Finite Element Method. In this work, we focus on continuous
piecewise linear finite elements and polyhedral surface approximations. Let P
be the space of linear polynomials and let V(T ) be the space of continuous
piecewise linear polynomial functions over Γ, namely

V(T ) :=
{
V ∈ C0(Γ)

�� V |T = V̂ ◦ X−1 for some V̂ ∈ P, T ∈ T
}
.

The finite element space associated with the Laplace-Beltrami equation over Γ
is the restriction of V(T ) to functions with vanishing mean

V#(T ) := V(T ) ∩ L2,#(Γ).

We define IT : C0(Γ) → V(T ) to be the Lagrange interpolation operator and
use the same notation for vector-valued functions.

We are now ready to introduce the parametric FEM: seek U := UT ∈ V#(T )

that solves ∫
Γ

∇ΓU · ∇ΓV =
∫
Γ

FV ∀V ∈ V#(T ), (1.78)

where F ∈ L2,#(Γ) is an approximation of f ∈ L2,#(γ) to be specified later.
Lax-Milgram theory guarantees that U ∈ V#(T ) is well defined. Observe that
because F ∈ L2,#(Γ), we also have∫

Γ

∇ΓU · ∇ΓV =
∫
Γ

FV ∀V ∈ V(T ). (1.79)

Since the exact problem (1.19) and discrete problem (1.79) are defined on
different domains γ and Γ, the error u−U does not satisfy Galerkin orthogonality
in either one. The next statement accounts for geometric inconsistency and uses
the convention (1.70) for the generic lift P.

Lemma 31 (Galerkin quasi-orthogonality). Let E and EΓ be defined in (1.36)
and (1.37) via the parametrizations χ = P ◦ X and χΓ = X. Then, for all
V ∈ V(T ), there holds∫

Γ

∇Γ(u −U) · ∇ΓV =
∫
Γ

(
f

q
qΓ
− F

)
V +

∫
Γ

∇Γu · EΓ ∇ΓV, (1.80)
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and ∫
γ
∇γ(ũ − Ũ) · ∇γṼ =

∫
γ

(
f̃ − F̃

qΓ
q

)
Ṽ +

∫
γ
∇γŨ · E∇γṼ . (1.81)

Proof. We only prove (1.80) as (1.81) follows similarly. Using the equation
(1.79) satisfied by U and the consistency relation (1.34), we obtain∫

Γ

∇Γ(u −U) · ∇ΓV =
∫
γ
∇γũ · ∇γṼ +

∫
Γ

∇Γu · EΓ ∇ΓV −
∫
Γ

FV .

The first term on the right-hand side equals
∫
γ

f̃ V =
∫
Γ

f q
qΓ

V , in view of (1.19)
and (1.8), and thus yields (1.80).

1.4.2 Geometric Consistency

In this section we study the error inherent to approximating γ with Γ. The
polyhedral surface Γ is always represented by a lift P whose regularity depends
on that of γ. We present two scenarios depending on such regularity. We first
assume that γ is piecewise C1,α and globally Lipschitz, and later assume that γ
is C2 and exploit the distance function lift Pd to improve the error estimates.

Uniform Poincaré-Friedrichs estimate on Γ. The analysis below takes advan-
tage of the uniform Poincaré-Friedrichs estimate on Γ

‖v ‖L2(Γ) . ‖∇v ‖L2(Γ) ∀v ∈ H1
# (Γ), (1.82)

where the constant hidden in the above inequality is independent of Γ. Note that
when γ is of class C1,α, 0 < α ≤ 1, Lemma 18 (uniform Poincaré-Friedrichs
constant) implies that (1.82) follows from (1.73) and (1.74), which in turn are
consequences of assumption (1.64). Furthermore, when γ is of class C2 and
P = Pd , the discussion in Section 1.3.2 yields conditions which are also easy to
verify: Γ ⊂ N(1/2K∞) and ν · νΓ ≥ c > 0 on Γ.

Geometric Estimators. Since γ is described by χ and Γ by X it is natural to
consider the difference Dχ−DX as ameasure of geometricmismatch [BCM+16].
We thus start with the geometric element indicator

λT := ‖D(P − ITP)‖L∞(T ) = ‖DP − I‖L∞(T ) ∀T ∈ T (1.83)

and the corresponding geometric estimator

λT(Γ) := max
T ∈T

λT . (1.84)

We have seen that the relative measure of accuracy (1.39) controls the geometric
error. In this vein, we observe that DχT = DP DXT because χT = P ◦ XT ,
whence such measure satisfies

max
y∈T̂

|D(χT − XT )(y)|
min

{
|D−χT (y)| , |D−XT (y)|

} ≤ SχλT ∀T ∈ T , (1.85)
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with a stability constant Sχ ≈ 1 according to (1.38). Therefore λT(Γ) is expected
to dominate the geometric error for surfaces of class C1,α with 0 < α < 1. This
is consistent with Lemma 19 (perturbation error estimate for C1,α surfaces).

For C2 surfaces, however, λT(Γ) is suboptimal in that it overestimates the
influence of geometry [BD19]. According to Lemma 23 (perturbation error
estimate for C2 surfaces) and Lemma 24 (error estimates for normals), the
following quantities should play a crucial role in dealing with geometry via the
auxiliary lift Pd

βT := ‖P − ITP‖L∞(T ), βT(Γ) := max
T ∈T

βT , (1.86)

and
µT := βT + λ2

T , µT(Γ) := max
T ∈T

µT ; (1.87)

we stress that µT(Γ) is formally of higher order than λT(Γ). We will show
below that µT(Γ) indeed controls the geometric error and accounts for the
“superconvergence” property associated with the projection Pd along the normal
direction to γ alluded to at the end of section 1.3.2.

Geometric Consistency Error for C1,α Surfaces. We now quantify the geo-
metric error incurred when replacing γ by its polygonal approximation Γ.

Corollary 32 (geometric consistency errors forC1,α surfaces). IfX and χ satisfy
(1.67) and (1.68), then for all T ∈ T we have

‖1 − q−1qΓ‖L∞(T̂ ), ‖I − gΓg−1‖L∞(T̂ ), ‖νΓ − ν‖L∞(T ) . λT , (1.88)

where the hidden constants depend on Sχ ≈ 1 defined in (1.38). Moreover,

‖E‖L∞(T̂ ) + ‖EΓ‖L∞(T̂ ) . λT ∀T ∈ T . (1.89)

Proof. We first point out that (1.67) and (1.68) yield Sχ ≈ 1 according to (1.73).
The asserted estimates follow from Lemma 16 (error estimates for g and q) and
Lemma24 (error estimate for normals) in conjunctionwith (1.47) and (1.85).

Geometric Consistency Error for C2 Surfaces. We now take advantage of
the lift Pd for error representation. We recall that, as in section 1.3.2, the
parametrizations of γ and Γ are given by χ = Pd ◦ X and X. In particular, the
infinitesimal area element q of γ is defined using Pd and so are the consistency
matrices E, EΓ; see (1.51), (1.52). To improve upon Corollary 32 (geometric
consistency errors for C1,α surfaces) we need more stringent geometric assump-
tions than simply Γ ⊂ N . These assumptions are somewhat technical but are
checkable computationally with information extracted from P but without access
to Pd [BD19]. We list them now.
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• Distance between γ and Γ. Invoking the closest point property of the
distance function projection Pd and the definition (1.86) of βT(Γ), we see
that |x − Pd(x)| ≤ |x − P(x)| ≤ βT(Γ) for all x ∈ Γ. We thus assume that Γ is
sufficiently close to γ in the sense that

βT(Γ) <
1

2K∞
⇒ Γ ⊂ N, (1.90)

according to (1.48). Therefore, the estimates of section 1.3.2 are valid.
Moreover, the discrepancy between the two lifts satisfies for all T ∈ T

|P(x) − Pd(x)| ≤ |P(x) − x| + |x − Pd(x)| ≤ 2|x − P(x)| ≤ 2βT ∀ x ∈ T .

• Mismatch between P and Pd . We assume that

Pd ◦ P−1(T̃) ⊂ ω̃T ∀T ∈ T , (1.91)

where ω̃T is the patch around T̃ within γ. If x̃ = P(x) ∈ γ for x ∈ Γ, then

|̃x − Pd ◦ P−1 (̃x)| = |P(x) − Pd(x)| ≤ 2βT ∀ x ∈ T . (1.92)

and all T ∈ T . Since γ is of class C2, we expect βThT → 0 as hT → 0 and
realize that (1.91) is always valid asymptotically. We emphasize that it is
possible to check (1.91) computationally without accessing Pd [BD19].

Corollary 33 (geometric consistency errors forC2 surfaces). If (1.90) and (1.74)
hold, then so do the following estimates for all T ∈ T

‖d‖L∞(T ) . βT , ‖ν − νΓ‖L∞(T ) . λT , ‖1 − q−1qΓ‖L∞(T ) . µT , (1.93)

where all the geometric quantities are defined using the parametrizations χ =
Pd ◦ X and X. Moreover,

‖E‖L∞(T ), ‖EΓ‖L∞(T ) . µT ∀T ∈ T . (1.94)

Proof. The first estimate in (1.93) is trivial from the definition (1.86) of βT ,
whereas the second estimate in (1.93) is a consequence of (1.58). The third
estimate in (1.93) results from (1.57) and (1.58). With these estimates at hand,
the estimate for E in (1.94) comes from (1.56) and that for EΓ is similar.

We conclude with a technical result assessing the mismatch between P and
Pd . We motivate it with the following simpler L∞-estimate valid for all T ∈ T

‖w̃ − w̃ ◦ Pd ◦ P−1‖L∞(T̃ ) . ‖∇γw̃‖L∞(ω̃T ) βT ∀ x ∈ T .

This is a trivial consequence of the property (1.92) for x̃ ∈ T̃

|w̃(̃x) − w̃(Pd ◦ P−1 (̃x))| ≤ ‖∇γw̃‖L∞(ω̃T ) |̃x − Pd ◦ P−1 (̃x)| ≤ 2‖∇γw̃‖L∞(ω̃T )βT .

The estimate below is L2-based and its proof entails regularization by convolution
[BD19, Lemma 3.4].
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Proposition 34 (mismatch between P and Pd). Assume that (1.67) as well as
the assumptions (1.74), (1.90) and (1.91) hold. Then there exists λ∗ > 0 such
for w̃ ∈ H1(γ) and T ∈ T we have

‖w̃ − w̃ ◦ Pd ◦ P−1‖L2(T̃ )
. βT ‖w̃‖H1(ω̃T )

provided λT ≤ λ∗ and ω̃T is a patch in γ around T̃ .

Proof. We proceed in several steps.
Step 1: Reduction to Rn. Fix T ∈ T and recall that χT = P ◦XT satisfies (1.68)
and maps the reference patch ω̂T into ω̃T . For notational ease, let

ψ = Pd ◦ P−1 : γ → γ, ψ̂ = χ−1
T ◦ ψ ◦ χT : ω̂T → ω̂T .

Given w̃ ∈ H1(γ), let ŵ = w̃ ◦ χT : ω̂T → R, and note that ŵ ∈ H1(ω̂T ) because
χT is Lipschitz. We change variables via χT to T̂ and invoke the non-degeneracy
property (1.42) to obtain

‖w̃ − w̃ ◦ ψ‖L2(T̃ )
. hn/2

T ‖ŵ − ŵ ◦ ψ̂‖L2(T̂ )
.

The assumption Pd ◦ P−1(T̃) ⊂ ω̃T given in (1.91) is equivalent to ψ̂(T̂) ⊂ ω̂T

and is sufficient to ensure that the quantity on the right hand side is well-defined.
Since ŵ is defined on ω̂T ⊂ R

n, and its boundary is Lipschitz, there is a
universal extension operator E : H1(ω̂T ) → H1(Rn) which is bounded both in
L2 and in the H1-seminorm [Ste70]; this is the so-called Calderón operator. We
relabel Eŵ to be ŵ, and thus assume it is bounded in H1(Rn) while satisfying

|ŵ |H1(Rn) . |ŵ |H1(ω̂T )
.

Step 2: Mollification. We now regularize ŵ by convolution with a standard
smooth mollifier supported in the ball B(0, ε) centered at 0 with radius ε > 0 to
be determined. If Ω ⊂ Rn is an arbitrary domain, it is well known that

‖ŵ − ŵε ‖L2(Ω) . ε |ŵ |H1(Ω+B(0,ε)),

|ŵε |W 1
∞(Ω)

. ε−n/2 |ŵ |H1(Ω+B(0,ε)).

We may now write, without restriction on ε, that

‖ŵ− ŵ ◦ ψ̂‖L2(T̂ )
. ‖ŵ− ŵε ‖L2(T̂ )

+ ‖ŵε − ŵε ◦ ψ̂‖L2(T̂ )
+ ‖ŵε ◦ ψ̂− ŵ ◦ ψ̂‖L2(T̂ )

.

We estimate the first term using the first formula above for the mollifier

‖ŵ − ŵε ‖L2(T̂ )
. ε |ŵ |H1(Rn) . ε |ŵ |H1(ω̂T )

.

Similarly, changing variables via the map ψ̂, which turns out to be Lipschitz
in view of (1.42) and (1.68), and applying the restriction ψ̂(T̂) ⊂ ω̂T stated in
(1.91), we find that

‖(ŵε − ŵ) ◦ ψ̂‖L2(T̂ )
. ‖ŵε − ŵ‖L2(ω̂T ) . ε |ŵ |H1(ω̂T )

.
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Step 3: Estimate for ‖ŵε − ŵε ◦ ψ̂‖L2(T̂ )
. Let {yi} be a lattice on Rn with

minimum distance between yi and yj (i , j) proportional to ε and such that
{B(yi, ε)} covers Rn. The set {B(yi, Mε)} then has finite overlap for any M ≥ 1,
with the maximum cardinality of the overlap depending on M . We choose

ε = sup
y∈T̂
|y − ψ̂(y)| ⇒ ‖ŵε − ŵε ◦ ψ̂‖L∞(B(yi,ε)∩T̂ ) . ε |ŵε |W 1

∞(B(yi,2ε))

Applying the second property of mollifiers given above yields

|ŵε |W 1
∞(B(yi,2ε)) . ε−n/2 |ŵ |H1(B(yi,3ε)),

whence

‖ŵε − ŵε ◦ ψ̂‖
2
L2(T̂ )

. εn
∑
i

‖ŵε − ŵε ◦ ψ̂‖
2
L∞(B(yi,ε)∩T̂ )

. ε2
∑
i

|ŵ |2
H1(B(yi,3ε))

. ε2 |ŵ |2
H1(Rn)

. ε2 |ŵ |2
H1(ω̂T )

.

Step 4: Bound on ε. Making use of the bi-Lipschitz character (1.68), we get��y − ψ̂(y)�� = ��χ−1
T

(
χT (y)) − χ−1

T

(
ψ(χ(y))

) ��
≤ Lh−1

T

��χT (y) − ψ(χ(y))
�� = Lh−1

T

��̃x − Pd ◦ P−1 (̃x)
��,

where x̃ = χT (y). Recalling (1.92) and the definition of ε, we thus obtain

ε ≤ 2Lh−1
T βT .

We now gather the estimates of Steps 2 and 3. Mapping from T̂ to T̃ and back
via χT , and utilizing (1.42) and (1.68), yields

‖w̃ − w̃ ◦ ψ‖2
L2(T̃ )

. hn
T ‖ŵ − ŵ ◦ ψ̂‖

2
L2(T̂ )

. hn
T ε

2 |ŵ |2
H1(ω̂T )

. hn
T h−2

T β2
T h2−n

T |w̃ |2
H1(ω̃T )

= β2
T |w̃ |

2
H1(ω̃T )

.

This completes the proof.

We conclude this section with a variant of Proposition 34 (mismatch between
P and Pd) which turns out to be instrumental for the study of the Narrow Band
method discussed later in Section 1.6.

Proposition 35 (Lipschitz perturbation). Let Ω1,Ω2 ⊂⊂ Ω ⊂ R
n+1 be Lipschitz

bounded domains and L : Ω1 → Ω2 be a bi-Lipschitz isomorphism. If

r := max
x∈Ω1
|L(x) − x|

is sufficiently small so that (Ω1∪Ω2)+B(0, r) ⊂ Ω then for all g ∈ H1(Ω)we have

‖g − g ◦ L‖L2(Ω1) . r ‖g‖H1(Ω).
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Proof. We now proceed as in Proposition 34: let ε = r > 0 and gε be a
regularization of g by convolution with a standard smooth mollifier supported
in the ball B(0, ε). We write

‖g− g ◦L‖L2(Ω1) ≤ ‖g− gε ‖L2(Ω1) + ‖gε − gε ◦L‖L2(Ω1) + ‖gε ◦L− g ◦L‖L2(Ω1)

and note that

‖g − gε ‖L2(Ω1) . ε‖g‖H1(Ω), ‖gε ◦ L − g ◦ L‖L2(Ω1) . ε‖g‖H1(Ω)

because L−1 is Lipschitz. To estimate ‖gε − gε ◦L‖L2(Ω1), we argue as in Step 3
of Proposition 34 (mismatch between P and Pd). This completes the proof.

