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SAT
Input: A formula φ.
Output: Determine whether φ is satisfiable.

Theorem 1 (Cook) SAT is NP-complete.

In fact, a special case of SAT is already NP-complete.

k-SAT, where k is a fixed positive integer.
Input: A formula φ for which every its clause has exactly k literals.
Output: Determine whether φ is satisfiable.

Theorem 2 (Karp) 3-SAT is NP-complete.

We will not prove Theorems 1 and 2 in this course, though the proofs
are not very hard. We will only pay attention to use them to prove other
problems are NP-complete. Usually it is easy to show that a problem is in
NP. So the difficult part is about how to show the NP-hardness.

Lemma 3 Let D be a decision problem. If there exists an NP-hard problem
D′ such that there exists a polynomial time reduction from D′ to D, then D
is NP-hard.
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Proof. Let AD′ be a polynomial time reduction from D′ to D. Since D′

is NP-hard, for every problem D′′ in NP, there exists a polynomial time
reduction AD′′,D′ from D′′ to D′. Then the composition of AD′′,D′ and AD′ is
a polynomial time reduction from D′′ to D. So D is NP-hard.

Let’s see some examples.

Corollary 4 For every positive integer k ≥ 3, k-SAT is NP-complete.

Proof. It is easy to see that k-SAT is in NP. So it suffices to prove that k-
SAT is NP-hard. We shall find a polynomial reduction from 3-SAT to k-SAT.
For every instance I of 3-SAT, we define f(I) to be the formula obtained from
I by for each clause of I, duplicating one literal k − 3 times. Then clearly
f(I) is an instance of k-SAT. And it is easy to see that I is satisfiable if and
only if f(I) is satisfiable. Clearly f(I) can be constructed in polynomial time
in the size of I. So there exists a polynomial time reduction from 3-SAT to
k-SAT. Since 3-SAT is NP-hard, k-SAT is NP-hard by Lemma 3.

A vertex-cover of a graph G is a subset S of V (G) such that every edge
of G is incident with at least one vertex in S.

VERTEX-COVER
Input: A graph G and an integer k.
Output: Determine whether G has a vertex-cover of size at most k.

Theorem 5 (Karp) VERTEX-COVER is NP-complete.

Proof. VERTEX-COVER is in NP since for every positive instance (G, k),
a vertex-cover of G with size at most k is a certificate that can be verified in
polynomial time. So it suffices to prove that it is NP-hard.

For every instance I of 3-SAT, say it has mI clauses and nI variables, let
kI = nI + 2mI and we construction a graph GI as follows:

� For every variable x in I, create two vertices vx,T and vx,F and add the
edge vx,Tvx,F .

� For every clause c in I and every literal ` in c, create a vertex vc,`; so
exactly 3 vertices are created for each clause c; add 3 edges to make
those 3 vertices become a clique.
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� For each variable x in I and a literal ` (say, ` is in c), if ` = x, then
add the edge vx,Tvc,`; if ` = ¬x, then add the edge vx,Fvc,`.

Clearly GI and kI can be constructed in polynomial time in the size of I. So
it suffices to prove that I is satisfiable if and only if GI has a vertex-cover
with size at most kI .

Assume that I is satisfiable. Let g be a truth assignment of I. So for
each clause c, there exists a literal `c that is assigned to be true by g. Let
SI = {vx,T : x is a variable with g(x) =True} ∪ {vx,F : x is a variable with
g(x) =False} ∪ {vc,` : c is a clause, ` is a literal in c, ` 6= `c}. Then SI is
a subset of V (GI) with |SI | = nI + (3 − 1)mI = kI . Clearly, every edge
with both ends corresponding to variables or with both ends corresponding
to literals is incident with at least one vertex in SI . For an edge of the form
vc,`vx,Z , where Z ∈ {T, F}, if ` 6= `c, then it is incident with a vertex in SI ;
otherwise, ` = `c and `c ∈ {x,¬x}; if `c = x, then vx,Z = vx,T , and since `c is
true, we know g(x) =True, so vx,Z = vx,T ∈ SI ; if ` = ¬x, then vx,Z = vx,F ,
and since `c is true, we know g(x) =False, so vx,Z = vx,F ∈ SI . Hence SI is
a vertex-cover of GI with size kI .

