Lecture notes for Jan 23, 2023 Examples of NP-complete problems

Chun-Hung Liu

January 23, 2023

SAT
Input: A formula ϕ.
Output: Determine whether ϕ is satisfiable.

Theorem 1 (Cook) SAT is NP-complete.
In fact, a special case of SAT is already NP-complete.
k-SAT, where k is a fixed positive integer.
Input: A formula ϕ for which every its clause has exactly k literals.
Output: Determine whether ϕ is satisfiable.

Theorem 2 (Karp) 3-SAT is NP-complete.
We will not prove Theorems 1 and 2 in this course, though the proofs are not very hard. We will only pay attention to use them to prove other problems are NP-complete. Usually it is easy to show that a problem is in NP. So the difficult part is about how to show the NP-hardness.

Lemma 3 Let D be a decision problem. If there exists an NP-hard problem D^{\prime} such that there exists a polynomial time reduction from D^{\prime} to D, then D is NP-hard.

Proof. Let $A_{D^{\prime}}$ be a polynomial time reduction from D^{\prime} to D. Since D^{\prime} is NP-hard, for every problem $D^{\prime \prime}$ in NP, there exists a polynomial time reduction $A_{D^{\prime \prime}, D^{\prime}}$ from $D^{\prime \prime}$ to D^{\prime}. Then the composition of $A_{D^{\prime \prime}, D^{\prime}}$ and $A_{D^{\prime}}$ is a polynomial time reduction from $D^{\prime \prime}$ to D. So D is NP-hard.

Let's see some examples.
Corollary 4 For every positive integer $k \geq 3, k$-SAT is NP-complete.
Proof. It is easy to see that k-SAT is in NP. So it suffices to prove that k SAT is NP-hard. We shall find a polynomial reduction from 3-SAT to k-SAT. For every instance I of 3-SAT, we define $f(I)$ to be the formula obtained from I by for each clause of I, duplicating one literal $k-3$ times. Then clearly $f(I)$ is an instance of k-SAT. And it is easy to see that I is satisfiable if and only if $f(I)$ is satisfiable. Clearly $f(I)$ can be constructed in polynomial time in the size of I. So there exists a polynomial time reduction from 3-SAT to k-SAT. Since 3-SAT is NP-hard, k-SAT is NP-hard by Lemma 3.

A vertex-cover of a graph G is a subset S of $V(G)$ such that every edge of G is incident with at least one vertex in S.

VERTEX-COVER

Input: A graph G and an integer k.
Output: Determine whether G has a vertex-cover of size at most k.

Theorem 5 (Karp) VERTEX-COVER is NP-complete.
Proof. VERTEX-COVER is in NP since for every positive instance (G, k), a vertex-cover of G with size at most k is a certificate that can be verified in polynomial time. So it suffices to prove that it is NP-hard.

For every instance I of 3 -SAT, say it has m_{I} clauses and n_{I} variables, let $k_{I}=n_{I}+2 m_{I}$ and we construction a graph G_{I} as follows:

- For every variable x in I, create two vertices $v_{x, T}$ and $v_{x, F}$ and add the edge $v_{x, T} v_{x, F}$.
- For every clause c in I and every literal ℓ in c, create a vertex $v_{c, \ell}$; so exactly 3 vertices are created for each clause c; add 3 edges to make those 3 vertices become a clique.
- For each variable x in I and a literal ℓ (say, ℓ is in c), if $\ell=x$, then add the edge $v_{x, T} v_{c, \ell}$; if $\ell=\neg x$, then add the edge $v_{x, F} v_{c, \ell}$.

Clearly G_{I} and k_{I} can be constructed in polynomial time in the size of I. So it suffices to prove that I is satisfiable if and only if G_{I} has a vertex-cover with size at most k_{I}.

