

611: Electromagnetic Theory

Homework 5

(1a) Show that the Bianchi identity $\partial_\mu F_{\nu\rho} + \partial_\nu F_{\rho\mu} + \partial_\rho F_{\mu\nu} = 0$ can be written as

$$\partial_\mu {}^*F^{\mu\nu} = 0,$$

where ${}^*F^{\mu\nu}$ is the *Hodge dual* of $F_{\mu\nu}$, defined by ${}^*F^{\mu\nu} \equiv \frac{1}{2}\epsilon^{\mu\nu\rho\sigma}F_{\rho\sigma}$.

(1b) Show that the vector $V^\mu \equiv {}^*F^{\mu\nu}A_\nu$ has the property that

$$\partial_\mu V^\mu = \frac{1}{4}\epsilon^{\mu\nu\rho\sigma}F_{\mu\nu}F_{\rho\sigma}.$$

(2) This problem is concerned with establishing some results for the $\epsilon_{\mu\nu\rho\sigma}$ tensor. It will begin by following the same steps for the slightly simpler case of ϵ_{ijk} in 3 dimensions, where it is easier to see what is going on. We shall need some notation for indicating an antisymmetrisation over a set of indices. For any tensor $W_{\mu_1 \dots \mu_n}$ we define

$$W_{[\mu_1 \dots \mu_n]} \equiv \frac{1}{n!} (W_{\mu_1 \dots \mu_n} + \text{even permutations} - \text{odd permutations}). \quad (1)$$

Thus, for example,

$$W_{[\mu\nu]} = \frac{1}{2!} (W_{\mu\nu} - W_{\nu\mu}), \quad W_{[\mu\nu\rho]} = \frac{1}{3!} (W_{\mu\nu\rho} + W_{\nu\rho\mu} + W_{\rho\mu\nu} - W_{\nu\mu\rho} - W_{\mu\rho\nu} - W_{\rho\nu\mu}),$$

and so on. Analogous definitions apply in three dimensions. Define also

$$\delta_{\mu_1 \dots \mu_n}^{\nu_1 \dots \nu_n} \equiv \delta_{\mu_1}^{\nu_1} \delta_{\mu_2}^{\nu_2} \delta_{\mu_3}^{\nu_3} \dots \delta_{\mu_n}^{\nu_n}. \quad (2)$$

(Note that this is also automatically antisymmetric in the μ_1, \dots, μ_n indices.)

(2a) Show that $\epsilon^{ijk} \epsilon_{\ell mn} = 6 \delta_{\ell mn}^{ijk}$. **Hint:** Observe that the left-hand side is antisymmetric in ijk and in ℓmn , and that the right-hand side is also antisymmetric in ijk and in ℓmn . From this, you can argue that it is only necessary to check the equation for one non-trivial assignment of the six index values in order to verify it completely. (Make sure you actually present an argument; don't just state it without proof!)

(2b) Take the identity in Qu. (2a) and set $n = k$. Show by this means that

$$\epsilon^{ijk} \epsilon_{\ell mk} = \delta_\ell^i \delta_m^j - \delta_m^i \delta_\ell^j = 2\delta_\ell^{ij}. \quad (3)$$

(2c) Using an analogous argument to that in Qu. (2a), show that

$$\epsilon^{\mu\nu\rho\sigma} \epsilon_{\alpha\beta\gamma\lambda} = -24 \delta_{\alpha\beta\gamma\lambda}^{\mu\nu\rho\sigma}. \quad (4)$$

(Pay attention to that minus sign!)

(2d) By contracting σ and λ , show that

$$\epsilon^{\mu\nu\rho\sigma} \epsilon_{\alpha\beta\gamma\sigma} = -\delta_\alpha^\mu \delta_\beta^\nu \delta_\gamma^\rho - \delta_\alpha^\nu \delta_\beta^\rho \delta_\gamma^\mu - \delta_\alpha^\rho \delta_\beta^\mu \delta_\gamma^\nu + \delta_\alpha^\nu \delta_\beta^\mu \delta_\gamma^\rho + \delta_\alpha^\mu \delta_\beta^\rho \delta_\gamma^\nu + \delta_\alpha^\rho \delta_\beta^\nu \delta_\gamma^\mu = -6\delta_{\alpha\beta\gamma}^{\mu\nu\rho}. \quad (5)$$

Turn over for problems 3 and 4

(3a) Using the result in part (2d), show that $\epsilon^{\mu\nu\rho\sigma}\epsilon_{\alpha\beta\rho\sigma} = -2\delta_\alpha^\mu\delta_\beta^\nu + 2\delta_\beta^\mu\delta_\alpha^\nu = -4\delta_{\alpha\beta}^{\mu\nu}$.

(3b) Use the result in part (3a) to show that ${}^*({}^*F_{\mu\nu}) = -F_{\mu\nu}$. (i.e. that the Hodge dual of the Hodge dual of a 2-index antisymmetric tensor is equal to minus the original tensor.)

(3c) Define the tensor $T_{\mu\nu} = (4\pi)^{-1} \left(F_{\mu\rho} F_{\nu}^{\rho} - \frac{1}{4} F^{\rho\sigma} F_{\rho\sigma} \eta_{\mu\nu} \right)$, where $F_{\mu\nu}$ is the usual electromagnetic field tensor. (We shall soon be encountering $T_{\mu\nu}$ in the lectures; it is the energy-momentum tensor for the electromagnetic field.) Show that $T_{\mu\nu}$ can be written as

$$T_{\mu\nu} = \frac{1}{8\pi} (F_{\mu\rho} F_{\nu}^{\rho} + {}^*F_{\mu\rho} {}^*F_{\nu}^{\rho}).$$

(Hint: Work backwards from the answer; *i.e.* start by considerering ${}^*F_{\mu\rho} {}^*F_{\nu}^{\rho}$, and then make use of the result in Qu. (2d).)

(4a) Derive the equation of motion (Euler-Lagrange equation) that follows from the Lagrangian density

$$\mathcal{L} = -\frac{1}{16\pi} F^{\mu\nu} F_{\mu\nu} - \frac{m^2}{8\pi} A^\mu A_\mu + J^\mu A_\mu$$

where m is a constant, and $F_{\mu\nu} \equiv \partial_\mu A_\nu - \partial_\nu A_\mu$. This theory is a massive generalisation of Maxwell's theory, known as the Proca theory. Note that the Proca equation of motion is not gauge invariant.

(4b) Assuming that the 4-current J^μ is conserved (i.e. $\partial_\mu J^\mu = 0$), show that the Proca equation of motion implies that A^μ obeys $\partial_\mu A^\mu = 0$.

Due Wednesday October 2nd, in class.