1.4.3 A-Priori Error Analysis

In this section we derive a-priori error estimates in H1 and L2, namely estimates
expressed in terms of regularity of the exact solution ũ of (1.18). Compared
to the existing literature these estimates involve two lifts: Pd and P. The
former, based on the distance function d, is only used theoretically or to define
a notion of error when comparing U with ũ. The latter is generic and used
in practice to define the finite element method, i.e., by setting F = f̃ ◦ P q

qΓ
and the discrete parametrization X to be the interpolant of the continuous one
χ = P◦X. Optimal orders of convergence are derived without the need to access
the distance function.

We also address a gap in the literature. Existing proofs of optimal a priori
estimates for surface FEMs employ the distance function liftPd = x−d(x)∇d(x).
However, when γ is C2, this map is only C1 because of the presence of ∇d in its
definition. Thus given ṽ ∈ H2(γ), its extension v = ṽ ◦Pd to Γ is only in H1 and
not piecewise in H2 as is needed to prove optimal approximation order. Thus
existing proofs that only employ the distance function lift require the assumption
that γ be of class C3 in order to obtain optimal order error estimates in the
standard way; cf. the work of Dziuk in [Dzi88] in which such error estimates
were originally obtained.

As pointed out already in Theorem 11 (C1 distance function implies C1,1

surface), the distance function d to a C1,α surface is no better than Lipschitz
in general. Therefore, the aforementioned strategy does not extend to C1,α

surfaces. However, the best approximation property of the Galerkin method
together with the geometric consistency estimates of Section 1.4.2 yields a-priori
error estimates in H1. We present this discussion after that for C2 surfaces.

A-Priori Error Estimates for C2 Surfaces. The following lemma will be
instrumental to prove optimal a priori error estimates for γ of class C2. It states
that a function ∇Γ(ũ ◦ Pd) can be approximated in H1(Γ) to first order for a
function ũ ∈ H2(γ). The difficulty is that the composite function ũ ◦Pd < H2(Γ)

whereas ∇γũ ◦ Pd ∈ H1(Γ). The proof exploits this property to restore optimal
approximability of ∇Γ(ũ ◦ Pd) in H1(Γ).
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Lemma 36 (approximability in H1(Γ)). Let γ be a surface of class C2 and
ũ ∈ H2(γ). Let K∞ be defined in (1.30) and βT(Γ) be given in (1.86). Then we
have

inf
V ∈V(T)

‖∇Γ(ũ ◦ Pd − V)‖L2(Γ) . hT |ũ|H2(γ) + βT(Γ)K∞‖∇γũ‖L2(γ). (1.95)

Proof. We know from Veeser [Vee15] that continuous and discontinuous piece-
wise polynomial approximations in H1 are equivalent. Even though this crucial
result was originally proved for Euclidean domains, it proofs carries over with
essentially no changes to the case of surface meshes

inf
V ∈V(T)

‖∇Γ(ũ ◦ Pd − V)‖2L2(Γ)
.

∑
T ∈T

inf
VT ∈V(T )

‖∇Γ(ũ ◦ Pd − VT )‖2L2(T )
. (1.96)

We refer to [CD15] for related results on surfaces. We thus fix T ∈ T and argue
over this element hereafter; recall that T̃ = Pd(T).

Applying the triangle inequality yields��∇Γ(ũ ◦ Pd − VT )
�� ≤ ��∇Γ(ũ ◦ Pd) − ΠΓ(∇γũ ◦ Pd)

�� + ��ΠΓ(∇γũ ◦ Pd) − ∇ΓVT
��.

Using (1.49), we next find that

|∇Γ(ũ ◦ Pd) − ΠΓ(∇γũ ◦ Pd)| =
��ΠΓ[dW(∇γũ ◦ Pd)]

�� ≤ K∞ |d |
��(∇γũ) ◦ Pd

��,
which along with (1.44) yields

‖∇Γ(ũ ◦ Pd) − ΠΓ(∇γũ ◦ Pd)‖L2(T ) . βT K∞ ‖∇γũ‖L2(T̃ )
.

Next note thatΠΓ = I−νΓ⊗νΓ is constant overT . Therefore,ΠΓ(∇γũ◦Pd) ∈

[H1(T)]n+1 in T because ũ ∈ H2(γ) implies ∇γũ ∈ [H1(γ)]n+1 and Pd is C1.
In addition, ΠΓ(∇γũ ◦ Pd) is a tangent vector field on Γ. On the other hand,
∇Γ maps the affine functions P1 onto the subspace of [P0]n+1 tangent to Γ, so
standard approximation theory leads to

inf
VT ∈V(T )

‖w − ∇ΓVT ‖L2(T ) . hT |w|H1(T )

for any tangent vector field w ∈ [H1(T)]n+1 to Γ. Using that ∇Pd = Π− dW and
W is bounded because γ is of class C2, together with the fact that ΠΓ is constant
in T , we deduce

inf
VT ∈V(T )

‖ΠΓ(∇γũ ◦ Pd) − ∇ΓVT ‖L2(T ) . hT |ΠΓ(∇γũ ◦ Pd)|H1(T )

. hT ‖Π − dW‖L∞(T )‖D2
γũ ◦ Pd ‖L2(T ) . hT |ũ|H2(T̃ )

,

where we used the notation D2
γũ := ∇γ∇γũ. This completes the proof.
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This proof reveals that (1.95) can in fact be written locally:

inf
V ∈V(T )

‖∇Γ(ũ ◦ Pd − V)‖2L2(T )
. β2

T K2
∞‖∇γũ‖2

L2(T̃ )

+ inf
V∈P0(T )

‖ΠΓ(∇γũ ◦ Pd) − V‖2L2(T )
.

We now apply Lemma 36 (approximability in H1(Γ)) to derive an a-priori
error estimate. We present two proofs. The first one is very compact and
relies on Lemmas 19 and 23 (perturbation error estimate). The second proof is
selfcontained and paves the way to the L2 error estimate that follows. In both
cases we rely on Lemma 3 (regularity) for γ of class C2 and f̃ ∈ L2,#(γ):

‖ũ‖H2(γ) . ‖ f̃ ‖L2(γ).

Theorem 37 (H1 a-priori error estimate for C2 surfaces). Let γ be of class C2,
f̃ ∈ L2,#(γ) and ũ ∈ H2(γ) be the solution of (1.18). Let U ∈ V#(T ) be the
solution to (1.78) with F = f̃ ◦ P q

qΓ
defined via the lift P. If the geometric

assumptions (1.69), (1.90), and (1.91) are valid, then

‖∇Γ(ũ ◦ P −U)‖L2(Γ) .
(
hT + λT(Γ)

)
‖ f̃ ‖L2(γ) . hT ‖ f̃ ‖L2(γ)

as well as

‖∇Γ(ũ ◦ Pd −U)‖L2(Γ) .
(
hT + µT(Γ)

)
‖ f̃ ‖L2(γ) . hT ‖ f̃ ‖L2(γ).

Proof 1. We prove the second estimate. Let fΓ = F and uΓ ∈ H1
# (Γ) solve (1.33)∫

Γ

∇ΓuΓ∇Γv =
∫
Γ

fΓv ∀ v ∈ H1
# (Γ).

Since U ∈ V#(T ) is the Galerkin approximation to uΓ on Γ, we infer that

‖∇Γ(uΓ −U)‖ = inf
V ∈V(T)

‖∇Γ(uΓ − V)‖.

This combined with the triangle inequality yields

‖∇Γ(ũ◦Pd −U)‖L2(Γ) ≤ 2‖∇Γ(ũ◦Pd −uΓ)‖L2(Γ)+ inf
V ∈V(T)

‖∇Γ(ũ◦Pd −V)‖L2(Γ).

Applying Lemma 36 (approximability of H1(Γ)), together with ‖ũ‖H2(γ) .

‖ f̃ ‖L2(γ), readily gives

inf
V ∈V(T)

‖∇Γ(ũ ◦ Pd − V)‖L2(Γ) .
(
hT + βT(Γ)

)
‖ f̃ ‖L2(γ).

To estimate the remaining term, we resort to Lemma 17 (norm equivalence),
Lemma 23 (perturbation error estimate) along with Corollary 33 (geometric
consistency errors for C2 surfaces) to obtain

‖∇Γ(ũ ◦ Pd − uΓ)‖L2(Γ) . µT(Γ)‖F‖H−1
# (Γ)
+ ‖ f qdq−1

Γ − F‖H−1
# (Γ)

,
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where qd denotes the area element induced by the parametrization χ = Pd ◦ X
of γ. We denote by P−1

d
the inverse of Pd restricted to Γ, and use Proposition 34

(mismatch between P and Pd), with w̃ = v ◦ P−1
d

and v ∈ H1
# (Γ), to get

‖ f qd q−1
Γ − F‖H−1(Γ) = sup

‖∇Γv ‖L2(Γ)=1

∫
Γ

(
f̃ ◦ Pd

qd
qΓ
− f̃ ◦ P q

qΓ

)
v

= sup
‖∇Γv ‖L2(Γ)=1

∫
γ

f̃
(
v ◦ P−1

d − v ◦ P−1) . βT(Γ)‖ f̃ ‖L2(γ).

Combining the previous inequalities with ‖F‖H−1(Γ) . ‖ f̃ ‖L2(γ) completes the
proof of the second assertion. The proof of the first one proceeds along the same
lines but using Lemma 19 (perturbation error estimate for C1,α surfaces) and
Corollary 32 (geometric consistency for C1,α surfaces) instead.

Proof 2. We closely mimic the proof of Lemmas 19 and 23 (perturbation error
estimate) for the solution to the Laplace-Beltrami problem on nearby surfaces,
with an additional step needed due to the Galerkin approximation. In addition,
the fact that F = f̃ ◦P q

qΓ
is defined using the map P while all other quantities are

lifted using the closest point projection Pd adds a twist to our proof as compared
with standard proofs of such error estimates. We let u = ũ ◦ Pd(x) for all x ∈ Γ
for notational convenience, and focus on the second assertion.

Step 1: Error representation. For V ∈ V(T ) arbitrary, we let W = V − U to
arrive at

‖∇Γ(V −U)‖2L2(Γ)
=

∫
Γ

∇Γ(u −U) · ∇ΓW +
∫
Γ

∇Γ(V − u) · ∇ΓW .

We now invoke Lemma 31 (Galerkin quasi-orthogonality) to rewrite the first
term as follows:∫

Γ

∇Γ(u −U) · ∇ΓW =
∫
Γ

(
f̃ ◦ Pd

qd
qΓ
− F

)
W +

∫
Γ

∇Γu · EΓ∇ΓW,

where the area element qd over γ is induced by the parametrization χ = Pd ◦X.
We thus have the error representation formula

‖∇Γ(V −U)‖2L2(Γ)
=

∫
Γ

∇Γu · EΓ∇ΓW +
∫
Γ

∇Γ(V − u) · ∇ΓW

+

∫
Γ

(
f̃ ◦ Pd

qd
qΓ
− F

)
W := I + I I + I I I,

and estimate the three terms on the right hand side separately.

Step 2: Geometric and interpolation errors. According to Corollary 33 (geo-
metric consistency errors forC2 surfaces), the error matrix satisfies ‖EΓ‖L∞(Γ) .
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µT(Γ). This, together with Lemma 17 (norm equivalence) and the a priori bound
‖∇γũ‖L2(γ) ≤ ‖ũ‖H2(γ) . ‖ f̃ ‖L2(γ), yields

I . µT(Γ)‖ f̃ ‖L2(γ)‖∇ΓW ‖L2(Γ).

On the other hand, we can choose V ∈ V(T ) so that Lemma 36 (approximability
in H1(Γ)) holds, whence

I I .
(
hT + βT(Γ)

)
‖ f̃ ‖L2(γ)‖∇ΓW ‖L2(Γ).

Step 3: Final estimates. We recall that the discrete forcing is given by F =
f̃ ◦ P q

qΓ
, where q is the area element in γ induced by the parametrization

χ = P ◦ X. Changing variables to γ via the lifts Pd and P for each integral in
I I I gives

I I I =
∫
Γ

(
f̃ ◦ Pd

qd
qΓ
− f̃ ◦ P q

qΓ

)
W =

∫
γ

f̃
(
W ◦ P−1

d −W ◦ P−1
)
,

where again P−1
d

denotes the inverse of Pd restricted to Γ. Since f̃ has vanishing
mean over γ, we can assume that so doesW over Γ. This allows us to invoke (1.82)
(uniform Poincaré-Friedrichs constant) to deduce ‖W ‖H1(Γ) . ‖∇ΓW ‖L2(Γ) and
thus apply Proposition 34 (mismatch between P and Pd) to obtain

I I I . βT(Γ)‖ f ‖L2(Γ)‖∇ΓW ‖L2(Γ).

Collecting the previous estimates, and using that βT(Γ) ≤ µT(Γ), leads to

‖∇Γ(U − V)‖L2(Γ) .
(
hT + µT(Γ)

)
‖ f ‖L2(Γ) . hT ‖ f̃ ‖L2(γ)

because µT(Γ) . h2
T
|d |W 2

∞(Γ)
according to the definition (1.87) of µT(Γ) and

Corollary 33 (geometric consistency for C2 surfaces). Invoking again Lemma
36 (approximability in H1(Γ)) yields the second assertion.

The first statement follows similarly upon replacing ũ ◦ Pd by ũ ◦ P, Pd by P
and invoking Corollary 32 (geometric consistency errors for C1,α surfaces)

‖EΓ‖L∞(Γ) . λT(Γ) . hT |P|W 2
∞(Γ)

.

This concludes the proof.
Comparing Corollary 32 (geometric consistency errors for C1,α surfaces)

with Corollary 33 (geometric consistency errors for C2 surfaces) ones sees that
using the distance function liftPd for error representation gives rise to a quadratic
geometric error estimator for surfaces γ of class C2

µT(Γ) . h2
T |d |W 2

∞(Γ)
,

even though the FEM is designed in terms of a generic lift P also of class
C2. Meanwhile the geometric estimator λT(Γ) . hT |P|W 2

∞(Γ)
is linear for this
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regularity class. This does not affect the H1 a-priori error analysis for piecewise
linear approximations of γ and u, which is first order, but it is crucial to derive
optimal second-order L2 error estimates by a duality argument. We present next
such estimates for surfaces of class C2 and a FEM based on a generic lift P also
of class C2, a result that seems to be new in the literature.

Theorem 38 (L2 a-priori error estimate for C2 surfaces). Let γ be of class C2

and be described by a generic lift P of class C2. Let the geometric conditions
(1.69), (1.90), and (1.91) be satisfied. Let ũ ∈ H1

# (γ) solve (1.19) andU ∈ V#(T )

solve (1.78) with F = f̃ ◦ P q
qΓ
. Then

‖ũ ◦ P −U‖L2(Γ) . h2
T ‖ f̃ ‖L2(γ), (1.97)

provided λ ≤ λ∗, where λ∗ is as in Proposition 34.

Proof. We employ a standard duality argument, but enforcing compatibility
(mean-value-zero) conditions. We use the lift Pd and its inverse P−1

d
when

restricted to Γ to switch from γ to Γ back and forth. To this end we use the
notation w̃ = w ◦P−1

d
: γ → R and v = ṽ ◦Pd : Γ→ R for functions w : Γ→ R

and ṽ : γ → R. We denote qd the area element induced by Pd . We finally
observe that if P is of class C2 then

βT(Γ) ≤ µT(Γ) . h2
T |P|W 2

∞(Γ)
,

where βT(Γ) and µT(Γ) are defined in (1.86) and (1.87). We split the proof into
several steps.

Step 1: Duality argument. We associate with U ∈ V#(T ) the function Ũ# =
qΓ
q Ũ ∈ L2,#(γ) with vanishing mean over γ and let z̃ ∈ H1

# (γ) satisfy∫
γ
∇γ z̃ · ∇γw̃ =

∫
γ

(
ũ − Ũ#

)
w̃ ∀ w̃ ∈ H1

# (γ).

Observe that the Lax-Milgram lemma and Lemma 2 (Poincaré-Friedrichs in-
equality) guarantee existence and uniqueness of z̃ ∈ H1

# (γ). Let also Z ∈ V#(T )

be the Galerkin approximation to z̃ over Γ, that is∫
Γ

∇ΓZ · ∇ΓW =
∫
Γ

(
u# −U

)
W, ∀W ∈ V(T ),

where u# := q
qΓ

u has vanishing mean over Γ. Note also that u# − U = (ũ −

Ũ#) ◦ Pd
q
qΓ

is a compatible right-hand side for Theorem 37 (H1 a-priori error
estimate). We thus have

‖ũ − Ũ#‖
2
L2(γ)
=

∫
γ
∇γ

(
ũ − Ũ

)
· ∇γ (̃z − Z̃) +

∫
γ
∇γ

(
ũ − Ũ

)
· ∇γ Z̃ .
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Applying Lemma 31 (Galerkin orthogonality) the second integral becomes∫
γ
∇γ

(
ũ − Ũ

)
· ∇γ Z̃ =

∫
γ

(
f̃ − F̃

qΓ
qd

)
Z̃ +

∫
γ
∇γŨ · E∇γ Z̃,

with F̃ = F ◦ Pd . Changing variables first via the lift Pd and next via P, we get∫
γ

F̃ Z̃
qΓ
qd
=

∫
Γ

FZ =
∫
γ

F ◦ P−1 Z ◦ P−1 qΓ
q
=

∫
γ

f̃ Z ◦ P−1.

