
611: Electromagnetic Theory

Homework 6

(1) Consider an isolated system of electromagnetic fields, with (conserved) energy-momentum

tensor Tµν . The conserved 4-momentum Pµ and conserved angular momentum Mµν

are defined as in eqns (4.81) and (4.92) in the lecture notes. Show that the conserva-

tion law for the M0i components implies that

d~R

dt
=

~P

E
, (1)

where ~R is the centre of mass of the electromagnetic field, defined by ~R
∫
W d3x =∫

~rW d3x, where W is the energy density, E =
∫
W d3x is the total energy and ~P is

the total relativistic 3-momentum.

(2) In a source-free region, the Maxwell field equations are ∂µF
µν = 0. Writing Fµν =

∂µAν − ∂νAµ, write down the wave equation that Aµ satisfies when one imposes the

Lorenz gauge condition ∂µA
µ = 0.

(2a) Look for a solution of the form Aµ = aµ sin(k ·x), where aµ and kµ are constant 4-

vectors, and the notation k·x means kµ x
µ. Derive the two equations that are implied

by (1) the Lorenz gauge condition and (2) the wave equation for Aµ. (One of these

equations will involve only kµ, and the other equation will involve both kµ and aµ.)

(2b) Calculate the energy-momentum tensor Tµν = 1
4π (Fµρ Fν

ρ − 1
4F

ρσFρσ ηµν). [Note:

Make use of the two conditions on aµ and kµ that you derived in part (2a). The final

result is very simple!]

(2c) Show explicitly that your result for Tµν satisfies ∂µTµν = 0.

(2d) Show that the electric field and the magnetic field make equal contributions to the

energy density W = 1
8π ( ~E2 + ~B2) for this field.

Turn over for problems 3 and 4
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(3a) Suppose that kµ is a non-spacelike vector (so kµ kµ ≤ 0), and that Bµν is an arbitrary

antisymmetric tensor. Define V µ ≡ Bµ
ν k

ν . Show that V µ is a non-timelike vector,

i.e. that V µ Vµ ≥ 0.

[Hint: An elegant way to prove this is by considering (V µ−λ kµ)(Vµ−λ kµ), where λ

is an arbitrary quantity that you choose appropriately in order to obtain the desired

result. (This problem is rather similar to Qu. (3) of Homework 2.)]

(3b) Make use of your result from Qu. (3a) in order to prove that

Tµν k
µ kν ≥ 0 , (2)

where Tµν is the energy-momentum tensor for an arbitrary electromagnetic field. (Re-

call from Qu. (3c) of HW 5 that we can write Tµν = 1
8π (Fµρ Fν

ρ + ∗Fµρ
∗F ν

ρ). )

Remark: An energy-momentum tensor that obeys the inequality in eqn (2) is said to

obey the Weak Energy Condition. It is a property of any physically-reasonable matter

system, and it plays an important role in the study of the evolution of gravitating

systems in the general theory of relativity. Note also that an observer with 4-velocity

Uµ relative in the inertial frame S will measure an energy density Tµν U
µUν , and that

physical observers must always have non-spacelike 4-velocity, since they cannot travel

faster than light. Thus the result in eqn (2) shows that electromagnetic field always

has positive energy, as seen by any observer.

(4a) Apply the method discussed in the lectures to calculate the energy-momentum tensor

T̃ρ
ν = − ∂L

∂(∂νAσ)
∂ρAσ + δνρ L (3)

for the source-free Proca theory, whose Lagrangian density is

L = − 1

16π
Fµν Fµν −

m2

8π
Aσ Aσ . (4)

(The “unimproved” energy-momentum tensor in eqn (3) is denoted here with a tilde

to signify that it is not symmetric when its first index is raised: T̃µν 6= T̃ νµ.)

(4b) Now construct the improved energy-momentum tensor Tµν that is symmetric, by

adding an appropriate term ∂σψ
µνσ to T̃µν , where ψµνσ = −ψµσν . (Note: You can

be guided by what was done in the Maxwell case in the lecture notes. But make sure

you don’t overlook any consequences of adding the ∂σψ
µνσ term! In particular, pay

attention to the steps described in eqn (4.113) in the lecture notes.)

(4c) Check that the Tµν you obtained in Qu. (4b) really does satisfy the conservation

equation ∂ν T
µν = 0, upon using the Proca equation of motion (see Qu. (4a) of

Homework 5). Note that any mistake made in obtaining Tµν in Qu. (4b) is likely to

be discovered here, when you check that ∂νT
µν = 0.

Due Wednesday October 16th, in class
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