
611: Electromagnetic Theory

Homework 3

(1a) Complete the derivation of the discussion in section 2.4 of the lecture notes, by deriving

the Lorentz transformation that gives ~B′ in terms of ~E and ~B, for an arbitrary Lorentz

boost with velocity ~v (i.e. eqn (2.61) in the notes).

(1b) Specialise your result in part (1a) to the case where the boost is along the x direction,

and similarly specialise eqn (2.60) in the lecture notes to a boost along x. Hence verify

the expressions given in eqn (2.64) of the notes for the components of ~B and ~E after

boosting along x.

(2a) Suppose that constant, uniform ~E and ~B fields are orthogonal, ~E · ~B = 0, with axes

oriented so that ~E = (Ex, 0, 0) and ~B = (0, By, 0) in the frame S.

Consider a Lorentz boost with a velocity orthogonal to both ~E and ~B, i.e. ~v =

(0, 0, v). First, write down the general expressions, analogous to eqns (2.64), for the

transformations of general electric and magnetic fields ~E and ~B under a such boost

with ~v = (0, 0, v). (i.e. obtain the analogues of eqns (2.64) in the notes, but now for

a boost along z.)

Now appplying these boosts along z to the specific ~E and ~B fields specified in this

problem, show that if the value of v is chosen appropriately, it can be arranged that

in the frame S′ the magnetic field vanishes, ~B ′ = 0.

(2b) Bearing in mind that any boost velocity must be less than the speed of light, find the

condition involving Ex and By that must be satisfied in order for the boost in part

(2a) to be possible.

(2c) Repeat the previous steps for the case where one tries instead to make the electric

field vanish in the frame S′. Give the condition involving Ex and By for which this is

possible.

(2d) Under what circumstances (expressed again as a condition involving Ex and By) is it

impossible to find a boost of the form discussed in this question that allows one or

other of ~E′ or ~B′ to be set to zero?

(3) Show by direct computation using the expressions for ~E′ and ~B′ in terms of ~E and
~B that are given in eqns (2.60) and (2.61) of the lecture notes, that ( ~B2 − ~E2) is

invariant under Lorentz boosts. Again using (2.60) and (2.61), show that ~E · ~B is also

invariant under Lorentz boosts.

Turn over for problem 4
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This next question shows another way of describing the Lorentz transformations:

(4a) Define the 2× 2 complex matrix

X =

(
t+ z x− iy
x+ iy t− z

)
. (1)

Show that X is Hermitean, i.e. X† = X. Now consider the complex matrix A defined

by

A =

(
a b

c d

)
, where ad− bc = 1 . (2)

Show that it satisfies detA = 1. Such matrices A are said to form the group SL(2,C);

i.e. complex 2×2 matrices with unit determinant. Because of the condition ad− bc =

1, the four complex numbers a, b, c d are subject to one complex equation and

hence SL(2,C) is parameterised by 4 − 1 = 3 independent complex numbers, or,

equivalently, 6 real numbers (which is the same as the number of parameters in the

Lorentz transformations).

(4b) Show that detX = t2 − x2 − y2 − z2 = −ηµν xµ xν . Show also that if we define

X ′ = AX A† , then detX ′ = detX , and X ′
†

= X ′ . (3)

This action of SL(2,C) onX in fact describes the Lorentz transformations on (t, x, y, z).

(Note: Lorentz transformations, by definition, are the linear transformation of the co-

ordinates xµ that leave ηµν x
µxν = −t2 + x2 + y2 + z2 invariant.) Next are some

examples:

(4c) Consider the matrix

A =

(
cosh 1

2δ − sinh 1
2δ

− sinh 1
2δ cosh 1

2δ

)
. (4)

Show that it is an SL(2,C) matrix, and show using (3) that it describes a Lorentz

boost along x, with rapidity δ. (That is, the boost velocity is v = tanh δ.)

(4d) Consider the matrix

A =

e i2 θ 0

0 e−
i
2 θ

 . (5)

Show that it is an SL(2,C) matrix, and show using (3) that it describes a spatial

rotation through angle θ in the (x, y) plane.

(4e) Find an SL(2,C) matrix A that describes a Lorentz boost with rapidity δ along the

z axis.

Turn over for some remarks about Qu. (4)...
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Remarks:

The group SL(2,C) actually describes a double covering of the Lorentz group SO(1, 3).

This can be seen from the fact that a given SL(2,C) matrix A and the matrix Ã := −A
(which is also an SL(2,C) matrix) both describe the same Lorentz transformation (see eqn

(3)).

Consider, for example, the spatial rotation in the (x, y) plane described by the SL(2,C)

matrix (5) in Qu. (4d). If we increase the rotation angle θ from 0 up to 2π, this describes a

complete rotation through 360 degrees, and returns the x and y coordinates to their original

values. However, after sending θ from 0 to 2π, the matrix A in eqn (5) ends up becoming

A −→ −1l , i.e. A −→

(
−1 0

0 −1

)
. (6)

Thus although sending θ −→ θ + 2π returns us to the same point in the group SO(1, 3), it

does not return us to the same point in SL(2,C). In fact it would be necessary to make

two complete rotations in order to return to the original point in SL(2,C).

This becomes important when one wishes to describe fermions in spacetime. Fermions

are described by what are called spinors, which, unlike vectors and tensors, have the prop-

erty that they change sign after performing a rotation through 360 degrees. The fact that

they only return to their original value after a rotation through 720 degrees rather than 360

is a reflection of the fact that they have half-integer spin rather than integer spin.

Please be sure always to present all the key steps in all your answers, working

logically from the given starting point to the required result. Don’t just report

that you did the calculation and got the stated answer!

Due Wednesday September 18th, in class.
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