Consequently, we have derived the following error representation:

‖ũ − Ũ#‖
2
L2(γ)
=

∫
γ
∇γ

(
ũ − Ũ

)
· ∇γ (̃z − Z̃)

+

∫
γ

f̃
(
Z ◦ P−1

d − Z ◦ P−1
)

+

∫
γ
∇γŨ · E∇γ Z̃ .

(1.98)

The first term is standard and the next two account for the mismatch between P
and Pd and geometric consistency. We examine them separately now.

Step 2: Bounds. Since γ is of class C2, Lemma 3 (regularity) gives for z

‖ z̃‖H2(γ) . ‖ũ − Ũ#‖L2(γ).

Combining Theorem 37 (H1 a-priori error estimate) for z̃ with Lemma 17 (norm
equivalence) yields the following estimate in L2(γ) instead of L2(Γ)

‖∇γ (̃z − Z̃)‖L2(γ) . hT ‖ũ − Ũ#‖L2(γ).

Applying Theorem 37 again, this time for u, implies∫
γ
∇γ

(
ũ − Ũ

)
· ∇γ (̃z − Z̃) . h2

T ‖ f̃ ‖L2(γ)‖ũ − Ũ#‖L2(γ).

On the other hand, Proposition 34 (mismatch between P and Pd) with w̃ =

Z ◦ P−1
d

leads to∫
γ

f̃
(
Z ◦ P−1

d − Z ◦ P−1
)
. βT(Γ)‖ f̃ ‖L2(γ)‖Z ◦ P−1‖H1(γ)

. βT(Γ)‖ f̃ ‖L2(γ)‖∇ΓZ ‖L2(Γ),

because Z has a zero mean on Γ. Since P is of class C2, one sees that βT(Γ) .
h2
T
|P|W 2

∞(Γ)
. Hence the a-priori bound ‖∇ΓZ ‖L2(Γ) . ‖u −U‖L2(Γ) implies∫

γ
f̃
(
Z ◦ P−1

d − Z ◦ P−1
)
. h2

T |P|W 2
∞(Γ)
‖ f̃ ‖L2(γ)‖u# −U‖L2(Γ).
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Finally, Corollary 33 (geometric consistency error for C2 surfaces), in conjunc-
tion with Lemma 17 (norm equivalence), allows us to tackle the geometric error∫
γ
∇γŨ ·E∇γ Z̃ . ‖∇ΓU‖L2(Γ)‖∇ΓZ ‖L2(Γ)‖E‖L∞(γ) . h2

T ‖ f̃ ‖L2(γ)‖u#−U‖L2(Γ),

where again we have used a priori bounds for ∇ΓU and ∇ΓZ . Lemma 17
(norm equivalence) and the nondegeneracy property (1.74) of q

qΓ
imply that

‖u# −U‖L2(Γ) . ‖ũ − Ũ#‖L2(γ). Collecting the previous estimates and dividing
through by ‖ũ − Ũ#‖L2(γ), we thus arrive at

‖ũ − Ũ#‖L2(γ) . h2
T ‖ f̃ ‖L2(γ).

Step 3: Discrepancy between Ũ and Ũ# and final estimates. We still need to deal
with the discrepancy between Ũ and Ũ# =

qΓ
q Ũ. Using Lemma 33 (geometric

consistency errors for C2 surfaces) and Lemma 17 again, we find that

‖Ũ − Ũ#‖L2(γ) ≤ ‖1 − qΓq−1‖L∞(γ)‖Ũ‖L2(γ) . h2
T ‖ f̃ ‖L2(γ).

Applying the triangle inequality followed by Lemma 17 gives the intermediate
estimate

‖ũ ◦ Pd −U‖L2(Γ) . ‖ũ − Ũ‖L2(γ) . h2
T ‖ f̃ ‖L2(γ).

To conclude the proof, we simply note that

‖ũ ◦ Pd − ũ ◦ P‖L2(Γ) ≈ ‖ũ − ũ ◦ Pd ◦ P−1‖L2(γ) . βT(Γ)‖ũ‖H1(γ) . h2
T ‖ f̃ ‖L2(γ),

according to Proposition 34 (mismatch between P and Pd) and the estimate
βT(Γ) . h2

T
‖P‖W 2

∞(Γ)
for P of class C2 (see definition (1.86) of βT(Γ)). Finally,

the triangle inequality leads to the asserted estimate.

The estimate (1.97) is known for surfaces γ of class C3 and the distance
function lift Pd [Dzi88]. We insist that (1.97) appears to be new even for P = Pd

for surfaces of class C2 and is optimal both in terms of regularity of u and γ as
well as order.

The C2 regularity of γ enters in three distinct places in Step 2 of the proof to
tackle the right hand side of (1.98) as well as in Step 3. The first instance is via
Lemma 3 (regularity) to handle the H2 regularity of both u and z in terms of the
L2 norm of the forcing terms: it turns out that (1.20) becomes

|ũ|H2(γ) . |d |W 2
∞(N)
‖ f̃ ‖L2(γ),

whence the factor |d |2
W 2
∞(N)

appears. The same happens with the term involving
‖E‖L∞(γ) in view of (1.94), whereas a factor |P|W 2

∞(Γ)
shows up for the middle
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term in (1.98) and the end of the proof due to Proposition 34 (mismatch between
P and Pd). The complete estimate thus reads

‖ũ ◦ P −U‖L2(Γ) . h2
T |d |

2
W 2
∞(N)
‖ f̃ ‖L2(γ). (1.99)

A-Priori Error Estimates for C1,α Surfaces. We end this section proving H1

error estimates for surfaces γ of class C1,α and solutions ũ of class H1+s(γ) for
0 < s ≤ 1. We recall Lemma 4 (regularity for W2

p surfaces) that establishes this
regularity for s = 1, provided n < p ≤ ∞, along with

‖ũ‖H2(γ) . ‖ f̃ ‖L2(γ).

In general, however, the relation between α and s is not well understood; we refer
to [BDO] where it is proved the existence of s = s(α) > 0 such that ũ ∈ H1+s(γ).
We start with a variant of Lemma 36 (approximability in H1(Γ)).

Lemma 39 (approximability in H1(Γ)). Let γ be a surface of class C1,α and
ũ ∈ H1+s(γ), where 0 < s < α < 1 or 0 < s ≤ α = 1. Then we have

inf
V ∈V(T)

‖∇Γ(ũ ◦ P − V)‖L2(Γ) . hs
T
|ũ|H1+s (γ). (1.100)

Proof. We recall that u = ũ ◦P and ∇Γu ◦ χΓ = DχΓg−1
Γ

Dχt∇γũ ◦ χ, according
to (1.35), and that DχΓ, g−1

Γ
and Dχ are uniformly of class C0,α; here χΓ = X.

Given T ∈ T , a direct calculation using the definition of the seminorm | · |H s (T )

shows that the composition of a Lipschitz map with a Hs function as well as the
product of a C0,α function with a Hs function belong to Hs provided s < α or
s ≤ α = 1. Consequently, we infer that ∇Γu ∈ H1+s(T) for all T ∈ T along with

|u|H1+s (T ) . |ũ|H1+s (T̃ ).

A scaling argument guarantees that the constant hidden in this inequality is
independent of T ∈ T . We next apply the localized interpolation estimate of
Vesser [Vee15] to deduce

inf
V ∈V(T)

‖∇Γ(u − V)‖2L2(Γ)
.

∑
T ∈T

inf
V ∈V(T )

‖∇Γ(u − V)‖2L2(T )
. h2s

T
|ũ|2

H1+s (γ)
,

which is the asserted estimate.

We now compare Lemma 39 with Lemma 36 (approximability in H1(Γ)).
We stress that the lift P = χ ◦ X−1 is of class C1,α for surfaces of class C1,α,
whereas the distance lift Pd is just of class C1 for surfaces of class C2. This is
why the proof of Lemma 39 is considerably simpler than that of Lemma 36. The
virtue of Pd is reflected in a higher order geometric error µT(Γ) in Theorem 37
(H1 a-priori error estimate forC2 surfaces) relative to the next H1 error estimate.
This is also responsible for the optimal Theorem 38 (L2 a-priori error estimate
for C2 surfaces) which does not have a counterpart in this context.
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Theorem 40 (H1 a-priori error estimate for C1,α surfaces). Let γ be of class
C1,α, 0 < α ≤ 1, and assume that the geometric assumptions (1.69), (1.90), and
(1.91) are valid. Let f̃ ∈ L2,#(γ) and ũ ∈ H1+s(γ) be the solution of (1.18) and
satisfy

‖ũ‖H1+s (γ) . ‖ f̃ ‖L2(γ),

provided 0 < s < α < 1 or 0 < s ≤ α = 1. If U ∈ V#(T ) is the solution to
(1.78) with F = f̃ ◦ P q

qΓ
defined via the lift P, then

‖∇Γ(ũ ◦ P −U)‖L2(Γ) . hs
T
‖ũ‖H1+s (γ) + λT(Γ)‖ f̃ ‖L2(γ) . hs

T
‖ f̃ ‖L2(γ).

Proof. We proceed along the lines of Proof 1 of Theorem 37 (H1 a-priori error
estimate for C2 surfaces), which splits the error into an approximation and a
perturbation term. For the former we simply resort to Lemma 39 instead of
Lemma 36 (approximability in H1(Γ)). For the latter we argue exactly as in
Theorem 37 and thus employ (1.82) (uniform Poincaré-Friedrichs constant),
Lemma 19 (perturbation error estimate for C1,α surfaces) and Corollary 32
(geometric consistency forC1,α surfaces). This shows the first asserted estimate.
The second bound follows from the standard interpolation estimate

λT(Γ) . hα
T
‖χ‖C1,α (V)

and the condition α ≥ s. This ends the proof.

1.4.4 A-Posteriori Error Analysis

In contrast to the previous section, we now derive error estimates in H1 which
rely on information extracted from the computed solution U of (1.78) and data,
but do not make use of the exact solution ũ of (1.18). They are a-posteriori
estimates of residual type, are fully computable, and are instrumental to drive
adaptive procedures. In this vein, we mention [BCM+16, BCMN13] but we do
not elaborate on this issue any longer.

The a-posteriori analysis requires a quasi-interpolation operator acting on
H1(Γ) functions, i.e. functions without point values. We use the Scott-Zhang
operator Isz

T
: H1(Γ) → V(T ) and recall its local approximability and stability

properties for all T ∈ T

‖v − IszT v ‖L2(T ) . hT ‖∇Γv ‖L2(ωT )
, ‖∇ΓI

sz
T v ‖L2(T ) . ‖∇Γv ‖L2(ωT )

, (1.101)

whereωT is a macro patch defined in (1.65) associated withT . We do not require
that Isz

T
v ∈ V#(T ) even if v ∈ H1

# (Γ), as it happened earlier in the a-priori error
analysis of Section 1.4.3.

In order to derive a posteriori error estimates, we first introduce the interior
and jump residuals for any V ∈ V(T ):

RT (V) := F |T +∆ΓV |T ∀T ∈ T

JS(V) := ∇ΓV+ |S ·µ+S + ∇ΓV
− |S ·µ

−
S ∀ S ∈ ST



The Laplace-Beltrami Operator Chapter | 1 59The Laplace-Beltrami Operator Chapter | 1 59The Laplace-Beltrami Operator Chapter | 1 59

where for S = T
+
∩T
−
is the face shared by T± ∈ T and µ±S := µT± are pointing

outward co-normals to the elements T± (see Section 1.2.6). We point that when
using piecewise affine functions V = V̂ ◦ X−1 on polyhedral surfaces Γ, the
Laplace-Beltrami operator (1.13) vanishes within elements

∆ΓV =
1
qΓ

div
(
qΓg−1

Γ ∇V̂
)
= 0 ∀T ∈ T ,

and that, in contrast to the flat case, µ+S , −µ
−
S in general. If J∂T (V) denotes the

jump residual on ∂T , then we define the element indicator to be

ηT(V,T)2 := h2
T ‖RT (V)‖2L2(T )

+ hT ‖J∂T (V)‖2L2(∂T )
∀T ∈ T ,

and the error estimator to be

ηT(V)2 :=
∑
T ∈T

ηT(V,T)2.

Theorem 41 (a-posteriori upper bound forC1,α surfaces). Let γ be of classC1,α,
be parametrized by χ = P ◦ X and satisfy the geometric assumption (1.69). Let
ũ ∈ H1

# (γ) be the solution to (1.18) andU ∈ V#(T ) be the solution to (1.78) with
F = f̃ ◦ P q

qΓ
∈ L2,#(Γ). Then, for Ũ := U ◦ P−1 : γ → R we have

‖∇γ(ũ − Ũ)‖2
L2(γ)

. ηT(U)2 + λ2
T(Γ)‖ f̃ ‖2L2(γ)

.

Proof. Using definitions (1.19) and (1.79), along with the consistency relation
(1.34), enables us to write for any ṽ ∈ H1(γ), v = ṽ ◦ P ∈ H1(Γ) and V ∈ V(T )∫

γ
∇γ(ũ − Ũ) · ∇γ ṽ = I1 + I2 + I3 (1.102)

with

I1 = −

∫
Γ

∇ΓU · ∇Γ(v − V) +
∫
Γ

F(v − V),

I2 =

∫
γ
∇γŨ · E∇γ ṽ,

I3 =

∫
γ

f̃ ṽ −
∫
Γ

Fv .

Employing the definition F = f̃ ◦P q
qγ

and changing variables we deduce I3 = 0.
On the one hand, decomposing I1 over elements T ∈ T , and resorting to

Corollary 13 (integration by parts) on T , leads to

I1 =
∑
T ∈T

∫
T

RT (U)(v − V) +
∑
S∈S

∫
S

JS(U)(v − V) (1.103)
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and so

I1 .
∑
T ∈T

ηT(U,T)
(
h−1
T ‖v − V ‖L2(T ) + ‖∇Γ(v − V)‖L2(T )

)
,

because of the scaled trace inequality

‖w‖L2(∂T ) . h
− 1

2
T ‖w‖L2(∂T ) + h

1
2
T ‖∇Γw‖L2(∂T ) ∀w ∈ H1(T).

We now choose V = Isz
T

v to be the Scott-Zhang quasi-interpolant of v . The
local approximability and stability properties (1.101) imply

I1 . ηT(U)‖∇Γv ‖L2(Γ) . ηT(U)‖∇γ ṽ ‖L2(γ), (1.104)

where we have used the finite ovelapping properties of the patches {ωT }T ∈T
and Lemma 17 (norm equivalence). Regarding term I2 we apply Corollary 32
(geometric consistency errors for C1,α surfaces) to arrive at

I2 . λT(Γ) ‖∇γŨ‖L2(γ)‖∇γ ṽ ‖L2(γ) . λT(Γ) ‖ f̃ ‖L2(γ) ‖∇γ ṽ ‖L2(γ),

because of the estimates

‖∇γŨ‖L2(γ) . ‖∇ΓU‖L2(Γ) . ‖F‖H−1
# (Γ)

. ‖ f̃ ‖L2(γ)

which are a consequence of Lemma 17 (norm equivalence), F = f̃ ◦ P q
qΓ
,

Lemma 2 (Poincaré-Friedrich inequality) and
∫
γ

f̃ = 0. Combining the above
estimates, we end up with the assertion.

To assess the tightness of the upper bound in Theorem 41 it is customary to
show a lower bound. To this end, we introduce the so-called data oscillation

oscT(F,T)2 := h2
T ‖F − F‖2

L2(T )
, oscT(F)2 :=

∑
T ∈T

oscT(F,T)2,

where F is the piecewise average of F. This quantity accounts for the fact that the
residual is evaluated in a weighted L2-norm rather than the natural H−1-norm.
This in turn makes the estimator ηT(U) computable but perhaps at the expense
of overestimation. This is the subject of our next estimate, proved in [BCMN13].
We recall that for T ∈ T , ωT denotes the union of elements in T that intersect
T and ω̃T stands for the lift of ωT to γ via P. Moreover, we set

oscT(F, ωT )
2 :=

∑
T ′⊂ωT

oscT(F,T ′)2, λ2
T(ωT ) := max

T ′⊂ωT

λ2
T .

Theorem 42 (a-posteriori lower bound for C1,α surfaces). Under the same
conditions of Theorem 41 (a-posteriori upper bound for C1,α surfaces), we have

ηT(U,T)2 . ‖∇γ(ũ − Ũ)‖2
L2(ω̃T )

+ oscT(F, ωT )
2 + λ2

T(ωT ).
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Proof. The proof of the lower bound is standard and is only sketched here. It
relies on an argument due to Verfürth [Ver13]. The starting point is the error
relation (1.102) localized to T ∈ T via the test function v = FbT , where bT ∈
H1

0 (T) is the cubic bubble taking value 1 at the element barycenter. Employing
the norm equivalence (1.44) (valid elementwise), we realize that

‖∇γ ṽ ‖L2(T̃ )
. ‖∇Γv ‖L2(T ) . h−1

T ‖F‖L2(T ),

whence taking V = 0 in (1.102) yields

‖F‖2L2(T )
.

∫
T

Fv . h−1
T

(
‖∇γ(ũ − Ũ)‖L2(T̃ )

+ oscT(F,T) + ‖E‖L∞(T̃ )
)
‖F‖L2(T )

upon recalling that I3 = 0 with our choice of F and the expression (1.103) for I1.
Corollary 32 (geometric consistency errors for C1,α surfaces), combined with a
triangle inequality, then leads to the desired estimate for the bulk term

h2
T ‖F‖

2
L2(T )

. ‖∇γ(ũ − Ũ)‖2
L2(T̃ )

+ oscT(F,T)2 + λ2
T .

