

611: Electromagnetic Theory

Homework 9

(1a) Construct the wavefunctions $\psi = B_z$ and corresponding eigenvalues Ω_{mn}^2 for TE modes in a rectangular waveguide with sides at $x = 0$, $x = a$ and at $y = 0$, $y = b$.

(1b) Consider the special case of a rectangular waveguide when $b = a$. Show how to construct the wavefunctions $\psi = B_z$ for TE modes in the isosceles right triangle defined by the three vertices $(x, y) = (0, 0)$; $(x, y) = (a, 0)$; and $(x, y) = (a, a)$, in terms of linear combinations of the wavefunctions for the square waveguide. Show explicitly that the required boundary conditions are satisfied on all three sides.

(1c) Spell out the restrictions on the integers m and n in the expressions for the eigenvalues Ω_{mn}^2 in the four cases: (1) TM modes in the square; (2) TE modes in the square; (3) TM modes in the isosceles right triangle; (4) TE modes in the isosceles right triangle. List the first three non-vanishing eigenvalues in each case, and give their degeneracies. (For the TM modes, you can use results in the notes.)

(2a) Let the vertices of an equilateral triangle be at $(x, y) = (0, 0)$; $(x, y) = (\frac{h}{\sqrt{3}}, h)$; and $(x, y) = (-\frac{h}{\sqrt{3}}, h)$. Show that the functions

$$\psi_{mn} = W\left[\frac{(m-n)\pi x}{\sqrt{3}h}\right] \sin\frac{\ell\pi y}{h} + W\left[\frac{(n-\ell)\pi x}{\sqrt{3}h}\right] \sin\frac{m\pi y}{h} + W\left[\frac{(\ell-m)\pi x}{\sqrt{3}h}\right] \sin\frac{n\pi y}{h},$$

are eigenfunctions of the 2-dimensional Laplacian ∇_{\perp}^2 , where $\ell \equiv -m - n$ in of the two cases $W(u) = \sin u$ and $W(u) = \cos u$. (i.e. Either all three W 's are sine, or else all three are cosine.) Calculate the corresponding eigenvalues Ω_{mn}^2 of $\nabla_{\perp}^2 \psi_{mn} + \Omega_{mn}^2 \psi_{mn} = 0$.

(2b) Show that ψ_{mn} in part (2a) satisfies the proper boundary conditions for TM modes on **all three** sides of the triangle, for both choices for W . (Note: The calculation does require a little non-trivial trigonometric manipulation. Show this explicitly.)

(2c) What is the lowest eigenvalue Ω_{\min}^2 for TM modes in this waveguide? Is it degenerate?

(3a) Consider a hollow conducting sphere of radius a . Use spherical polar coordinates throughout this problem. Consider TM electromagnetic waves with angular frequency ω inside the cavity, so the radial component of the magnetic field vanishes, $B_r = 0$. **For simplicity, restrict attention to fields that are independent of the azimuthal angle φ .** Show that the Maxwell equations imply that it is consistent to set also $B_{\theta} = 0$, and so the magnetic field is then given by the one non-vanishing component

$$B_{\varphi} = \psi(r, \theta) e^{-i\omega t}. \quad (1)$$

Qu. (3) and Qu. (4) continue on next page...

Use the Maxwell equations to derive the second-order partial differential equation satisfied by ψ . Obtain expressions also for the components E_r , E_θ and E_φ of the electric field, in terms of the function ψ . [You can refer to the expressions for $\vec{\nabla} \cdot \vec{V}$ and $\vec{\nabla} \times \vec{V}$ in spherical polar coordinates that were given in HW8.]

(3b) Separate variables in the standard way, by writing $\psi(r, \theta) = R(r)P(\theta)$, and obtain the second-order ordinary differential equations satisfied by $R(r)$ and $P(\theta)$. Show that the solutions for $R(r)$ are given by the spherical Bessel functions $j_\ell(\omega r)$ and $n_\ell(\omega r)$, and that the (regular) solutions for $P(\theta)$ are given by certain of the associated Legendre functions $P_\ell^m(\cos \theta)$. (The spherical Bessel functions are described below. The Associated Legendre equation and the standard Bessel equation, and their solutions, are discussed in chapters 4 and 5 of my PHYS 603 lectures, on my webpage.)

(4a) Continuing with the set-up in Qu. (3), impose the boundary condition at $r = a$ (tangential components of \vec{E} vanish at $r = a$), together with regularity at $r = 0$. Obtain the transcendental equations involving a , ω and j_ℓ that will restrict the allowed values of ω to a discrete, infinite set $\omega_{\ell,n}$, with $\ell = 1, 2, 3, \dots$ and $n = 1, 2, 3, \dots$. To see how this works, consider as an example the lowest mode, $\ell = 1$, and obtain the corresponding transcendental equation that determines the allowed values for $\omega_{1,n}$. Draw graphs to show how the discrete infinity of these $\omega_{1,n}$ eigenvalues occurs. (The procedure is quite similar to the way one can find the energy levels of a quantum-mechanical particle in a square-well potential.)

(4b) Find an approximate numerical value for the lowest eigenfrequency, $\omega_{1,1}$, among the $\ell = 1$ TM modes. (Don't just state an answer! Show briefly how you did it; graphically, Newton-Raphson, or)

The first few spherical Bessel functions $j_\ell(x) = \sqrt{\frac{\pi}{2x}} J_{\ell+\frac{1}{2}}(x)$ (regular at $x = 0$) and $n_\ell(x) = \sqrt{\frac{\pi}{2x}} Y_{\ell+\frac{1}{2}}(x)$ (singular at $x = 0$) are:

$$\begin{aligned} j_0(x) &= \frac{\sin x}{x}, \quad j_1(x) = \frac{\sin x}{x^2} - \frac{\cos x}{x}, \quad j_2(x) = \left(\frac{3}{x^2} - 1\right) \frac{\sin x}{x} - \frac{3\cos x}{x^2}, \\ n_0(x) &= -\frac{\cos x}{x}, \quad n_1(x) = -\frac{\cos x}{x^2} - \frac{\sin x}{x}, \quad n_2(x) = \left(1 - \frac{3}{x^2}\right) \frac{\cos x}{x} - \frac{3\sin x}{x^2}. \end{aligned}$$

Note that we must reject the $n_\ell(x)$ solutions because they are singular at $x = 0$.

Due Wednesday November 13th, in class.