
Lecture notes for Jan 18, 2023
Introduction and NP

Chun-Hung Liu

January 18, 2023

1 Introduction

In this course, a graph G is a pair (V (G), E(G)), where V (G) is a set and
E(G) is a multiset of subsets of V (G) of size at most two. Such a graph is
also called a “multigraph” in some literature. V (G) is called the vertex-set
of G, and E(G) is called the edge-set of G. A graph G is simple if E(G) is a
set (but not a multiset) and every member of E(G) has size exactly two.

Sometimes we consider directed graphs. A directed graph (or digraph for
short) D is a pair (V (D), E(D)), where V (D) is a set and E(D) is a multiset
of an ordered pair (x, y) for some x, y ∈ V (G). Again V (D) is called the
vertex-set of D, and E(D) is called the edge-set of D. Each element of E(D)
is called an edge or an arc of D. For an arc (x, y), x is called the tail and y
is called the head of this arc. Note that we do not require x 6= y.

We mostly consider algorithmic problems on graphs in this course. More
precisely, we want to design efficient procedures (i.e. algorithms) to solve
the following kinds of problems about graphs or digraphs, or to decide the
existence of an efficient algorithm:

� Decision problem: Questions for which the answer is “yes” or “no”, but
not both. For example:

– Given a graph G, does a graph G have more than 100 vertices?

– Given a graph G and an integer k, does there exist a set of k edges
such that any two edges in this set do not share an end? (Such a
set is called a matching in G.)

1

– Given a graph G, is G connected?

� Optimization problem: Questions for which the answer is a number,
and this answer is a maximum or a minimum for certain properties.
For example:

– Given a graph G, what is the maximum size of a set of pairwise
non-adjacent vertices in G. (Such a set is called a stable set in G.)

– Given a graph G, what is the minimum size of a set S of vertices
such that every edge of G has at least one end in S. (Such a set
is called a vertex-cover in G.)

By “efficient algorithms”, we mean an algorithm that solves the problem
in polynomial time deterministicly and correctly; by “polynomial time”, we
mean the running time is polynomial in the size of the input. For most
of cases, the input includes a graph G, and the size of G is consider to be
|V (G)|+ |E(G)|. So linear time algorithms run in time O(|V (G)|+ |E(G)|).
Note that seeing all vertices and edges of G already take linear time, so linear
time algorithm is the best that we can expect for deterministic algorithms.

We probably will consider randomized algorithms, for which we only re-
quire the algorithm solves the problem correctly with high probability or
runs in polynomial time with high probability. We will also consider ap-
proximation algorithms, for which we output a “good approximation” for an
optimization problem in polynomial time deterministicly or probabilistically.
For randomized algorithms and approximation algorithms, sublinear time (or
even constant time) algorithms are possible.

1.1 P v.s. NP

For decision problems, our concern is to design a polynomial time algorithm
to correctly answer “yes” or “no”, or to prove that a deterministic polynomial
time algorithm “unlikely” exists for a mathematical reason. For the former,
we usually also want to output a “certificate” to support our yes/no answer.
For the latter, the main goal is to prove that the problem is NP-hard.

Now we give formal definitions that are enough for this course. For a
decision problem, an input is a positive instance if the correct answer for this
input is “yes”; otherwise it is a negative instance. We say that a decision
problem is in P if there exists a deterministic polynomial time algorithm

2

that correctly answers yes for any positive instance and answers no for any
negative instance. (This definition for P is slightly different from one defined
in complexity theory, in which every decision problem is “encoded” as the
set of all its positive instances, and P is defined to be the set of all decision
problems they can be determined by a deterministic Turing machine in poly-
nomial time. But our definitions are essentially the same, except we do not
want to address the encoding and formal language in very detail.)

A decision problem D is in in NP if every positive instance has a “certifi-
cate” with polynomial size so that the positivity can be verified in polynomial
time; more formally, there exist polynomials p and q and an algorithm A such
that

� the input of A is of the form (x, y), and A runs in time p(|x|+ |y|),

� if I is a positive instance of D, then there exists a bit-string CI with
size q(|I|) such that A answers “yes” when the input of A is (I, CI),
and

� if I is a negative instance of D, then for every bit-string s with size
q(|I|), A answers “no” when the input of A in (I, s).

(Our definition for NP is essentially equivalent to the one in complexity
theory, which says that every instance can be correctly decided by a non-
deterministic Turing machine. The “N” in NP corresponds to “non-deterministic
Turning machines”.)

Examples: The following problems are in NP:

1. The CLIQUE problem is: Given a graph G and a positive integer k,
determine whether G has a clique of size at least k.

� Recall that a clique in a graph G is a subset S of V (G) such that
any two vertices in S are adjacent in G.

� Every instance of this problem is a pair (G, k), where G is a graph
and k is a positive integer. And (G, k) is a positive instance if and
only if G has a clique SG,k of size k. Note that we can encode a
clique into a bit string.

� Consider the algorithm A with input (x, y), where x is an instance
of CLIQUE and can be written as (G, k), that decides whether y

3

is a clique of size k in G by verifying whether y gives a set of
k vertices and verifying whether vertices in this set are pairwise
adjacent. Clearly A runs in time in time O(k2).

� So for every positive instance (G, k) of CLIQUE, A answers “yes”
when the input of A is ((G, k), SG,k). For every negative instance
(G, k) of CLIQUE, a clique with size k in G does not exist, so A
answers “no” when the input of A is ((G, k), s) for any string s.