As for the jump term, we define for a side S ∈ S with adjacent elements T±,
bS ∈ H1

0 (ωS) as the quadratic bubble taking value 1 at the barycenter of S and
0 at all other quadratic nodes in ωS := T+ ∪ T−. We also let ω̃S := P(ωS) be
the lift of ωS to γ by the map P. Taking v = JS(U)bS and V = 0 in (1.102), and
recalling the expression (1.103) for I1 and that I3 = 0, yields

‖JS(U)‖2L2(S)
.

∫
S

JS(U)v

.
(
‖∇γ(ũ − Ũ)‖L2(ω̃S )) + hT ‖F‖L2(ωS ) +max(λT+, λT− )

)
‖∇γ ṽ ‖L2(ω̃S )).

Finally, it suffices to use the preceding estimate for hT ‖F‖L2(T ), together with

‖∇γ ṽ ‖L2(ω̃S )) . ‖∇Γv ‖L2(ωS ) . h−1/2
T ‖JS(U)‖L2(S),

to conclude the proof.

One important observation to make is that oscT(F) is generically of higher
order than ηT(U) for f̃ ∈ L2(γ), whence this term can be ignored relative to
ηT(U) asymptotically. However, the geometric estimator λT(Γ) is linear and
thus of the same order as ηT(U), thereby making the lower bound of Theorem
42 questionable. This estimator comes from the estimate (1.89) of Corollary
32 (geometric consistency errors for C1,α surfaces), which cannot obviously
be improved for surfaces of class C1,α. However, Corollary 33 (geometric
consistency errors for C2 surfaces) shows that this effect becomes of second
order for surfaces of class C2. Practically, the estimator λT(Γ) is pessimistic and
leads to unnecessary and thus suboptimal refinements for C2 surfaces [BD19].
We discuss the impact of this superconvergence estimate next following [BD19].
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Theorem 43 (a-posteriori upper bound for C2 surfaces). Let γ be of class C2

and (1.67), (1.74), (1.90), and (1.91) hold. Let ũ be the solution of (1.18) with
f̃ ∈ L2,#(γ) and U ∈ V(T ) be the solution to (1.78) with F = f̃ ◦ P q

qΓ
, where q

corresponds to the parametrization χ = P ◦ X of γ. Then

‖∇γ(ũ −U ◦ P−1
d )‖

2
L2(γ)

. ηT(U)2 + µ2
T(Γ) ‖ f̃ ‖2L2(γ)

.

Proof. We proceed as in the proof of Theorem 41 (a-posteriori upper bound for
C1,α surfaces) but using the distance function lift to represent the errors. We
denote Ũ = U◦P−1

d
, v = ṽ ◦Pd for a generic ṽ ∈ H1(γ) and get for anyV ∈ V(T )∫

γ
∇γ

(
ũ − Ũ

)
· ∇γ ṽ = I1 + I2 + I3 (1.105)

with

I1 = −

∫
Γ

∇ΓU · ∇Γ(v − V) +
∫
Γ

F(v − V),

I2 =

∫
γ
∇γŨ · E∇γ ṽ,

I3 =

∫
γ

f̃ ṽ −
∫
Γ

Fv,

where we have used again (1.34) but with the error matrix E now defined with
respect to Pd and given by (1.51) of Lemma 21 (geometric consistency). We
tackle I1 and I2 exactly as in Theorem 41, thereby obtaining

I1 . ηT(U)‖∇γ ṽ ‖L2(γ), I2 . µT(Γ) ‖ f̃ ‖L2(γ)‖∇γ ṽ ‖L2(γ),

except that we resort to (1.94) of Corollary 33 (geometric consistency errors for
C2 surfaces) to estimate E.

On the other hand, I3 no longer vanishes because F = f̃ ◦ P q
qΓ

is defined via
P and the function v via Pd . Using P to change variables back to γ we obtain∫

Γ

Fv =
∫
Γ

( f̃ ◦ P) (̃v ◦ Pd)
q
qΓ
=

∫
γ

f̃ (̃v ◦ Pd ◦ P−1),

whence I3 becomes

I3 =

∫
γ

f̃
(̃
v − ṽ ◦ Pd ◦ P−1) . (1.106)

Invoking Proposition 34 (mismatch between P and Pd) yields

I3 . βT(Γ) ‖ f̃ ‖L2(γ)‖∇γ ṽ ‖L2(γ)

and concludes the proof because βT(Γ) ≤ µT(Γ).
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Weconcludewith a lower bound forC2 surfaces. We point out that, compared
with the existing results in the literature, see e.g. [DD07], we account for the
mismatch between the two lifts P and Pd .

Theorem 44 (a-posteriori lower bound for C2 surfaces). Under the same con-
ditions as Theorem 43 (a-posteriori upper bound for C2 surfaces), we have

ηT(U,T)2 . ‖∇γ(ũ − Ũ)‖2
L2(ω̃T )

+ oscT(F, ωT )
2 + µT(ωT )

2,

where µT(ωT ) = maxT ′⊂ωT µT ′ .

Proof. The proof follows along the lines of Theorem 42 (a-posteriori lower
bound for C1,α surfaces) with the following variants. We use Corollary 33
instead of Corollary 32 in the error representation (1.105) to tackle I2 and
account for the fact that I3 , 0 via (1.106) for a generic lift P.

1.5 TRACE METHOD

In this section we present a class of methods which are known as trace finite
element methods or cut finite element methods [ORG09, BHL15, Reu15]. The
setting for these methods is situations in which a PDE posed on an n-dimensional
hypersurface γ embedded in Rn+1 must be solved numerically, and a bulk or
volume background mesh of some domain Ω ⊂ Rn+1 is present with γ ⊂ Ω.
It is often more convenient to describe γ and solve associated PDE employing
the background mesh instead of independently meshing γ. A paradigm physical
example is a two-phase flow problem. There Ω is subdivided into subdomains
Ω1 and Ω2 (one for each phase) and γ is the interface between Ω1 and Ω2. In
simulations Ω is typically meshed in order to solve equations of fluid dynamics
(e.g., Stokes or Navier-Stokes), while accounting for interfacial effects such as
surface tension also requires solving a surface PDE on γ. It can be particularly
inconvenient to independently mesh Ω and γ in dynamic simulations in which
γ evolves as either a specified or free boundary. In addition to the overhead
associated with transferring information between unrelated bulk and surface
meshes, remeshing is generally necessary from time to time when parametric
methods are used to describe dynamic interfaces because mesh degeneracies
may occur as the surface deforms.

Trace and cut FEMs were introduced by Olshanskii et al [ORG09] and have
been further developed over the past decade as one option for circumventing
these difficulties. In order to describe them more precisely, first let T := TΩ be
a simplicial decomposition of Ω ⊂ Rn+1, n ≥ 1. We let hT := |T |

1
n+1 for any

T ∈ T and set h := maxT ∈T hT for the mesh-size of T . We will omit to mention
the explicit dependence on the shape regularity constant of T

σ := max
T ∈T

diam(T)
hT
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in most estimates below. Assume that γ ⊂ Ω is a closed, C2 n-dimensional
surface. As outlined in Section 1.2.3, γ is then the zero level set of a C2 distance
function d defined on a tubular neighborhoodN of γ. LetV(T ) ⊂ H1(Ω) consist
of the continuous piecewise linear functions over T . In order to fix thoughts, let
dh ∈ V(T ) be the Lagrange interpolant ITd of d satisfying

‖d − dh ‖L∞(N) + h‖d − dh ‖W 1
∞(N)

. h2 |d |W 2
∞(N)

.

The discrete computational surface Γ is then defined by

Γ := {x ∈ Ω : dh(x) = 0}.

Belowwe also discuss how to derive Γ frommore general implicit representations
of γ. Because dh is piecewise linear, Γ consists of intersections of hyperplanes
with simplices and is thus a polyhedron having triangular and quadrilateral faces
for n = 2 (see Figure 1.3). We denote by F the collection of faces of Γ. In
addition, the conditions placed on dh ensure that ‖d‖L∞(Γ)+h‖ν−νΓ‖L∞(Γ) . h2,
so the perturbation results for C2 surfaces outlined in Section 1.3.2 hold on Γ
with order h2 geometric perturbation error.

The surface finite element space V(F ) is simply the restriction of V(T ) to Γ:

V(F ) :=
{
V |Γ : V ∈ V(T )

}
.

By its definition V(F ) ⊂ H1(Γ) consists of the continuous functions which are
affine over each face F ∈ F . We also denote by V#(F ) := V(F ) ∩ L2,#(Γ)

its subspace consisting of functions with vanishing mean values. In order to
approximate the solution ũ to the Laplace-Beltrami problem −∆γũ = f̃ on γ, we
first define a suitable approximation FΓ to f and then seek U ∈ V#(F ) such that∫

Γ

∇ΓU · ∇ΓV =
∫
Γ

FΓV, ∀V ∈ V#(F ). (1.107)

This is the trace method and has two notable advantages:

• Only single mesh: The main advantage is that both bulk and interfacial effects
can be computed using the same mesh.

• Error estimates: Optimal-order and regularity error estimates hold in the H1

and L2 norms.

On a practical and theoretical levels the method exhibits three main challenges:

• Implicit surface representation: The simplest option of taking the distance
function d to define γ and its Lagrange interpolant of dh to define Γ is not
generally practical as d is rarely available in applications. It is generally more
practical to assume that the discrete surface Γ is derived from a more general
level set representation φ of γ. We provide a brief discussion of general level
set representations below.
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FIGURE 1.3 Bulk mesh cutaway with associated trace mesh (left); blowup of a trace mesh showing
small and narrow elements (right).

• Surface integration: Computing the finite element system is more cumber-
some than in standard parametric surface FEMs since both themesh F and the
finite element space V(F ) are derived from their corresponding bulk coun-
terparts. These difficulties are manageable in the case of the piecewise linear
method presented here, but become significantly more cumbersome when a
higher-order surface approximation is used.

• Linear algebra and stabilization: In contrast to parametric surface FEMs
there is no obvious practical basis for V(F ), only spanning sets derived from
subsets of the bulk space V(T ). In practice such a spanning set is derived
from the degrees of freedom for V(T ) corresponding to elements touching Γ.
Degenerate modes arise from this procedure. These are either handled at the
linear algebra level or by various stabilization procedures.

Theoretical study of trace FEMs is also more involved than for parametric
surface FEMs. One prominent issue is that the surface mesh F does not consist
of shape regular elements, as is documented in Figure 1.3. This is because
the faces in F consist of arbitrary intersections of hyperplanes with simplices
(planes and tetrahedra for n = 2). Thus elements may be arbitrarily small with
respect to the bulk mesh-size h or fail to satisfy a minimum angle condition,
and it is not possible to directly employ standard error estimation techniques.
Properties of the “high-quality” bulk mesh T and finite element space V(T )
must be invoked instead, which in turn requires careful use of extensions and
restrictions of functions to and from γ and Γ. For purposes of intuition, it is
however useful to note that the surface mesh F does inherit some structure
from the regularity of the bulk mesh T . Elements in F for example satisfy a
maximum-angle condition [ORX12], and each element in F also shares a vertex
with a shape-regular element of diameter equivalent to h [DO12].
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Belowwe prove a priori and a posteriori error estimates for a piecewise linear
trace FEM. In keeping with the previous section, we concentrate on surface
representations and regularity in our discussion. In particular, we only assume
that γ is C2, whereas previous approaches require that γ be C3. The recent
article [OR17] provides a broader survey of trace FEMs, including discussion
of topics such as higher-order versions, stabilization procedures, and space-time
trace FEMs that we omit here.

1.5.1 Preliminaries

Bulk and Surface Meshes. Below we need to carefully distinguish between
mesh structures defined relative to the surface mesh F and those defined relative
to the volume mesh T . First note that we shall consistently denote by F (n-
dimensional) surface elements lying in F , which as we have noted above may
not be shape-regular. In addition, T will be used to denote (n + 1)-simplices
lying in T . Given a face F ∈ F , we denote by TF the simplex in which F lies
(or one of them if F is a face shared by two bulk elements). In addition, given
T ∈ T we denote by ω1

T
(T) the patch of elements of T surrounding T (first ring)

ω1
T(T) :=

⋃ {
T ′ ∈ T : T ′ ∩ T , ∅

}
,

and by ω2
T
(T) the patch of elements of T surrounding ω1

T
(T) (second ring). We

also define
hF = diam(TF ) F ∈ F ,

whence the local mesh size of the face element F is taken to be the diameter of
the corresponding bulk element. Note that it is possible that diam(F) << hF .
We will also denote by hT the diameter of elements T ∈ T . We finally let

TΓ :=
{
T ∈ T : Γ ∩ T , ∅ or γ ∩ T , ∅

}
be the set of elements of T touching either Γ or γ.

Geometric Assumptions. Above we described Γ as the zero level set of an
approximate distance function dh . In this section we first place abstract require-
ments on Γ that are sufficient to obtain optimal-order and regularity a priori error
estimates and then prove that these requirements are satisfied on sufficiently fine
bulk meshes T when Γ is built from a suitably general level set description of
γ. We now list three main geometric assumptions.

• Description of Γ. We assume that Γ is a polyhedral surface whose faces
F ∈ F consist of the intersection of hyperplanes with simplices T ∈ T . We
further assume that Γ ⊂ N withN the tubular neighborhood defined in (1.31).

• Geometric resolution of γ. Let d be the distance function to γ, ν = ∇d and
νΓ be the outward unit normal on Γ. We assume that

‖d‖L∞(F) + hF ‖ν − νΓ‖L∞(F) . h2
F |d |W 2

∞(N)
F ∈ F . (1.108)
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This assumption is sufficient to ensure optimal decay of the geometric con-
sistency error in a priori error estimates.

• Local flattening. We assume that for each T ∈ T with T ∩ γ , ∅, there is a
ball BR of radius R with R ' 1 (independent of hT ) such that T ⊂ BR/2 and
there is a uniformly bi-C2 map

Φ : BR → R
3, Φ(γ ∩ BR) lies in a hyperplane. (1.109)

The flattening assumption (1.109) follows from the C2 nature of the surface
γ provided elements T ∈ T intersecting γ are sufficiently fine with respect to
the inverse of the maximum principal curvature. The flattening map Φ may be
constructed by expressing γ as a C2 graph over tangent hyperplanes of γ, with
the radius of the domain of these graphs bounded by the inverse of the maximum
principal curvature of γ (cf. [Eva98, Appendix C] for the construction of Φ; the
bound for R follows from the definition of curvature).

Level set representations. While we prove our results below under the ab-
stract geometric resolution assumption (1.108) involving the distance function,
in practice trace methods often build the discrete surface Γ from a more general
implicit representation of γ. Such a representation may be obtained by assuming
that γ is the zero level set of a level-set function φ : N → R

γ = {x ∈ N : φ(x) = 0}.

Broadening our assumptions concerning implicit representation of γ is important
inmany practical applications. Because the distance function d has a closed form
expression only if γ is a sphere or a torus, there are many settings where γ may
easily be represented as a level set even if d is not available. A simple example is
the ellipsoid given by γ =

{
x ∈ R3 : x2

a2 +
y2

b2 +
z2

c2 − 1 = 0
}
. Level set methods

in which an evolving free boundary is computationally approximated by the level
set of a discrete function are also popular in many applications. In this case it
is also natural to define γ via a generic level set function φ rather than restrict
attention to the distance function d.

Our essential assumptions concerning φ are that φ ∈ C2(N) and

∇φ(x) · ν(x) ≥ cφ > 0 ∀x ∈ γ. (1.110)

Because γ is a level set of φ, |∇φ| = |∇φ · ν | on γ, so the assumption (1.110)
is equivalent to assuming that ∇φ is nondegenerate on γ and points in the same
direction as ν = ∇d. Let φh ∈ V(T ) be an approximation to φ satisfying

‖φ − φh ‖L∞(T ) + hT ‖φ − φh ‖W 1
∞(T )

. h2
T ‖φ‖W 2

∞(N)
T ∈ T , (1.111)

and define the discrete surface Γ by

Γ :=
{
x ∈ N : φh(x) = 0

}
.
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Lemma 45 (geometric resolution). Let γ be C2. Under the above assumptions,
the inequality (1.108) holds for h := maxT ∈T hT sufficiently small, namely

‖d‖L∞(F) + hF ‖ν − νΓ‖L∞(F) . h2
F ‖φ‖W 2

∞(N)
F ∈ F . (1.112)

Proof. First let x ∈ N , for which the projection Pd(x) on γ is uniquely defined.
Let ζ(s) := ∇φ

(
sx + (1 − s)Pd(x)

)
· ν(x) and compute

|(∇φ · ν)(x) − (∇φ · ν)(Pd(x))| = |ζ(1) − ζ(0)| =
����∫ 1

0
ζ ′(s)ds

����
=

����∫ 1

0
∇
(
∇φ

(
sx + (1 − s)Pd(x)

)
· ν(x)

)
·
(
x − Pp(x)

) ����
≤ |x − Pd(x)| ‖∇(∇φ · ν)‖L∞([Pd (x),x]).