Assume that I is satisfiable. Let g be a truth assignment of I. So for each clause c, there exists a literal ℓ_{c} that is assigned to be true by g. Let $S_{I}=\left\{v_{x, T}: x\right.$ is a variable with $\left.g(x)=\operatorname{True}\right\} \cup\left\{v_{x, F}: x\right.$ is a variable with $g(x)=$ False $\} \cup\left\{v_{c, \ell}: c\right.$ is a clause, ℓ is a literal in $\left.c, \ell \neq \ell_{c}\right\}$. Then S_{I} is a subset of $V\left(G_{I}\right)$ with $\left|S_{I}\right|=n_{I}+(3-1) m_{I}=k_{I}$. Clearly, every edge with both ends corresponding to variables or with both ends corresponding to literals is incident with at least one vertex in S_{I}. For an edge of the form $v_{c, \ell} v_{x, Z}$, where $Z \in\{T, F\}$, if $\ell \neq \ell_{c}$, then it is incident with a vertex in S_{I}; otherwise, $\ell=\ell_{c}$ and $\ell_{c} \in\{x, \neg x\}$; if $\ell_{c}=x$, then $v_{x, Z}=v_{x, T}$, and since ℓ_{c} is true, we know $g(x)=$ True, so $v_{x, Z}=v_{x, T} \in S_{I}$; if $\ell=\neg x$, then $v_{x, Z}=v_{x, F}$, and since ℓ_{c} is true, we know $g(x)=$ False, so $v_{x, Z}=v_{x, F} \in S_{I}$. Hence S_{I} is a vertex-cover of G_{I} with size k_{I}.

Now we assume that G_{I} has a vertex-cover C with size at most k_{I}. Let $\mathcal{P}_{1}=\left\{\left\{v_{x, T}, v_{x, F}\right\}: x\right.$ is a variable in $\left.I\right\}$ and let $\mathcal{P}_{2}=\left\{\left\{v_{c, \ell}: \ell\right.\right.$ is a literal in $c\}: c$ is a clause in $I\}$. Then $\mathcal{P}_{1} \cup \mathcal{P}_{2}$ is a partition of $V(G)$. Since each member M of \mathcal{P}_{1} is a clique with size $2, C$ contains at least 1 vertex in M. Since each member M of \mathcal{P}_{2} is a clique with size $3, C$ contains at least 2 vertices in M. And $\left|\mathcal{P}_{1}\right|=n_{I}$ and $\left|\mathcal{P}_{2}\right|=m_{I}$, so C contains exactly one vertex in each member of \mathcal{P}_{1} and contains exactly 2 vertices in each member of \mathcal{P}_{2}. For each variable x, if $v_{x, T} \in C$, then we assign x True; if $x_{x, F} \in C$, then assign x False. This is well-defined since C contains exactly 1 vertex in each member of \mathcal{P}_{1}. Since for each clause c, C contains exactly 2 vertices in $\left\{v_{c, \ell}: \ell\right.$ is a literal in $\left.c\right\}$, there exists an literal ℓ_{c}^{*} in c such that $v_{c, \ell_{c}^{*}} \notin C$. Let $x_{\ell_{c}^{*}}$ be the variable such that $\ell_{c}^{*} \in\left\{x_{\ell_{c}^{*}}, \neg x_{\ell, c^{*}}\right\}$. So either $\ell_{c}^{*}=x_{\ell_{c}^{*}}$ and $v_{x, T} v_{c, \ell_{c}^{*}} \in E\left(G_{I}\right)$, or $\ell_{c}^{*}=\neg x_{\ell_{c}^{*}}$ and $v_{x, F} v_{c, \ell_{c}^{*}} \in E\left(G_{I}\right)$. Since $v_{c, \ell_{c}^{*}} \notin C$ and C is a vertex-cover, we know $v_{x, T} \in C$ for the former case, and $v_{x, F} \in C$ for the latter case. So the literal ℓ_{c}^{*} is assigned to be True. Therefore, I is satisfiable.

A stable set in a graph G is a subset S of $V(G)$ such that vertices in S are pairwise non-adjacent. The independence number of G is the maximum size of a stable set in G.

INDEPENDENCE

Input: A graph G and an integer k.
Output: Determine whether G has a stable set of size at least k.