� Hence CLIQUE is in NP. And SG,k is a certificate for a positive
instance (G, k) of CLIQUE.

2. The CONNECTIVITY problem is: Given a graphG, determine whether
G is connected.

� Recall that a graph G is connected if for any two vertices u, v,
there exists a path in G between u and v.

� Note that a graph G is connected if and only if there exists a
spanning tree TG of G. (Recall that a spanning subgraph H of a
graph G is a subgraph of G with V (H) = V (G). A spanning tree
of G is a tree and is a spanning subgraph of G.)

� Let A be the algorithm with input (G, y), where G is a graph
and y is a bit-string, such that it decides whether y is a con-
nected spanning subgraph of G. Note that it can be done in time
O(|V (G)| + |E(G)|) by using the breadth-first-search or depth-
first-search that we will discuss later.

� So for every positive instance G of CONNECTIVITY, A answers
“yes” when the input of A is (G, TG). And for every negative
instance G of CONNECTIVITY, there is no connected spanning
subgraph of G, so A answers “no” when the input of A is (G, s)
for any string s.

� Hence CONNECTIVITY is in NP. And TG is a certificate for a
positive instance G of CONNECTIVITY.

Remark:

1. Every decision problem D in P is also in NP, since we can use the
algorithm that solves D as the verification algorithm. So P ⊆ NP.

4

The problem whether P =? NP is one of the major open problems in
mathematics and computer science.

2. To prove that a problem D is in NP, we only need the existence of the
certificate instead of a polynomial time algorithm to find the certificate.
For example, we do not know how to find the clique SG,k in the CLIQUE
problem in polynomial time.

3. For a problem D in NP, we know every positive instance has a cer-
tificate, but we do not know whether every negative instance has a
certificate so that we can verify the negativity in polynomial time.

4. co-NP consists of the decision problems whose each negative instance
has a certificate with polynomial size that can be verified in polynomial
time. The problem whether NP =? co-NP is another major open
problem.

5. Again, every decision problem D in P is also in co-NP since we can
use the algorithm that solves D as the verification algorithm. So P ⊆
NP ∩ co-NP. The problem whether P =? NP ∩ co-NP is another
major open problem.

1.2 NP-completeness

As we mentioned above, P =? NP is one of the major open problems. How
can we solve it? If we can solve the “hardest” problem in NP in polynomial
time, then P = NP; if we can prove that the “hardest” problem in NP
cannot be solved in polynomial time, then P 6= NP. So it is sufficient to
study such a “hardest” problem.

A decision problem D is NP-hard if for every problem D′ in NP, there
exists a polynomial time algorithm AD′ that given an instance I ′ of D′,
produces an instance f(I ′) of D such that I ′ is a positive instance for D′ if
and only if f(I ′) is a positive instance for D. This implies that every NP-
hard problem D is (not necessarily strictly) harder than all problems in NP,
because if we have a polynomial time algorithm A to solve D, then for any
problem D′ in NP, we can combine the algorithm AD′ and A to obtain a
polynomial time algorithm to solve D′. Such an algorithm AD′ is called a
polynomial time reduction from D′ to D.

5

In fact, we can define NP-hardness for non-decision problems in a similar
way. An algorithmic problem D is NP-hard if for every problem D′ in NP,
there exists a polynomial time algorithm AD′ that given an instance I ′ of
D′, produces an instance f(I ′) of D such that the answer for f(I ′) gives the
answer for I in polynomial time.

A decision problem is NP-complete if it is in NP and is NP-hard. That
is, every NP-complete problem is a (not necessarily strictly) hardest problem
in NP.

Now we describe an NP-complete problem. We need some definitions in
logic. A formula (with variables x1, x2, ..., xn) is a function φ(x1, x2, ..., xn) :
{“True”,“False”}n → {“True”,“False”}, and it consists of the variables and
the following three logical operations: “negation” ¬, “or” ∨ and “and” ∧.
For example, (x1 ∧ x2) ∨ ¬x1 is a formula with variables x1, x2. A formula
with variables x1, ..., xn is in conjunctive normal form if it can be written as
c1 ∧ c2 ∧ ... ∧ cm for some positive integer m, where each ci is called a clause
and is of the form (ai,1 ∨ ai,2 ∨ ... ∨ ai,ki) for some positive integer ki, and
each ai,j is called a literal and is either xk or ¬xk for some 1 ≤ k ≤ n. For
example, (x1 ∧ x2) ∨ ¬x1 is not in conjunctive normal form, but its logically
equivalent formula (x1∨¬x1)∧(x2∨¬x1) is. A truth assignment for a formula
φ(x1, ..., xn) is a choice of each xi so that φ(x1, ..., xn) is True. For example,
choosing x1 = False and x2 = True is a truth assignment for the formula
(x1 ∨ ¬x1) ∧ (x2 ∨ ¬x1). We say that a formula is satisfiable if it has a truth
assignment.

SAT is the following decision problem:

SAT
Input: A formula φ.
Output: Determine whether φ is satisfiable.

It is easy to see that SAT is in NP since a truth assignment of a satisfiable
formula has polynomial size and can be verified in polynomial time. In fact,
SAT is the “hardest” problem in NP.

Theorem 1 (Cook) SAT is NP-complete.

6