Since (∇φ · ν)(Pd(x)) ≥ cφ > 0, φ ∈ C2(N), and ν ∈ C1(N), there thus exists a
constant Cφ ≤ 1

2K∞ (depending on ‖φ‖W 2
∞(N)

and |d |W 2
∞(N)

) such that

(∇φ · ν)(x) ≥
cφ
2

∀ x ∈ Nφ :=
{
y ∈ Ω : |d(y)| ≤ Cφ

}
⊂ N,

according to (1.31). Therefore, for any x ∈ Nφ we have φ(Pd(x)) = 0 and

|φ(x)| =
����∫ 1

0
∇φ(sx + (1 − s)Pd(x)) · (x − Pd(x))

���� ' |x − Pd(x)| = |d(x)|,

because x − Pd(x) = |x − Pd(x)|ν(x). Given any face F ∈ F of Γ, we realize
that φh(x) = 0 for all x ∈ F and

|φ(x)| = |φ(x) − φh(x)| . h2
F ‖φ‖W 2

∞(N)
.

If h ≥ hF is sufficiently small, then x ∈ Nφ and |d(x)| ' |φ(x)| . h2
F |φ|W 2

∞(N)
.

This is the desired bound for the first term on the left hand side of (1.112).
To prove the remaining bound in (1.112), we note that for x ∈ F ∈ F , we

have νΓ(x) = ∇φh (x)
|∇φh (x) | and ν(x) = ν(Pd(x)) = ∇φ(Pd (x))

|∇φ(Pd (x)) | . Consequently, for such
x ∈ Γ, we use (1.111), the bound |d(x)| . h2

F already proved, and the C2 nature
of φ to obtain

|(νΓ − ν)(x)| =
���� ∇φh(x)|∇φh(x)|

−
∇φ(Pd(x))
|∇φ(Pd(x))|

����
≤

���� ∇φh(x)|∇φh(x)|
−
∇φ(x)
|∇φ(x)|

���� + ���� ∇φ(x)|∇φ(x)| −
∇φ(Pd(x))
|∇φ(Pd(x))|

����
.

(
hF + h2

F

)
‖φ‖W 2

∞(N)
. hF ‖φ‖W 2

∞(N)
.

This completes the proof.
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Thus we have shown that it is possible to define the discrete surface Γ using a
generic level set representation of γ in such a way that Γ has the same geometric
approximation properties as if it were derived more directly from the distance
function d. Below we assume practical access to the distance function d and
associated geometric properties (curvatures and normal vectors) in two further
places: the first one is the definition of the right hand side FΓ in formulating the
trace FEM and the second one is the definition of geometric a posteriori error
estimators. As outlined in [DD07], it is computationally feasible to accurately
approximate d(x), Pd(x), and ν(x) for x ∈ Γ under the assumption that we have
access to a level set function φ with the properties assumed above. In outline,
the foundational building block of this procedure is a numerical approximation
to Pd(x). Two such algorithms are proposed in [DD07], one being Newton’s
method and the other an ad hoc first ordermethod; cf. [Gra17] for generalizations
and analysis of these methods. Once Pd(x) is computed, we then have

|d(x)| = |x − Pd(x)|, ν(x) = ∇φ(Pd(x))
|∇φ(Pd(x))|

, W(Pd(x)) = ∇
∇φ(Pd(x))
|∇φ(Pd(x))|

.

These relationships allow for the computation of all geometric information re-
quired to bound geometric errors in the trace method a posteriori. In addition,
because we may reasonably assume access to Pd it is in turn reasonable to as-
sume a consistent definition of the right hand side FΓ, that is, FΓ =

q
qΓ

f ◦ Pd .
A different definition of FΓ would lead to an additional consistency term in the
results below.

Harmonic Extension and Traces. Here we collect instrumental results for our
proofs of a priori and a posteriori error estimates. For the latter we use the
fractional-order space H3/2(Ω), so we first define the seminorm of H1+s(Ω)

|v |2
H1+s (Ω)

:=
∑
|α |=1

∬
Ω×Ω

|Dαv(x) − Dαv(y)|2

|x − y |n+2s dx dy

for a Lipschitz domain Ω ⊂ Rn and 0 < s < 1, and corresponding norm

‖v ‖2
H1+s (Ω)

= ‖v ‖2
H1(Ω)

+ |v |2
H1+s (Ω)

.

Our first lemma is a standard extension result which may for example be
found in [Gri85, Theorem 1.4.3.1].

Lemma 46 (H1+s extension). Let D be a bounded Lipschitz domain in Rn,
n ≥ 2. Then there is an extension operator E : H1+s(D) → H1+s(Rn) such that

‖Ev ‖H1+s (Rn) . ‖v ‖H1+s (D) ∀ s ∈ [0, 1), ∀v ∈ H1+s(D). (1.113)

We also state a trace result relating H1(R2) and H3/2(R3); this is a special
case of [Ada75, Theorem 7.58].
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Lemma 47 (trace). If v ∈ H3/2(Rn), n ≥ 2, and P is any (n − 1)-dimensional
hyperplane in Rn, then

‖v ‖H1(P) . ‖v ‖H3/2(Rn). (1.114)

The following is an important technical lemma which expresses traces rela-
tionships between norms on surface elements (flat or curved) and corresponding
norms on bulk elements. An essential component of these estimates is that they
allow for surfaces to cut through bulk elements in an arbitrary fashion. Such
estimates were essential in the proof of the first a posteriori estimates for trace
methods in [DO12]. In the context of a priori error estimates for trace methods,
these provide a substantially simplified proof of error bounds when compared
with the original proofs given in [ORG09]; cf. [HH02, HH04, BHL15, Reu15].

Lemma 48 (trace estimates for cut elements). Let D ⊂ Rn (n ≥ 2) be a (not
necessarily bounded) Lipschitz domain, and let Dn−1 be the intersection of D
with an arbitrary hyperplane of dimension n − 1. Then

‖v ‖L2(Dn−1) . ‖v ‖H1(D) ∀v ∈ H1(D), (1.115)

where the hidden constant depends on the Lipschitz nature of D but not on the
orientation or size of Dn−1. In particular, let F ∈ F with F ⊂ T ∈ T . Then

‖v ‖L2(F) . h−1/2
T ‖v ‖L2(T ) + h1/2

T ‖∇v ‖L2(T ) ∀v ∈ H1(T). (1.116)

In addition, given T ∈ T there hold

‖v ‖L2(T∩γ) . h−1/2
T ‖v ‖L2(T ) + h1/2

T ‖∇v ‖L2(T ) ∀v ∈ H1(T), (1.117)

and

h−1
T ‖v ‖L2(T∩γ) + ‖∇γv ‖L2(T∩γ)

. h−3/2
T ‖v ‖L2(T ) + h−1/2

T ‖∇v ‖L2(T ) + |v |H3/2(T ) ∀v ∈ H3/2(T).
(1.118)

Proof. The estimate (1.115) is a special case of [Ada75, Lemma 5.19]. The
scaled result (1.116) follows by a standard scaling argument.

To prove (1.117) and (1.118) we employ a flattening argument. First let
K̂ be the unit reference simplex in Rn with standard affine reference mapping
ϕ : K̂ → T satisfying ‖∇ϕ‖L∞(K̂) . hT and ‖(∇ϕ)−1‖L∞(T ) . h−1

T . Let now
Φ be the flattening map in assumption (1.109). It is possible to extend Φ to
all of Rn so that the resulting extension is also C2, still flattens T ∩ γ, and has
derivative bounded above and below away from 0. To see this, take a smoothly
weighted average of Φ and the identity with weight 1 for Φ on BR/2 and weight
0 outside of BR. Having thus extended Φ, we define Φ̃ := ϕ−1 ◦Φ ◦ ϕ. It is easy
to check that Φ̃ and Φ̃−1 are uniformly bounded in C2 and that Φ̃(ϕ−1(T ∩ γ))
lies in some (n − 1)-dimensional hyperplane P.
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For v ∈ H1(T) with T ∈ T satisfying |T ∩ γ | > 0, let now v̂ = v ◦ ϕ. We first
prove (1.118) upon transforming to the reference element back and forth. We
start with a simple scaling argument

|ϕ−1(T ∩ γ)|
|T ∩ γ |

≈ h1−n
T ,

regardless of the actual size and orientation of T ∩ γ relative to T ∈ T . Hence,
applying a standard change of variables involving ϕ yields

h1−n
T

(
‖v ‖2L2(T∩γ)

+ h2
T ‖∇γv ‖2L2(T∩γ)

)
≈ ‖v̂ ‖2

H1(ϕ−1(T∩γ))
.

We next resort to the extension operator E : H3/2(K̂) → H3/2(Rn) in Lemma
46 (H1+s extension), the smoothness of Φ̃−1, the fact that Φ̃(ϕ−1(T ∩ γ)) ⊂ P,
the trace inequality (1.114), the smoothness of Φ̃−1 again, and the boundedness
(1.113) of E in H3/2(K̂), in this order, to arrive at

‖v̂ ‖H1(ϕ−1(T∩γ)) = ‖E v̂ ‖H1(ϕ−1(T∩γ))

. ‖E v̂ ◦ Φ̃−1‖
H1

(
Φ̃(ϕ−1(T∩γ))

)
. ‖E v̂ ◦ Φ̃−1‖H1(P)

. ‖E v̂ ◦ Φ̃−1‖H3/2(Rn)

. ‖E v̂ ‖H3/2(Rn)

. ‖v̂ ‖H3/2(K̂).

The desired estimate (1.118) finally follows from a scaling argument from K̂ to
T employing again the map ϕ:

‖v̂ ‖2
H3/2(K̂)

. h−nT
(
‖v ‖2L2(T )

+ h2
T ‖∇v ‖2L2(T )

+ h3
T |v |

2
H3/2(T )

)
.

To prove (1.117), we argue similarly to above except that we now employ
E : H1(K̂) → H1(Rn) and (1.115) instead of (1.114). Doing so yields

h(1−n)/2T ‖v ‖L2(T∩γ) . ‖v̂ ‖L2(ϕ−1(T∩γ))

= ‖E v̂ ‖L2(ϕ−1(T∩γ))

. ‖E v̂ ◦ Φ̃−1‖L2(Φ̃(ϕ−1(T∩γ)))

. ‖E v̂ ◦ Φ̃−1‖L2(P)

. ‖E v̂ ◦ Φ̃−1‖H1(Rn)

. ‖E v̂ ‖H1(Rn)

. ‖v̂ ‖H1(K̂)

. h−n/2T ‖v ‖L2(T ) + h(2−n)/2T ‖∇v ‖L2(T ).

Multiplying both sides by h(n−1)/2
T gives the desired bound (1.117).
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1.5.2 A Priori Error Estimates

We recall that we use the notation h := maxT ∈T hT and that we omit to mention
the explicit dependence on the shape regularity constant of T in most estimates.

Geometric resolution and extensions. Given a surface γ of class C2 and
ũ ∈ H2(γ), Proposition 28 (H2 extension) yields the existence of an extension
u of ũ to a tubular neighborhood N(δ) with δ sufficiently small with respect to

1
2K∞ lying in H2(N(δ)) and satisfying

‖u‖H2(N(δ)) . δ1/2 |d |W 2
∞(N)
‖ũ‖H2(γ). (1.119)

• First assumption on geometric resolution by the bulk mesh. We assume⋃ {
ω1
T(T) : T ∈ TΓ

}
⊂ N(δ) (1.120)

with δ ' h sufficiently small so that (1.119) holds.
• Second assumption on geometric resolution by the bulk mesh. We assume

that the layer DΓ,γ := {sx + (1 − s)Pd(x) : x ∈ Γ and 0 ≤ s ≤ 1} satisfies

DΓ,γ ⊂
⋃ {

T : T ∈ TΓ
}
. (1.121)

This clearly holds for h sufficiently small because the Hausdorff distance
between γ and Γ satisfies distH (γ, Γ) . h2 according to (1.108).

• Uniform Poincaré-Friedrichs estimate on Γ. We assume that

‖v ‖L2(Γ) . ‖∇v ‖L2(Γ) ∀v ∈ H1
# (Γ) (1.122)

holds with uniform constant. According to the discussion below (1.82) (uni-
form Poincaré-Friedrichs constant), this only requires that Γ ⊂ N(1/2K∞)
and that ν · νΓ ≥ c > 0 on Γ. These conditions are easily checkable and valid
asymptotically.

Approximation properties of trace finite element space. We next state a
fundamental approximation bound for the trace FEM, which we prove under the
regularity assumption that γ is of class C2. We emphasize that this assumption
is less restrictive than the hypotheses of previous approximation bounds for trace
estimates, which assume that γ is of class C3.

Lemma 49 (trace approximation). Let γ be of class C2 and the geometric
resolution assumptions (1.108), (1.109), (1.120), and (1.121) hold. Then

inf
V ∈V(F)

‖∇Γ(ũ ◦ Pd − V)‖L2(Γ) . h‖ũ‖H2(γ). (1.123)

Proof. Let δ ' h be sufficiently small so that (1.120) is valid. Let Isz
T

be
the standard Scott-Zhang interpolation operator on T , and take V = Isz

T
u with
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u ∈ H2(N(δ)) given by Proposition 28 (H2 extension) and satisfying (1.119).
We then denote ud = ũ ◦ Pd,Vd = V ◦ Pd , add and subtract multiple terms, and
apply the triangle inequality to find that

‖∇Γ(ud − V)‖L2(Γ) .
7∑
i=1

Ii

where

I1 := ‖∇Γ(ud − Vd)‖L2(Γ),

I2 := ‖ΠΓ[∇Vd − (∇V) ◦ Pd]‖L2(Γ),

I3 := ‖ΠΓ[∇V ◦ Pd − ∇u ◦ Pd]‖L2(Γ),

I4 := ‖ΠΓ[∇u ◦ Pd − (I
sz
T ∇u) ◦ Pd]‖L2(Γ),

I5 := ‖ΠΓ[(IszT ∇u) ◦ Pd − I
sz
T ∇u]‖L2(Γ),

I6 := ‖ΠΓ[IszT ∇u − ∇u]‖L2(Γ),

I7 := ‖ΠΓ[∇u − ∇V]‖L2(Γ).

Herewe have applied the interpolation operatorIsz
T
componentwise to the (n+1)-

vector ∇u and used that ∇Γ = ΠΓ∇. We next estimate each term separately.
In order to bound terms I1 and I3, we employ Lemma 17 (norm equivalence)

between γ and Γ and recall that |∇γv | ≤ |∇v | pointwise to find that

I1 + I3 .
( ∑
T ∈TΓ

‖∇(u − V)‖2L2(T∩γ)

)1/2
.

We next apply the trace estimate (1.117), utilize standard approximation proper-
ties of Isz

T
, and finally use the bound (1.119) to obtain

I1 + I3 .
( ∑
T ∈TΓ

h−1
T ‖∇(u − V)‖2L2(T )

+ hT ‖D2u‖2L2(T )

)1/2

. h1/2‖u‖H2(N(δ)) . h‖ũ‖H2(γ).

Here we have used that ∇∇V = 0 elementwise since V is piecewise linear.
Similar arguments lead to the following estimate for I4

I4 .
( ∑
T ∈TΓ

h−1
T ‖∇u − IszT ∇u‖2L2(T )

+ hT ‖∇(∇u − IszT ∇u)‖2L2(T )

)1/2
,

as well as I4 . h‖ũ‖H2(γ) provided ‖∇IszT ∇u‖L2(T ) . ‖D
2u‖L2(ω

1
T
(T )). To show

this estimate we let ∇uT := |ω1
T
(T)|−1

∫
ω1
T
(T )
∇u be the meanvalue of ∇u in

ω1
T
(T) and exploit the stability of Isz

T
in H1(T)

‖∇IszT ∇u‖L2(T ) = ‖∇I
sz
T [∇u − ∇uT ]‖L2(T ) . h−1

T ‖I
sz
T [∇u − ∇uT ]‖L2(T )

. h−1
T ‖∇u − ∇uT ‖L2(ω

1
T
(T )) . ‖D

2u‖L2(ω
1
T
(T )).
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Moreover, applying the trace estimate (1.116) directly to the terms I6 and I7
yields

I6 .
( ∑
F ∈F

‖IszT ∇u − ∇u‖2L2(F)

)1/2

.
( ∑
T ∈TΓ

h−1
T ‖I

sz
T ∇u − ∇u‖2L2(T )

+ hT ‖∇[IszT ∇u − ∇u]‖2L2(T )

)1/2
. h‖ũ‖H2(γ),

and

I7 .
( ∑
F ∈F

‖∇(u − V)‖L2(F)

)1/2

.
( ∑
T ∈TΓ

h−1
T ‖∇(u − V)‖2L2(T )

+ hT ‖D2u‖2L2(T )

)1/2
. h‖ũ‖H2(γ).

In order to bound term I2, we first note that

ΠΓ[∇Vd − (∇V) ◦ Pd] = ΠΓ(Π − dD2d − I)(∇V) ◦ Pd .

An easy computation using the assumption (1.108) yields

|ΠΓ(Π − dD2d − I)| . |ΠΓΠ − ΠΓ | + |d | = |(ν · νΓ)νΓ ⊗ ν − ν ⊗ ν | + h2 . h.

Thus employing the equivalence of norms on γ and Γ, the trace estimate (1.117),
the H1 boundedness of Isz

T
, and the boundedness (1.119) of the extension yields

I2 . h‖∇V ◦ Pd ‖L2(Γ) . h‖∇V ‖L2(γ)

. h1/2‖∇V ‖L2(TΓ) . h1/2‖u‖H1(N(δ)) . h‖ũ‖H2(γ).

