

611: Electromagnetic Theory

Homework 6

(1) Consider an isolated system of electromagnetic fields, with (conserved) energy-momentum tensor $T_{\mu\nu}$. The conserved 4-momentum P^μ and conserved angular momentum $M^{\mu\nu}$ are defined as in eqns (4.81) and (4.92) in the lecture notes. Show that the conservation law for the M^{0i} components implies that

$$\frac{d\vec{R}}{dt} = \frac{\vec{P}}{\mathcal{E}}, \quad (1)$$

where \vec{R} is the centre of mass of the electromagnetic field, defined by $\vec{R} \int W d^3x = \int \vec{r} W d^3x$, where W is the energy density, $\mathcal{E} = \int W d^3x$ is the total energy and \vec{P} is the total relativistic 3-momentum.

(2) In a source-free region, the Maxwell field equations are $\partial_\mu F^{\mu\nu} = 0$. Writing $F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu$, write down the wave equation that A_μ satisfies when one imposes the Lorenz gauge condition $\partial_\mu A^\mu = 0$.

(2a) Look for a solution of the form $A_\mu = a_\mu \sin(k \cdot x)$, where a_μ and k_μ are *constant* 4-vectors, and the notation $k \cdot x$ means $k_\mu x^\mu$. Derive the *two* equations that are implied by (1) the Lorenz gauge condition and (2) the wave equation for A_μ . (One of these equations will involve only k_μ , and the other equation will involve both k_μ and a_μ .)

(2b) Calculate the energy-momentum tensor $T_{\mu\nu} = \frac{1}{4\pi} (F_{\mu\rho} F_{\nu}^{\rho} - \frac{1}{4} F^{\rho\sigma} F_{\rho\sigma} \eta_{\mu\nu})$. [Note: Make use of the two conditions on a_μ and k_μ that you derived in part (2a). The final result is very simple!]

(2c) Show explicitly that your result for $T_{\mu\nu}$ satisfies $\partial^\mu T_{\mu\nu} = 0$.

(2d) Show that the electric field and the magnetic field make equal contributions to the energy density $W = \frac{1}{8\pi}(\vec{E}^2 + \vec{B}^2)$ for this field.

Turn over for problems 3 and 4

(3a) Suppose that k^μ is a non-spacelike vector (so $k^\mu k_\mu \leq 0$), and that $B_{\mu\nu}$ is an arbitrary antisymmetric tensor. Define $V^\mu \equiv B^{\mu\nu} k_\nu$. Show that V^μ is a non-timelike vector, i.e. that $V^\mu V_\mu \geq 0$.

[**Hint:** An elegant way to prove this is by considering $(V^\mu - \lambda k^\mu)(V_\mu - \lambda k_\mu)$, where λ is an arbitrary quantity that you choose appropriately in order to obtain the desired result. (This problem is rather similar to Qu. (3) of Homework 2.)]

(3b) Make use of your result from Qu. (3a) in order to prove that

$$T_{\mu\nu} k^\mu k^\nu \geq 0, \quad (2)$$

where $T_{\mu\nu}$ is the energy-momentum tensor for an arbitrary electromagnetic field. (Recall from Qu. (3c) of HW 5 that we can write $T_{\mu\nu} = \frac{1}{8\pi}(F_{\mu\rho} F_{\nu}^{\rho} + {}^*F_{\mu\rho} {}^*F_{\nu}^{\rho})$.)

Remark: An energy-momentum tensor that obeys the inequality in eqn (2) is said to obey the *Weak Energy Condition*. It is a property of any physically-reasonable matter system, and it plays an important role in the study of the evolution of gravitating systems in the general theory of relativity. Note also that an observer with 4-velocity U^μ relative in the inertial frame S will measure an energy density $T_{\mu\nu} U^\mu U^\nu$, and that physical observers must always have non-spacelike 4-velocity, since they cannot travel faster than light. Thus the result in eqn (2) shows that electromagnetic field always has positive energy, as seen by any observer.

(4a) Apply the method discussed in the lectures to calculate the energy-momentum tensor

$$\tilde{T}_\rho^\nu = -\frac{\partial \mathcal{L}}{\partial(\partial_\nu A_\sigma)} \partial_\rho A_\sigma + \delta_\rho^\nu \mathcal{L} \quad (3)$$

for the source-free Proca theory, whose Lagrangian density is

$$\mathcal{L} = -\frac{1}{16\pi} F^{\mu\nu} F_{\mu\nu} - \frac{m^2}{8\pi} A^\sigma A_\sigma. \quad (4)$$

(The “unimproved” energy-momentum tensor in eqn (3) is denoted here with a tilde to signify that it is not symmetric when its first index is raised: $\tilde{T}^{\mu\nu} \neq \tilde{T}^{\nu\mu}$.)

(4b) Now construct the improved energy-momentum tensor $T^{\mu\nu}$ that *is* symmetric, by adding an appropriate term $\partial_\sigma \psi^{\mu\nu\sigma}$ to $\tilde{T}^{\mu\nu}$, where $\psi^{\mu\nu\sigma} = -\psi^{\mu\sigma\nu}$. (Note: You can be guided by what was done in the Maxwell case in the lecture notes. But make sure you don’t overlook any consequences of adding the $\partial_\sigma \psi^{\mu\nu\sigma}$ term! In particular, pay attention to the steps described in eqn (4.113) in the lecture notes.)

(4c) Check that the $T^{\mu\nu}$ you obtained in Qu. (4b) really does satisfy the conservation equation $\partial_\nu T^{\mu\nu} = 0$, upon using the Proca equation of motion (see Qu. (4a) of Homework 5). Note that any mistake made in obtaining $T^{\mu\nu}$ in Qu. (4b) is likely to be discovered here, when you check that $\partial_\nu T^{\mu\nu} = 0$.

Due Wednesday October 16th, in class