Theorem 6 (Karp) INDEPENDENCE is NP-complete.
Proof. INDEPENDENCE is in NP since every stable set of size at most k in a positive instance is a certificate that can be verified in polynomial time. To show that INDEPENDENCE is NP-hard, by Lemma 3 and Theorem 5 , it suffices to show that there exists a polynomial time reduction from VERTEX-COVER to INDEPENDENCE.

Let (G, k) be an instance of VERTEX-COVER. Then $(G,|V(G)|-k)$ is an instance of INDEPENDENCE that can be constructed in polynomial time. Note that a subset S of $V(G)$ is a vertex-cover of G if and only if $V(G)-S$ is a stable set in G. Hence G has a vertex-cover of size at most k if and only if G has a stable set of size at least $|V(G)|-k$. That is, (G, k) is a positive instance of VERTEX-COVER if and only if $(G,|V(G)|-k)$ is a positive instance of INDEPENDENCE.

Note that k is part of the input of VERTEX-COVER and INDEPENDENCE. They are no longer hard if k is fixed instead of being part of the input. The reason is that there are at most $|V(G)|^{k}$ subsets of $V(G)$ of size k, and check each such set is a vertex-cover or a stable set can be done in time $O\left(k^{2}\right)$. So deciding whether a graph has a vertex-cover (or a stable set, respectively) of size k can be solved in time $O\left(k^{2}|V(G)|^{k}\right)$.

Let G be a graph and let k a positive integer. A proper k-coloring of G is a function $f: V(G) \rightarrow[k]$ such that for every edge $u v$ of $G, f(u) \neq f(v)$. A graph G is k-colorable if there exists a proper k-coloring of G.
k-COLORABILITY, where k is a positive integer
Input: A graph G.
Output: Determine whether G is k-colorable.

Theorem 7 3-COLORABILITY is NP-complete.
Proof. Reduced from 3-SAT. The proof is not very difficult, but we omit it here.

Theorem 8 For every positive integer $k \geq 3, k$-COLORABILITY is NPcomplete.

Proof. For every graph G, let G_{k} be the graph obtained from G by adding $k-3$ new vertices each adjacent to all other vertices of G_{k}. Then it is easy to show that G is 3 -colorable if and only if G_{k} is k-colorable. Since 3-COLORABILITY is NP-hard, k-COLORABILITY is NP-hard. And it is easy to show that k-COLORABILITY is in NP, so it is NP-complete.

A graph G is planar if it can be drawn in the plane with no edge-crossing.
PLANAR k-COLORABILITY, where k is a positive integer Input: A graph G.
Output: Determine whether G is k-colorable.

Theorem 9 (Garey, Johnson, Stockmeyer) PLANAR 3-COLORABILITY is NP-complete.

Proof. Reduced from 3-COLORABILITY. We omit the proof here.
Theorem 9 implies that 3 -colorability remains hard even if we strict to the planar graphs. In fact, the proof of Garey, Johnson, Stockmeyer shows that it remains hard even when the planar graphs have maximum degree at most 4. Note that by Brooks' theorem, every planar graph with maximum degree at most 3 is 3 -colorable unless K_{4} is a component. And K_{4} is not 3 -colorable. So testing the 3 -colorability of a planar graph with maximum degree at most 3 is equivalent to testing whether some of its component is isomorphic to K_{4}, which can be done in polynomial time obviously.

Note that the famous Four Color Theorem states that every planar graph is 4-colorable. So PLANAR 4-COLORABILITY is in \mathbf{P}, and k-colorability is no longer algorithmically hard for $k \geq 4$ if we strict to planar graphs. In fact, it is solvable in constant time, because we can always output "yes". Note that it does not contradict to Theorem 8. The graph G_{k} constructed in the proof of Theorem 8 is not planar.

Finding a proper 4-coloring of a given planar graph is more difficult. But the known proofs of the Four Color Theorem can be transformed into polynomial time algorithms. In particular, the proof of Robertson, Seymour and Thomas gives a quadratic time algorithm.