We finally bound term I5. Given x = Pd(x) + d(x)∇d(Pd(x)) ∈ Γ, we infer that

|IszT ∇u(x) − IszT ∇u(Pd(x))| ≤
∫ d(x)

0

���∇ [
IszT ∇u

(
Pd(x) + s∇d(Pd(x))

) ] ���ds

and |d(x)| . h2 according to (1.108), whence

I2
5 . h2

∫
Γ

∫ d(x)

0

���∇ [
IszT ∇u

(
Pd(x)+s∇d(Pd(x))

) ] ���2dsdσ(x) . h2
∫
DΓ,γ

|∇IszT ∇u|2.

In view of assumptions (1.121) and (1.120), and the bound ‖∇Isz
T
∇u‖L2(T ) .

‖D2u‖L2(ω
1
T
(T )), we deduce

I2
5 . h2‖D2u‖2L2(N(δ))

. h3‖D2ũ‖2
H2(γ)

,

and conclude the proof.
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Theorem 50 (a-priori error estimates). Let γ be of class C2 and let Γ be so that
the geometric assumptions (1.108), (1.109), (1.120), (1.121), and (1.122) are
satisfied. Let f̃ ∈ L2,#(γ) and ũ ∈ H2(γ) solve (1.19). If U ∈ V#(F ) is the finite
element solution of (1.107) with FΓ =

q
qΓ

f̃ ◦ Pd , then

‖ũ ◦ Pd −U‖L2(Γ) + h‖∇Γ(ũ ◦ Pd −U)‖L2(Γ) . h2‖ f̃ ‖L2(γ).

Proof. With the geometric resolution estimate (1.108) and Lemma 49 (trace
approximation) in hand, the proof is nearly identical to those of Theorem 37
(H1 a-priori error estimate) and Theorem 38 (L2 a-priori error estimate) for
parametric surface FEM. We thus sketch the proof without details.

Step 1: H1 error estimate. Let V ∈ V(F ) achieve the infimum in (1.123),
W := V −U, u = ũ ◦ Pd , and write the error representation formula as

‖∇Γ(V −U)‖2L2(Γ)
=

∫
Γ

∇Γu · EΓ∇ΓW +
∫
Γ

∇Γ(V − u) · ∇ΓW,

because FΓ =
q
qΓ

f̃ ◦ Pd . In view of Lemma 21 (geometric consistency) and the
geometric resolution estimate (1.108) we deduce |EΓ | . h2 |d |W 2

∞(N)
and��� ∫

Γ

∇Γu · EΓ∇ΓW
��� . h2 |d |W 2

∞(N)
‖ũ‖H1(γ)‖∇ΓW ‖L2(Γ) . h‖ f̃ ‖L2(γ)‖∇ΓW ‖L2(Γ).

On the other hand, Lemma 49 (trace approximation) yields��� ∫
Γ

∇Γ(V − u) · ∇ΓW
��� . h‖ũ‖H2(γ)‖∇ΓW ‖L2(Γ).

The desired estimate follows from Lemma 3 (regularity).

Step 2: L2 error estimate. Let P−1
d

denotes the inverse of Pd restricted to Γ. Let
Ũ := U◦P−1

d
: γ → R and Ũ# := qΓ

q Ũ ∈ H1
# (γ); likewise, let u# := q

qΓ
u ∈ H1

# (Γ).
We now solve dual problems on γ

z̃ ∈ H1
# (γ) :

∫
γ
∇γ z̃ · ∇γw =

∫
γ
(ũ − Ũ#)w ∀w ∈ H1

# (γ)

and on Γ

Z ∈ V#(F ) :
∫
Γ

∇ΓZ · ∇ΓW =
∫
Γ

(u# −U)W ∀W ∈ V#(F ).

Note that the right-hand sides u# −U = q
qΓ
(ũ− Ũ#) ◦Pd are compatible and Step

1 applies. We set Z̃ = Z ◦ Pd and proceed as in Theorem 38 (L2 a-priori error
estimate) to deduce the error representation

‖ũ − Ũ#‖
2
L2(γ)
=

∫
γ
∇γ(ũ − Ũ) · ∇γ (̃z − Z̃) +

∫
γ
∇γŨ · E∇γ Z̃,
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because FΓ =
q
qΓ

f̃ ◦ Pd . Applying Lemma 3 (regularity) to z̃ yields ‖ z̃‖H2(γ) .

‖ũ − Ũ#‖L2(γ). This together with Step 1 implies��� ∫
γ
∇γ(ũ − Ũ) · ∇γ (̃z − Z̃)

��� . h2‖ f̃ ‖L2(γ)‖ũ − Ũ#‖L2(γ).

Making use again of Lemma 21 (geometric consistency) and the geometric
resolution estimate (1.108) we deduce |E| . h2 |d |W 2

∞(N)
, whence��� ∫

γ
∇γŨ · E∇γ Z̃

��� . h2‖ f̃ ‖L2(γ)‖u# −U‖L2(Γ).

Consequently,

‖ũ − Ũ#‖
2
L2(γ)

. h2‖ f̃ ‖L2(γ)

(
‖ũ − Ũ#‖L2(γ) + ‖u# −U‖L2(Γ)

)
and the asserted bound follows from Lemma 17 (norm equivalence) and the
auxiliary estimate

‖Ũ − Ũ#‖L2(γ) . h2‖ f̃ ‖L2(γ).

The latter hinges on Corollary 33 (geometric consistency errors for C2 surfaces)
and the geometric resolution estimate (1.108), as in the proof of Theorem 38.
This completes the proof.

1.5.3 A Posteriori Error Estimates

A posteriori error estimates for the trace FEMwere first proved in [DO12], while
a posteriori estimates for a trace FEM based on octree meshes were proved in
[CO15]. The proof of the estimates given in [DO12] is significantly different
than that of the a priori estimates given above. A main reason for the difference
is that, in contrast to the framework above that deals with quasi-uniform meshes,
we assume that the bulk mesh T is merely shape-regular. This is necessary
to allow for meaningful mesh grading in adaptive algorithms. Moreover, the
extension used in Proposition 28 (H2 extension) is not immediately useful here
because the parameter δ specifying the width of the tubular neighborhood about
γ is taken to be proportional to h when T is quasi-uniform; such a global mesh
size parameter is no longer meaningful on graded meshes. A local counterpart
of Proposition 28 on graded meshes, that uses the normal extension instead of
the regularized normal extension, is employed in [CO15] to prove a posteriori
bounds, but with the drawback that the constants in the estimates depend on the
difference in refinement depth between the largest and smallest elements in the
bulk mesh. We thus present here the framework of [DO12], which relies on
the harmonic extension of v ∈ H1(γ) into H3/2(R3) instead of either the normal
extension vd or the extension of Proposition 28.

Notation and surface resolution assumptions. We make the following two
assumptions concerning resolution of γ by the bulk mesh T :
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• Resolution of skin layer between γ and Γ. Given a discrete surface element
F ∈ F , let

DF = {y ∈ Ω : y = tx + (1 − t)Pd(x) for some 0 ≤ t ≤ 1 and some x ∈ F}.

The set DF is the collection of all points lying on line segments connecting
points in x ∈ F and their images Pd(x) ∈ γ. We assume that

DF ⊂ ω
1
T(TF ), (1.124)

that is, DF lies in the volume element patchω1
T
(TF ) (first ring) corresponding

to the face element F, which is defined in section 1.5.1.
• Normal projections of elements have finite overlap. We assume that

Pd

(
ω1
T(TF )

)
⊂ ω2

T(TF ) ∀ F ∈ F , (1.125)

where the second ring ω2
T
(TF ) is also defined in section 1.5.1.

The above assumptions hold if γ is sufficiently resolved by the bulk mesh T .
To see this, note first that ‖d‖L∞(DF ) . h2

F by (1.108), so that dist(y, F) . h2
F

for all y ∈ DF . On the other hand, dist(F, ∂ω1
T
(TF )) & hF . Thus there is a

constant C such that the assumption (1.124) is satisfied when hF ≤ C; C here
depends on geometric properties of γ, the shape regularity constant of T and
properties of the Lagrange interpolant. In principle an upper bound for C could
be computed and this condition checked, but this has not been attempted in the
literature and we do not do so here. A similar but more involved argument holds
for the assumption (1.125).

Extension for a posteriori error estimates. The next essential result states that
a given a function ṽ ∈ H1(γ) can be boundedly extended to v ∈ H3/2(Rn+1).

Lemma 51 (harmonic extension). Let γ be a closed surface of class C2 and
dimension n embedded in Rn+1 for n ≥ 1. Given ṽ ∈ H1(γ), there is v ∈
H3/2(Rn) such that trace(v) = ṽ and

‖v ‖H3/2(Rn+1) . ‖ṽ ‖H1(γ). (1.126)

Proof. First let v ∈ H1(D) solve ∆v = 0 on the bulk domain D comprising
the interior of γ, with v = ṽ on γ. By [JK95, Theorem 5.15], we have that
v ∈ H3/2(D), trace(v) = ṽ , and ‖v ‖H3/2(D) . ‖ṽ ‖H1(γ). Boundedly extending
v to H3/2(Rn+1) via the extension operator E defined in Lemma 46 (H1+s

extension) completes the proof.

Preliminary results. We now give a technical lemma that quantifies the evalu-
ation mismatch between Γ and γ for a discrete function.
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Lemma 52 (evaluation mismatch between γ and Γ). Let V ∈ V(T ), and let the
conditions (1.108), (1.109), and (1.124) hold. For all F ∈ F , we have

‖V − V ◦ Pd ‖L∞(F) . h2
F |d |W 2

∞(N)
‖∇V ‖L∞(ω1

T
(TF ))

. (1.127)

Proof. Fix x ∈ F, and let g(t) = V(tx + (1 − t)Pd(x)), 0 ≤ t ≤ 1. Then
g(0) = V(Pd(x)) and g(1) = V(x). Since Pd(x) = x − d(x)ν(x), we see that

g′(t) = ∇V(tx + (1 − t)Pd(x)) · (x − Pd(x)) = d(x)∇V(tx + (1 − t)Pd(x)) · ν(x),

whence V(x) − V(Pd(x)) = g(0) − g(1) =
∫ 1
0 g′(t)dt and��V(x) − V(Pd(x))

�� . |d(x)|‖∇V ‖L∞(DF ).

The assertion follows from assumptions (1.108) and (1.124).

A posteriori upper bound. First we define a residual error indicator

ηF(U, F) := hF ‖FΓ + ∆ΓU‖L2(F) + h1/2
F ‖n∇ΓUo‖L2(∂F) F ∈ F ,

and corresponding estimator

ηF(U) :=

(∑
F ∈F

ηF(U, F)2
)1/2

.

Here n·o denotes the jump in the normal component of the argument over ∂F.
Because we have assumed access to the closest point projection Pd , we also
employ a geometric indicator that directly accesses information from Pd

ξF := ‖d‖L∞(F)‖K ‖L∞(Pd (F)) + ‖ν − νΓ‖
2
L∞(F)

F ∈ F ,

and corresponding geometric estimator

ξF(Γ) := max
F ∈F

ξF .

Theorem 53 (a-posteriori upper estimate). Let γ be of class C2 and let Γ be
defined so that the geometric assumptions (1.108), (1.109), (1.124), and (1.125)
hold. Let f̃ ∈ L2,#(γ) and ũ ∈ H1

# (γ) solve (1.19). If U ∈ V(F ) is the finite
element solution of (1.107) with FΓ =

q
qΓ

f̃ ◦ Pd , and Ud = U ◦ P−1
d

where P−1
d

is the inverse of Pd restricted to Γ, then

‖∇γ(ũ −Ud)‖L2(γ) . ηF(U) + ξF(Γ)‖∇ΓU‖L2(Γ). (1.128)
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Proof. We proceed in several steps.

Step 1: Error representation via the residual equation. First we note that

‖∇γ(ũ −Ud)‖L2(γ) = sup
ṽ ∈H1(γ), ‖∇γ ṽ ‖L2(γ)=1

∫
γ
∇γ(ũ −Ud) · ∇γ ṽ

and then write as in (1.102) that∫
γ
∇γ(ũ −Ud) · ∇γ ṽ = I1 + I2 + I3

with

I1 := −
∫
Γ

∇ΓU · ∇Γ(vd − V) +
∫
Γ

FΓ(vd − V),

I2 :=
∫
γ
∇γUd · E∇γ ṽ,

I3 :=
∫
γ

f̃ ṽ −
∫
Γ

FΓvd .

Here E is as in (1.51), vd = ṽ ◦Pd , and V ∈ V(T ) is a suitable approximation of
the H3/2 extension v of ṽ given by Lemma 51 (harmonic extension). Note that
I3 = 0 because of the definition FΓ =

q
qΓ

f̃ ◦ Pd .

Step 2: Bounding the geometric error terms. Using (1.56) (or more accurately
the corresponding pointwise bound from which it is derived) directly yields

‖E‖L∞(F) . ξF E ∈ F .

Thus making use of Lemma 17 (norm equivalence) implies

|I2 | . ξF(Γ)‖∇γUd ‖L2(γ)‖∇γ ṽ ‖L2(γ) ≤ ξF(Γ)‖ f̃ ‖L2(γ)‖∇γ ṽ ‖L2(γ).

Step 3: Bounding the residual term. In order to bound I1, we first decompose
the integrals over faces F ∈ F and then integrate by parts to arrive at

|I1 | .
∑
F ∈F

ηF(U, F)
(
h−1
F ‖vd − V ‖L2(F) + h−1/2

F ‖vd − V ‖L2(∂F)

)
.

We may thus complete the proof upon showing that(∑
F ∈F

h−2
F ‖vd − V ‖2L2(F)

+ h−1
F ‖vd − V ‖2L2(∂F)

)1/2

. ‖ṽ ‖H1(γ).

Given F ∈ F , we begin by considering the quantity h−1
F ‖vd −V ‖L2(e) for any

edge e ⊂ ∂F. We first use the triangle inequality to obtain

h−1/2
F ‖vd − V ‖L2(e) . h−1/2

F ‖vd − Vd ‖L2(e) + h−1/2
F ‖Vd − V ‖L2(e)
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with Vd = V ◦ Pd , and examine the last term first. Since e is an (n − 1)-
dimensional edge with diam(e) ≤ hF , combining Hölder inequality and Lemma
52 (evaluation mismatch between γ and Γ) with an inverse estimate over the
(n + 1)-dimensional patch ω1

T
(TF ) yields

h−1/2
F ‖Vd − V ‖L2(e) . h(n−2)/2

F ‖Vd − V ‖L∞(F)

. h(n+2)/2
F |d |W 2

∞(N)
‖∇V ‖L∞(ω1

T
(TF ))

. h1/2
F |d |W 2

∞(N)
‖∇V ‖L2(ω

1
T
(TF ))

.

For the first term h−1/2
F ‖vd − Vd ‖L2(e) we argue as follows. Let P be the

n−dimensional hyperplane containing F. While it may be that diam(e) << hF ,
the shape regularity of T implies that

dist(e, ∂ω1
T(TF )) ≥ dist(TF, ∂ω

1
T(TF ) ' hF .

Thus there exists an n−dimensional ball B ⊂ P∩ω1
T
(TF ) ⊂ P so that e ⊂ B and

diam(B) ' hF . This ball B is the candidate for applying the hF -scaled version
of (1.115) of Lemma 48 (trace estimates for cut elements), namely

h−1/2
F ‖vd − Vd ‖L2(e) . h−1

F ‖vd − Vd ‖L2(B) + ‖∇P(vd − Vd)‖L2(B).

Since vd −Vd = (̃v −V) ◦Pd , we change variables from B to γ while employing
Lemma 17 (norm equivalence) to get

h−1/2
F ‖vd − Vd ‖L2(e) . h−1

F ‖ṽ − V ‖L2(Pd (B)) + ‖∇γ (̃v − V)‖L2(Pd (B)).

We observe that Pd(B) ⊂ Pd(ω
1
T
(TF )) ⊂ ω

2
T
(TF ) in light of (1.125), whence

h−1/2
F ‖vd − Vd ‖L2(e) . h−1

F ‖v − V ‖L2(ω
2
T
(TF )∩γ)

+ ‖∇γ(v − V)‖L2(ω
2
T
(TF )∩γ)

.

Wenow carry out a similar but more direct computation for the term h−1
F ‖vd−

V ‖L2(F) appearing in I1. Again using Lemma 52 we obtain

h−1
F ‖vd − Vd ‖L2(F) . h−1

F ‖ṽ − V ‖L2(T∩γ)

h−1
F ‖Vd − V ‖L2(F) . h(n+2)/2

F ‖∇V ‖L∞(ω1
T
(TF ))

. ‖∇V ‖L2(ω
1
T
(TF ))

.

Combining the previous estimates we end up with

h−1
F ‖vd − V ‖L2(F) + h−1/2

F ‖vd − V ‖L2(∂F)

. h−1
F ‖ṽ − V ‖L2(ω

2
T
(TF ))∩γ)

+ ‖∇γ (̃v − V)‖L2(ω
2
T
(TF ))∩γ)

+ ‖∇V ‖L2(ω
1
T
(TF ))

.
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Summing over F ∈ F while using finite overlap of the patches ω2
T
(TF ) yields(∑

F ∈F

h−2
F ‖vd − V ‖2L2(F)

+ h−1
F ‖vd − V ‖2L2(∂F)

)1/2

.