Now we assume that GI has a vertex-cover C with size at most kI . Let
P1 = {{vx,T , vx,F} : x is a variable in I} and let P2 = {{vc,` : ` is a literal
in c} : c is a clause in I}. Then P1 ∪ P2 is a partition of V (G). Since each
member M of P1 is a clique with size 2, C contains at least 1 vertex in M .
Since each member M of P2 is a clique with size 3, C contains at least 2
vertices in M . And |P1| = nI and |P2| = mI , so C contains exactly one
vertex in each member of P1 and contains exactly 2 vertices in each member
of P2. For each variable x, if vx,T ∈ C, then we assign x True; if xx,F ∈ C,
then assign x False. This is well-defined since C contains exactly 1 vertex in
each member of P1. Since for each clause c, C contains exactly 2 vertices in
{vc,` : ` is a literal in c}, there exists an literal `∗c in c such that vc,`∗c 6∈ C.
Let x`∗c be the variable such that `∗c ∈ {x`∗c ,¬x`,c∗}. So either `∗c = x`∗c and
vx,Tvc,`∗c ∈ E(GI), or `∗c = ¬x`∗c and vx,Fvc,`∗c ∈ E(GI). Since vc,`∗c 6∈ C and C
is a vertex-cover, we know vx,T ∈ C for the former case, and vx,F ∈ C for the
latter case. So the literal `∗c is assigned to be True. Therefore, I is satisfiable.

A stable set in a graph G is a subset S of V (G) such that vertices in S
are pairwise non-adjacent. The independence number of G is the maximum
size of a stable set in G.
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INDEPENDENCE
Input: A graph G and an integer k.
Output: Determine whether G has a stable set of size at least k.

Theorem 6 (Karp) INDEPENDENCE is NP-complete.

Proof. INDEPENDENCE is in NP since every stable set of size at most k
in a positive instance is a certificate that can be verified in polynomial time.
To show that INDEPENDENCE is NP-hard, by Lemma 3 and Theorem
5, it suffices to show that there exists a polynomial time reduction from
VERTEX-COVER to INDEPENDENCE.

Let (G, k) be an instance of VERTEX-COVER. Then (G, |V (G)| − k)
is an instance of INDEPENDENCE that can be constructed in polynomial
time. Note that a subset S of V (G) is a vertex-cover of G if and only if
V (G)− S is a stable set in G. Hence G has a vertex-cover of size at most k
if and only if G has a stable set of size at least |V (G)| − k. That is, (G, k)
is a positive instance of VERTEX-COVER if and only if (G, |V (G)| − k) is
a positive instance of INDEPENDENCE.

Note that k is part of the input of VERTEX-COVER and INDEPEN-
DENCE. They are no longer hard if k is fixed instead of being part of the
input. The reason is that there are at most |V (G)|k subsets of V (G) of size
k, and check each such set is a vertex-cover or a stable set can be done in
time O(k2). So deciding whether a graph has a vertex-cover (or a stable set,
respectively) of size k can be solved in time O(k2|V (G)|k).

Let G be a graph and let k a positive integer. A proper k-coloring of G
is a function f : V (G)→ [k] such that for every edge uv of G, f(u) 6= f(v).
A graph G is k-colorable if there exists a proper k-coloring of G.

k-COLORABILITY, where k is a positive integer
Input: A graph G.
Output: Determine whether G is k-colorable.

Theorem 7 3-COLORABILITY is NP-complete.

Proof. Reduced from 3-SAT. The proof is not very difficult, but we omit it
here.
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Theorem 8 For every positive integer k ≥ 3, k-COLORABILITY is NP-
complete.

Proof. For every graph G, let Gk be the graph obtained from G by adding
k − 3 new vertices each adjacent to all other vertices of Gk. Then it is
easy to show that G is 3-colorable if and only if Gk is k-colorable. Since
3-COLORABILITY is NP-hard, k-COLORABILITY is NP-hard. And it is
easy to show that k-COLORABILITY is in NP, so it is NP-complete.

A graph G is planar if it can be drawn in the plane with no edge-crossing.

PLANAR k-COLORABILITY, where k is a positive integer
Input: A graph G.
Output: Determine whether G is k-colorable.

Theorem 9 (Garey, Johnson, Stockmeyer) PLANAR 3-COLORABILITY
is NP-complete.

Proof. Reduced from 3-COLORABILITY. We omit the proof here.

Theorem 9 implies that 3-colorability remains hard even if we strict to
the planar graphs. In fact, the proof of Garey, Johnson, Stockmeyer shows
that it remains hard even when the planar graphs have maximum degree at
most 4. Note that by Brooks’ theorem, every planar graph with maximum
degree at most 3 is 3-colorable unless K4 is a component. And K4 is not
3-colorable. So testing the 3-colorability of a planar graph with maximum
degree at most 3 is equivalent to testing whether some of its component is
isomorphic to K4, which can be done in polynomial time obviously.

Note that the famous Four Color Theorem states that every planar graph
is 4-colorable. So PLANAR 4-COLORABILITY is in P, and k-colorability
is no longer algorithmically hard for k ≥ 4 if we strict to planar graphs. In
fact, it is solvable in constant time, because we can always output “yes”.
Note that it does not contradict to Theorem 8. The graph Gk constructed
in the proof of Theorem 8 is not planar.

Finding a proper 4-coloring of a given planar graph is more difficult.
But the known proofs of the Four Color Theorem can be transformed into
polynomial time algorithms. In particular, the proof of Robertson, Seymour
and Thomas gives a quadratic time algorithm.
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