( ∑
T ∈TΓ

h−2
T ‖ṽ − V ‖2L2(T∩γ)

+ ‖∇γ (̃v − V)‖2L2(T∩γ)

)1/2

+ ‖∇V ‖L2(Ω).

Step 4: Interpolation. We next apply (1.118) to the function v − V while
realizing that |V |H3/2(T ) = 0. Doing so yields |v − V |H3/2(T ) = |v |H3/2(T ) and

h−1
T ‖ṽ − V ‖L2(T∩γ) + ‖∇γ (̃v − V)‖L2(T∩γ)

. h−3/2
T ‖v − V ‖L2(T ) + h−1/2

T ‖∇(v − V)‖L2(T ) + |v |H3/2(T ).

Next let V = Isz
T

v , where Isz
T

is the Scott-Zhang interpolation operator on the
bulk space V(T ). Standard approximation theory in V(T ) then yields

h−3/2
T ‖v − V ‖L2(T ) + h−1/2

T ‖∇(v − V)‖L2(T ) + |v |H3/2(T ) . ‖v ‖H3/2(ω1
T
(T ))

and
‖∇V ‖L2(T ) . ‖∇v ‖L2(ω

1
T
(T ))

for every T ∈ TΓ. Using the finite overlap of the patches ω1
T
(T) and the bound

‖v ‖H3/2(Rn+1) . ‖ṽ ‖H1(γ) of Lemma 51 (harmonic extension), we finally obtain(∑
F ∈F

h−2
F ‖vd − V ‖2L2(F)

+ h−1
F ‖vd − V ‖2L2(∂F)

)1/2

. ‖v ‖H3/2(R3) . ‖ṽ ‖H1(γ).

This completes the proof.

Remark 54 (efficiency). In a posteriori error analysis it is standard to prove
lower (efficiency) bounds such as those in Theorems 42 and 44. For trace
methods such estimates would ideally take the form

ηF(U, F) . ‖ud −U‖H1(ω1
F
(F)) + oscF(FΓ, ω1

F
(F))

+ ξF(ω
1
F
(F))‖∇ΓU‖L2(ω

1
F
(F)).

where ω1
F
(F) is the patch of elements about F ∈ F and oscF(FΓ, ω1

F
(F)) is a

heuristically higher-order termmeasuring the deviation of FΓ from the piecewise
constants. However, the standard proof of this result does not work for trace
methods due to the irregular structure of the surface mesh F . The paper [DO12]
contains partial efficiency results for the volume residual but none for the jump
residual term. Numerical experiments suggest that a local efficiency result may
hold, but also show a slight degeneration of the constant as the mesh is refined.
Thus it is not clear whether the estimators we have studied for the trace method
are efficient, and if so what form an efficiency estimate would take.
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1.6 NARROW BAND METHOD

In the narrow band approach, the partial differential equation (1.19) on γ

−∆γũ = f̃

is extended to the tubular neighborhood N(δ) of γ defined in (1.29)

N(δ) :=
{
x ∈ Rn+1 : |d(x)| < δ

}
⊂ Rn+1;

we refer to the original papers [BCOS01, Bur09]. The finite element method is
then posed over a discrete approximation to N(δ). We assume that γ is of class
C2 and 0 < δ < 1

2K∞ so that (1.61) holds, namely N(δ) ⊂ Nε(δε), and all the
properties of the distance function detailed in Section 1.2 are valid in N(δ).

A natural / standard way to extend ũ and f̃ to N(δ) is to use the constant
extensions along the normal direction

u = ũ ◦ Pd, f = f̃ ◦ Pd .

We use the latter to design the FEM. However, we need u ∈ H2(N(δ)) to derive
optimal a-priori H1 error estimates for the FEM, which entails γ ∈ C3 when
using the closest point projection Pd . We circumvent this extra regularity on γ
via Proposition 28 (H2 extension), which defines u as a normal extension relative
to a perturbation γε of γ constructed as a zero level set of a regularized distance
function dε . We will show below in Lemma 57 (narrow band PDE consistency)
that such a function u satisfies����∫

N(δ)
∇u · ∇v −

∫
N(δ)

f v
���� . δ3/2‖ f̃ ‖L2(γ)‖v‖H1(N(δ)). (1.129)

The specific choice of u adds several technicalities to the proof of (1.129) but
reduces the regularity of γ to C2. This seems to be a new result in the literature
consistent with the underlying regularity ũ ∈ H2(γ). This also motivates the
narrow band FEM as a straightforward (bulk) finite element approximation of
(1.129) upon replacing N(δ) by a polygonal approximation Nh(δ) dictated by
dh , the Lagrange interpolant of d in the bulk. We discuss this next. We refer to
[OS16] for higher order FEMs and [DDEH10, DER14] for an algorithm based on
a level-set function, rather that the less practical distance function. The essential
ideas, however, are similar to those below but are more technical.

1.6.1 The Narrow Band FEM

We assume that N is enclosed in a n + 1 dimensional polyhedral domain D and
denote by T a partition of D made of simplices. We omit to mention the explicit
dependence on the shape regularity constant of T

σ := max
T ∈T

diam(T)
hT
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in most estimates below; we use the notation hT = |T |
1

n+1 and h = maxT ∈T hT .
Let dh stand for the Lagrange interpolant of the distance function d by continuous
piecewise linear functions over T . The discrete distance function dh induces the
discrete narrow band

Nh(δ) := {x ∈ D : |dh(x)| < δ} .

Notice that standard interpolation estimates imply

‖d − dh ‖L∞(N) + h‖∇(d − dh)‖L∞(N) ≤ cI h2 |d |W 2
∞(N)

, (1.130)

where cI is a constant only depending on σ. This implies the non-degeneracy
property

|∇dh | ≥
��|∇d | − |∇(d − dh)|

�� ≥ ��1 − |∇(d − dh)|
�� ≥ 1

2
, (1.131)

provided h is sufficiently small so that cI h|d |W 2
∞(N)

≤ 1
2 . Combining estimates

(1.130) and (1.131) we deduce that the Hausdorff distance between N(δ) and
Nh(δ) satisfies

distH (N(δ),Nh(δ)) ≤ 2cI h2 |d |W 2
∞(N)

. (1.132)

Moreover, to guarantee that Nh(δ) ⊂ N , we observe

|d(x)| ≤ |dh(x)| + |(d − dh)(x)| ≤ δ + cI |d |W 2
∞(N)

h2 ∀ x ∈ Nh(δ).

In view of (1.31), it thus suffices to restrict δ and h so that

δ + cI |d |W 2
∞(N)

h2 ≤
1

2K∞
. (1.133)

Hereafter we make the structural assumption

C1h ≤ δ ≤ C2h (1.134)

with cI ≤ C1 ≤ C2 so that (1.133) holds for h sufficiently small.
We denote by Tδ the restriction of T to Nh(δ) in the sense that

Tδ :=
{
T ∈ T : T ∩ Nh(δ) , ∅

}
.

The finite element space associated with Tδ is then constructed in the usual way

V(Tδ) :=
{
V ∈ C0(Nh(δ)) : V |T ∈ P, T ∈ Tδ

}
,

where we recall that P stands for the space of polynomials of degree 1. The
subspace of functions with vanishing mean value is denoted V#(Tδ).

With this notation at hand and inspired by (1.129), we define the narrow band
finite element solution U ∈ V#(Tδ) to satisfy∫

Nh (δ)
∇U · ∇V =

∫
Nh (δ)

FV, ∀V ∈ V#(Tδ), (1.135)
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where F is an approximation to f = f̃ ◦ Pd satisfying
∫
Nh (δ)

F = 0. In order to
make a convenient choice of F, we first define Mh : Nh(δ) → N(δ) by

Mh(x) = Pd(x) + dh(x)∇d(x);

the properties of Mh are explored thoroughly later in this section. With this
definition in hand, we let

F = f ◦Mh −
1

|Nh(δ)|

∫
Nh (δ)

f ◦Mh . (1.136)

This requires having access to d, dh and Pd , which we assume hereafter. Since F
has vanishing meanvalue, (1.135) is also valid for all V ∈ V(Tδ). The existence
and uniqueness of U ∈ V#(Tδ) follows directly from the Lax-Milgram lemma.

1.6.2 PDE Geometric Consistency

We intend to prove (1.129) for the extension u ∈ H2(N(δ)) in Proposition 28
(H2 extension) of ũ ∈ H2(γ). We recall Proposition 30 (PDE satisfied by u)

−div (µεBε∇u) = fεµε,

multiply by a test function v ∈ H1(N(δ)) and integrate by parts inN(δ) to obtain∫
N(δ)

Bε∇u · ∇v µε =

∫
N(δ)

fε v µε +

∫
∂N(δ)

Bε∇u · ∇d v µε . (1.137)

Notice that we have used that ν = ∇d is the outward pointing normal to ∂N(δ).
We start by estimating geometric quantities appearing in (1.137).

Lemma 55 (properties of µε and Bε). Let γ be of class C2 and Cδ ≤ ε ≤ δ
2 be

sufficiently small. Then for all x ∈ N(δ) we have

‖1 − µε ‖L∞(N(δ)) . δ |d |W 2
∞(N)

(1.138)

and
‖Πε − Bεµε ‖L∞(N(δ)) . δ |d |W 2

∞(N)
. (1.139)

Proof. We recall the definitions of µε from Proposition 30 (PDE satisfied by u)
and µ̃ε from Lemma 29 (PDE satisfies by uε)

µε =
1

µ̃ε ◦ Pε
det

(
I − dε D2dε

)
, µ̃ε = det

(
I − dε D2dε

) (
∇d · ∇dε

)
◦Qε,

where Pε is the projection from N(δ) onto γε = {dε(x) = 0} and Qε is its
inverse when restricted to γ. Note that in N(δ)

1 − µε =
(
1 −

1
µ̃ε ◦ Pε

)
+

1
µ̃ε ◦ Pε

(
1 − det

(
I − dεD2dε

) )
.
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We thus need to examine the eigenvalues (ζi(x))ni=0 of

I − dε(x)D2dε(x) ∀ x ∈ N(δ),

with ζ0(x) = 1 corresponding to the eigenvector ∇dε . We infer that

ζi(x) = 1 − ηi(x)

where
|ηi(x)| . |dε(x)| |dε |W 2

∞(N(δ))
. δ |d |W 2

∞(N)

according to Lemma 26 (properties of dε) and (1.61) with δε ≤ 3
2δ. Hence���1 − det

(
I − dε(x)D2dε(x)

) ��� = �����1 − n∏
i=1

ζi(x)

����� . δ |d |W 2
∞(N)

for all x ∈ N(δ). This takes care of the second term in the equation for 1 − µε .
It remains to estimate 1 − µ̃ε ◦ Pε . Since 1 − µ̃ε ◦ Pε reads as follows on γ

1 − µ̃ε =
(
1 − det

(
I − dεD2dε

) )
+ det

(
I − dεD2dε

) (
1 − ∇d · ∇dε

)
,

combining the previous estimate with Lemma 26 (properties of dε) yields��1 − µ̃ε(Pε(x))�� . δ |d |W 2
∞(N)

∀ x ∈ N(δ).

This implies | µ̃ε(Pε(x))| ≥ 1
2 for δ suficiently small and thus leads to (1.138).

We now prove (1.139) which, in light of (1.138), reduces to the estimate
‖Πε − Bε ‖L∞(N(δ)) . δ |d |W 2

∞(N)
. We recall from Proposition 30 that in N(δ)

Bε =
(
I − dε D2dε

)−1
ΠεÃε ◦ PεΠε

(
I − dε D2dε

)−1
.

Since dε(x) ≤ δ̃ ≤ 3
2δ for x ∈ N(δ) and ‖D2dε ‖L∞(N(δ)) . |d |W 2

∞(N)
thanks to

Lemma 26 (properties of dε), the Taylor expansion of (I − tdεD2dε)−1 centered
at t = 0 and computed at t = 1 converges for δ sufficiently small. It reads

(I − dεD2dε)−1 = I + dε(I − ξdεD2dε)−2D2dε

for some 0 < ξ < 1. The definition of Ãε given in Lemma 29 yields

Bε = Πε(Π ◦Qε ◦ Pε)Πε + dεG,

where G : N(δ) → R(n+1)×(n+1) satisfies ‖G‖L∞(N(δ)) . 1. Moreover,

Πε − Πε(Π ◦Qε ◦ Pε)Πε = Πε∇d ◦ (Qε ◦ Pε) ⊗ Πε∇d ◦ (Qε ◦ Pε)

whence for all x ∈ N(δ) we see that

Πε(x)∇d(Qε(Pε(x))) = ∇d(Qε(Pε(x))) − ∇dε(x)
(
∇d(Qε(Pε(x))) · ∇dε(x)

)
.



868686

Since��∇dε(x) − ∇d(Qε(Pε(x)))
�� ≤ ��∇(dε(x) − d(x))

�� + ��∇d(x) − ∇d(Qε(Pε(x)))
��

.
(
δ + |x −Qε(Pε(x))|

)
|d |W 2

∞(N)
. δ |d |W 2

∞(N)

thanks to Lemma 26 (properties of dε), we get

| |Πε − Bε | |L∞(N(δ)) . δ |d |W 2
∞(N)

as asserted. This concludes the proof.

Remark 56 (estimate of µ). Lemma 22 (relation between q and qΓ) gives the
expression µ(x) := det(I − d(x)D2d(x)) for the change of infinitesimal area
between γs := {d−1(s)} and γ := {d−1(0)}. Proceeding as in the proof of the
above lemma, we get

‖1 − µ‖L∞(N(δ)) . δ |d |W 2
∞(N)

(1.140)

provided δ is sufficiently small so that N(δ) ⊂ N .

We are now in position to prove a consistency estimate measuring the dis-
crepancy between f and ∆u in N(δ).

Lemma 57 (narrow band PDE consistency). Let γ be of class C2 and u be the
extension of Proposition 28 (H2 extension) with Cδ ≤ ε ≤ δ

2 sufficiently small.
If f̃ ∈ L2(γ), then for all v ∈ H1(N(δ)), we have����∫

N(δ)
∇u · ∇v −

∫
N(δ)

f v
���� . δ3/2 |d |2

W 2
∞(N)
‖ f̃ ‖L2(γ)‖v ‖H1(N(δ)). (1.141)

Proof. In view of (1.137), we deduce

I(v) :=
∫
N(δ)
∇u · ∇v −

∫
N(δ)

f v = I1(v) + I2(v) + I3(v) ∀ v ∈ H1(N(δ)),

where

I1(v) :=
∫
N(δ)
(I − Bεµε)∇u · ∇v,

I2(v) :=
∫
N(δ)
( fεµε − f )v,

I3(v) :=
∫
∂N(δ)

Bε∇u · ∇d v µε

with fε = f̃ ◦Qε ◦ Pε . We now examine these three terms separately.
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Step 1: Term I1(v). Since u is constant along the direction ∇dε , we realize that
∇u = Πε∇u and Lemma 55 (properties of µε and Bε) directly yields��I1(v)

�� . δ |d |W 2
∞(N)
‖∇u‖L2(N(δ))‖∇v ‖L2(N(δ)).

Step 2: Term I2(v). Let −δ < s < δ and consider the isomorphisms

Rs := Qε ◦ Pε ◦Qs : γ → γ, R−1
s = Pd ◦Qε,s ◦ Pε : γ → γ,

where Qs : γ → γs is the inverse of Pd on γs and Qε,s : γε → γs is the inverse
of Pε on γs . Using the coarea formula (1.63) together with |∇d | = 1 we write

I2(v) =
∫ δ

−δ

∫
γs

( fεµε − f )v,

and combining with Lemma 22 (relation between q and qΓ), we obtain

I2(v) =
∫ δ

−δ

∫
γ
( f̃ ◦ Rs)(v ◦Qs)(µε ◦Qs)(µ

−1 ◦Qs)

−

∫ δ

−δ

∫
γ

f̃ (v ◦Qs)(µ
−1 ◦Qs) = I I1(v) + I I2(v) + I I3(v),

where

I I1(v) :=
∫ δ

−δ

∫
γ
( f̃ ◦ Rs)(v ◦Qs) − f̃ (v ◦Qs),

I I2(v) :=
∫ δ

−δ

∫
γ

f̃ (v ◦Qs)
(
1 − µ−1 ◦Qs

)
I I3(v) :=

∫ δ

−δ

∫
γ
( f̃ ◦ Rs)(v ◦Qs)

(
(µε ◦Qs)(µ

−1 ◦Qs) − 1
)
.

We proceed to estimate each term separately. To manipulate I I1(v) we first
observe that changing variables from γ to γs , γs to γε , and γε to γ and invoking
Lemma 22 (relation between q and qΓ) yields∫

γ
( f̃ ◦ Rs)(v ◦Qs) =

∫
γ
( f̃ ◦Qε ◦ Pε ◦Qs)(v ◦Qs)

=

∫
γs

( f̃ ◦Qε ◦ Pε)v µ

=

∫
γε

( f̃ ◦Qε)(v µ µε−1) ◦Qε,s

=

∫
γ

f̃ (v µ µε−1) ◦Qε,s ◦ Pε µε,

(1.142)
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where

µ = det
(
I − dD2d

)
, µε = det

(
I − dεD2dε

)
(∇d · ∇dε).

Therefore, denoting by µR the infinitesimal change in area induced by R−1
s on γ

µR := (µ µε−1) ◦Qε,s ◦ Pε µε,

we infer again from the coarea formula (1.63) that

I I1(v) =
∫ δ

−δ

∫
γ

f̃
(
(v ◦Qε,s ◦ Pε)µR − v ◦Qs

)
=

∫ δ

−δ

∫
γs

(
f (v ◦Qε,s ◦ Pε ◦ Pd)µR µ − f v µ

)
|∇d |

=

∫
N(δ)

f
(
v ◦ L − v

)
µRµ +

∫
N(δ)

f v
(
µR − 1

)
µ,

where L is defined on each γs by L|γs := Qε,s ◦Pε ◦Pd : γs → γs . Notice that
the map L : N(δ) → N(δ) is a bi-Lipschitz perturbation of the identity with
perturbation constant

r = ‖I − L‖L∞(N(δ)) . δ |d |W 2
∞(N(δ))

,

because

‖I − Pd ‖L∞(N(δ)) + ‖I −Qs ‖L∞(N(δ))

+ ‖I − Pε ‖L∞(N(δ)) + ‖I −Qε,s ‖L∞(N(δ)) . δ |d |W 2
∞(N(δ))

.

Moreover, since µR − 1 = (µµε−1 − 1) ◦ Qε,s ◦ Pε µε + (µε − 1), (1.138) and
(1.140) imply

‖µR − 1‖L∞(γ) . δ |d |W 2
∞(N(δ))

.

These estimates in conjunction in Proposition 35 (Lipschitz perturbation) give��I I1(v)
�� . δ |d |W 2

∞(N(δ))
‖ f ‖L2(N(δ))‖v ‖H1(N(δ));

we observe that to apply Proposition 35 we take Ω1 = Ω2 = N(δ), which are
Lipschitz domains, and extend v to Ω = N so that ‖v ‖H1(N) . ‖v ‖H1(N(δ)).

Upon utilizing the coarea formula (1.63) once more, we obtain for I I2(v)

I I2(v) =
∫
N(δ)

f v(1 − µ−1)µ,

so that (1.140) yields��I I2(v)
�� . δ |d |W 2

∞(N(δ))
‖ f ‖L2(N(δ))‖v ‖H1(N(δ)).
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We proceed similarly for I I3(v) but using in addition that∫ δ

−δ
‖ f̃ ◦ Rs ‖

2
L2(γ)

ds .
∫ δ

−δ
‖ f̃ ‖L2(γ)ds . ‖ f ‖2L2(N(δ))

,

and
‖(µε ◦Qs)(µ

−1 ◦Qs) − 1‖L∞(γ) . δ |d |W 2
∞(N(δ))

thanks to (1.138) and (1.140) again. We thus obtain for I I3(v) an estimate similar
to those for I I1(v) and I I2(v), whence��I2(v)

�� . δ |d |W 2
∞(N(δ))

‖ f ‖L2(N(δ))‖v ‖H1(N(δ)).

Step 3: Term I3(v). In view of Πε = I − ∇dε ⊗ ∇dε , we first note that

∇dTBεµε = ∇dT (
Bεµε − Πε

)
+ ∇(d − dε)T + ∇dT

ε

(
1 − ∇d · ∇dε

)
.

Invoking Lemma 55 (properties of µε and Bε) and then Lemma 26 (properties
of dε) yields

‖∇dTBεµε ‖L∞(N(δ)) . δ |d |W 2
∞(N(δ))

.

It remains to use trace inequalities to obtain

I3(v) . δ |d |W 2
∞(N(δ))

‖∇u‖L2(∂N (δ))‖v ‖L2(∂N (δ))

. δ |d |W 2
∞(N(δ))

‖u‖H2(N(δ))‖v ‖H1(N(δ)).

Step 4: Normal extension. Gathering the above estimates we find that

I(v) . δ |d |W 2
∞(N(δ))

(
‖u‖H2(N(δ)) + ‖ f ‖L2(N(δ))

)
‖v ‖H1(N(δ)).

We finally deduce ‖ f ‖L2(N(δ)) . δ
1
2 |d |W 2

∞(N(δ))
‖ f̃ ‖L2(γ) because f is the normal

extension of f̃ to γ, and

‖∇u‖L2(N(δ)) . δ
1
2 |d |W 2

∞(N)
‖ f̃ ‖L2(γ),

upon combining Proposition 28 (H2 extension) with Lemma 3 (regularity). This
leads to the desired estimate.

1.6.3 Properties of the Narrow Band FEM

To begin with, we recall the definition of Mh : Nh(δ) → N(δ), that accounts for
the mismatch between Nh(δ) and N(δ):

Mh(x) = Pd(x) + dh(x)∇d(x) = x + (dh(x) − d(x))∇d(x). (1.143)
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Note that if x ∈ Nh(δ) ⊂ N then Pd(Mh(x)) = Pd(x), because this is what
happens with all points in the line s 7→ x+ s∇d(x) withinN . Since |dh(x)| < δ,

|d(Mh(x))| = |Mh(x) − Pd(Mh(x))| = |dh(x)| |∇d(x)| < δ

implies that Mh(x) ∈ N(δ) and the map Mh is well defined. Further properties
of Mh are discussed next. Before doing so, we mention that the results provided
below are not optimal (to avoid technicalities) but are sufficient for our analysis.
We refer to [DER14, OS16] for higher order estimates.

Lemma 58 (properties of Mh). Let γ be of class C2 and h be sufficiently small.
Then, the map Mh : Nh(δ) → N(δ) is bi-Lipschitz with

‖DMh ‖L∞(Nh (δ)) + ‖DM−1
h ‖L∞(N(δ)) ≤ L (1.144)

for some constant L independent of h and δ. Moreover, there holds

‖I −Mh ‖L∞(Nh (δ)) + h‖I − DMh ‖L∞(Nh (δ)) . h2 |d |W 2
∞(N)

(1.145)

and
‖ det(DMh) − 1‖L∞(Nh (δ)) . h|d |W 2

∞(N)
. (1.146)

Proof. From the definition (1.143) of Mh and the interpolation estimate (1.130),
we find that

|x −Mh(x)| ≤ |d(x) − dh(x)| ≤ cI h2 |d |W 2
∞(N)

.

Furthermore, we compute

DMh(x) = I + ∇(dh(x) − d(x)) ⊗ ∇d(x) + (dh(x) − d(x))D2d(x)

to deduce

‖I − DMh ‖L∞(Nh (δ)) ≤ cI h|d |W 2
∞(N)
+ cI h2 |d |2

W 2
∞(N)

.

The above two estimates yield (1.145) because cI h|d |W 2
∞(N)
≤ 1

2 for h sufficiently
small. Exploiting (1.145), we also deduce that Mh is invertible, bi-Lipschitz and
that (1.144) holds for h sufficiently small.

We are left to show (1.146). This follows from D det A = (det A)A−1 for any
invertible matrix A and the first order Taylor expansion of

ψ(t) := det
(
I − t

(
∇(d(x) − dh(x)) ⊗ ∇d(x) − (d(x) − dh(x))D2d(x)

))
about t = 0 and evaluated at t = 1, along with (1.145) and the fact that ψ(1) =
det(DMh(x)). This concludes the proof.
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The previous lemma is instrumental to estimate the consistency error

Eh(V) :=
∫
Nh (δ)

∇u · ∇V −
∫
Nh (δ)

FV ∀V ∈ V(Tδ), (1.147)

due to the approximation of the narrow bandN(δ) byNh(δ) and to the use of F
in the discrete formulation (1.135). Since N(δ) ⊂ N is of class C2, we assume
without loss of generality that the function u : N(δ) → R constructed in Propo-
sition 28 (H2 extension) extends to N and satisfies ‖u‖H2(N) . ‖u‖H2(N(δ)). In
light of Nh(δ) ⊂ N , the consistency error (1.147) is well defined.

Lemma 59 (narrow band geometric consistency). Let γ be of class C2 and
δ and h satisfy the structural condition (1.134) and be sufficiently small. Let
f̃ ∈ L2,#(γ), ũ ∈ H2(γ) solve (1.18), and u ∈ H2(N(δ)) be the H2 extension of
ũ given by (1.62) with Cδ ≤ ε ≤ δ

2 . Let also F be given by (1.136). Then the
consistency error (1.147) satisfies for all V ∈ V(Tδ)����∫

Nh (δ)
∇u · ∇V −

∫
Nh (δ)

FV
���� . δ3/2 |d |W 2

∞(N)
‖ f̃ ‖L2(γ)‖V ‖H1(Nh (δ)).

Proof. We compare the consistency errors (1.147) and (1.141) term by term.

Step 1: Dirichlet integrals. Utilizing the change of variables induced by the map
Mh : Nh(δ) → N(δ) we end up with∫

Nh (δ)
∇u · ∇V −

∫
N(δ)
∇u · ∇(V ◦M−1

h ) = I1(V) + I2(V) + I3(V),

where

I1(V) :=
∫
Nh (δ)

(
∇u − ∇u ◦Mh

)
· ∇V det

(
DMh

)
I2(V) :=

∫
Nh (δ)

∇u · ∇V
(
1 − det(DMh)

)
I3(V) :=

∫
N(δ)
∇u ·

(
∇V ◦M−1

h − ∇(V ◦M−1
h )

)
.

In view of Proposition 35 (Lipschitz perturbation) and Lemma 58 (properties of
Mh), we infer that��I1(V)

��, ��I2(V)
�� . h|d |W 2

∞(N)
‖u‖H2(N(δ))‖V ‖H1(Nh (δ)).

Similarly for I3(V), we observe that

∇V ◦M−1
h − ∇

(
V ◦M−1

h

)
=

(
I − DM−1

h

)
∇V ◦M−1

h ,

so that employing Lemma 58 (properties of Mh) yields��I3(V)| . h|d |W 2
∞(N)
‖∇u‖L2(N(δ))‖∇V ‖L2(Nh (δ)).
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Recalling the structural assumption C1h ≤ δ, Lemma 3 (regularity) as well as
‖ f ‖L2(N(δ)) . δ

1
2 ‖ f̃ ‖L2(γ), the estimates for I1(V), I2(V) and I3(V) guarantee����∫

Nh (δ)
∇u · ∇V −

∫
N(δ)
∇u · ∇(V ◦M−1

h )

���� . δ3/2 |d |W 2
∞(N)
‖ f̃ ‖L2(γ)‖V ‖H1(Nh (δ)).

Step 2: Forcing. Recalling (1.136), we rewrite the forcing term in (1.147) as∫
Nh (δ)

F V −
∫
N(δ)

f V ◦M−1
h = I I1(V) + I I2(V),

where

I I1(V) :=
∫
N(δ)

f V ◦M−1
h

(
det(DMh)

−1 − 1
)
,

I I2(V) := −
1

|Nh(δ)|

∫
Nh (δ)

f ◦Mh

∫
Nh (δ)

V .

Wemake use of (1.144) and (1.146), alongwith a change of variables, to compute

I I1(V) . h|d |W 2
∞(N)
‖ f ‖L2(N(δ))‖V ◦M−1

h ‖L2(N(δ))

. h|d |W 2
∞(N)
‖ f ‖L2(N(δ))‖V ‖H1(N(δ)).

Since |Nh(δ)| ' |N(δ)| ' δ, the first equivalence resulting from (1.144) and the
second from the coarea formula, using (1.146) again we obtain

I I2(V) . δ−1/2‖V ‖L2(Nh (δ))

��� ∫
Nh (δ)

f ◦Mh

(
det(DMh) − 1

)
−

∫
N(δ)

f
���

. ‖V ‖L2(Nh (δ))

(
h|d |W 2

∞(N)
‖ f ‖L2(N(δ)) + δ

−1/2
��� ∫
N(δ)

f
���) .

To estimate the rightmost term we exploit the fact that f̃ has a vanishing mean
on γ. Using the coarea formula (1.63), we see that∫

N(δ)
f =

∫ δ

−δ

∫
γs

f =
∫ δ

−δ

∫
γ

f̃ µs =
∫ δ

−δ

∫
γ

f̃
(
µs − 1

)
≤ 2δ‖µs − 1‖L∞(γ×[−δ,δ])‖ f̃ ‖L2(γ),

where µs = det
(
I − dD2d

)−1
◦Qs according to Lemma 22 (relation between q

and qΓ). Remark 56 (estimate of µ) in turn leads to��� ∫
N(δ)

f
��� . δ2 |d |W 2

∞(N)
‖ f̃ ‖L2(γ).

Consequently, collecting the previous estimates and using the structural assump-
tion C1h ≤ δ again readily gives��I I2(V)

�� . δ
3
2 |d |W 2

∞(N)
‖ f̃ ‖L2(γ)‖V ‖L2(Nh (δ)).
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Gathering the bounds for I Ii(V) for i = 1, 2, we discover����∫
Nh (δ)

F V −
∫
N(δ)

f V ◦M−1
h

���� . δ
3
2 |d |W 2

∞(N)
‖ f̃ ‖L2(γ)‖V ‖H1(Nh (δ)).

Step 3: Conclusion. The assertion follows from the bounds derived in Steps 1
and 2 together with the estimate (1.141) of Lemma 57 (narrow band PDE con-
sistency) with v = V ◦M−1

h
∈ H1(N(δ)). The proof is complete.

1.6.4 A Priori Error Estimates

All of the ingredients for a-priori error analysis in the narrow band norm are now
in place. We recall that the extension u : N(δ) → R constructed in Proposition
28 (H2 extension) is further extended to N and satisfies

‖u‖H2(N) . ‖u‖H2(N(δ)) . δ
1
2 |d |W 2

∞(N)
‖ũ‖H2(γ). (1.148)

Theorem 60 (a-priori error estimate). Let γ be of class C2 and δ and h satisfy
the structural condition (1.134) and be sufficiently small. Let ũ ∈ H1

# (γ) be
defined by (1.18) with f̃ ∈ L2,#(γ) and u be its extension given by (1.62) with
Cδ ≤ ε ≤ δ

2 . Let U ∈ V#(Tδ) be the finite element solution to (1.135) with F
given in (1.136). Then, the following error estimate is valid

‖∇(u −U)‖L2(Nh (δ)) . inf
V ∈V(Tδ )

‖∇(u − V)‖L2(Nh (δ)) + h
3
2 |d |W 2

∞(N)
‖ f̃ ‖L2(γ),

with hidden constant independent of h and δ.

Proof. The proof consists of a Strang type argument. For any V ∈ V(Tδ) the
equation (1.135) satisfied by U and the definition (1.147) of Eh(.) give

‖∇(V −U)‖2L2(Nh (δ))
=

∫
Nh (δ)

∇(V − u) · ∇(V −U) + Eh(V −U).

Invoking Lemma 59 (narrow band geometric consistency), together with the
structural assumption (1.134), yields

‖∇(V −U)‖L2(Nh (δ)) ≤ ‖∇(V − u)‖L2(Nh (δ)) + ch
3
2 |d |W 2

∞(N)
‖ f̃ ‖L2(γ).

The desired error estimate follows from a triangle inequality.

Corollary 61 (rate of convergence in Nh(δ)). Under the assumptions of Theo-
rem 60 we have

‖∇(u −U)‖L2(Nh (δ)) . h
3
2 |d |W 2

∞(N)
‖ f̃ ‖L2(γ).
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Proof. In view of (1.148) standard polynomial interpolation theory gives

‖∇(u − Iszh u)‖L2(Nh (δ)) . h‖u‖H2(N) . h‖u‖H2(N(δ)),

where Isz
h

u is the Scott-Zhang interpolant of u. It remains to use Proposition 28
(H2 extension) and Lemma 3 (regularity) to arrive at

‖∇(u − Iszh u)‖L2(Nh (δ)) . h
3
2 |d |W 2

∞(N)
‖ f̃ ‖L2(γ).

The asserted estimate follows from Theorem 60 (a-priori estimate).

In addition, we follow [OS16] to deduce a rate of convergence for ‖∇γ(ũ −
U)‖L2(γ).

Corollary 62 (rate of convergence on γ). Under the assumptions of Theorem 60
we have

‖∇γ(ũ −U)‖L2(γ) . h‖ f̃ ‖L2(γ).

Proof. We recall the scaled trace inequality (1.117): for a bulk triangulation T
there exists a constant C only depending on the mesh shape regularity constant
of T such that for T ∈ Tδ and v ∈ H1(T), one has

‖v ‖2L2(T∩γ)
≤ C

(
h−1
T ‖v ‖

2
L2(T )

+ hT ‖∇v ‖2L2(T )

)
,

where hT = diam(T). We apply this inequality with v = ∇(u −U), and hT ≈ h
sufficiently small, to obtain

‖∇(u −U)‖2L2(T∩γ)
.

(
h−1‖∇(u −U)‖2L2(T )

+ h|u|2
H2(T )

)
.

Summing up over all T ∈ Tδ with non-empty intersection with γ, Proposition 28
(H2 extension) and Corollary 61 (rate of convergence in Nh(δ)) give

‖∇γ(ũ −U)‖L2(γ) ≤ ‖∇(u −U)‖L2(γ) . h|d |W 2
∞(N)

(
‖ f̃ ‖L2(γ) + |ũ|H2(γ)

)
.

The desired estimate follows from Lemma 3 (regularity).
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