Lecture notes for Jan 25, 2023 BFS and applications and DFS

Chun-Hung Liu

January 25, 2023

1 Rooted trees

A rooted tree is a tree T with a special vertex $r \in V(T)$. The vertex r is called the root of T.

Let T be a rooted tree with root r.

- For a vertex $v \in V(T)$, we say that a vertex $u \in V(T)$ is an ancestor (with respect to (T, r)) of v if u is in the unique path in T from r to v. Note that every vertex is an ancestor of itself.
- A proper ancestor (with respect to (T, r)) of a vertex v is an ancestor (with respect to (T, r)) of v distinct from v.
- A vertex u is a descendant (with respect to (T, r)) of v if v is an ancestor (with respect to (T, r)) of u.
- A proper descendant (with respect to (T, r)) of a vertex v is a descendant (with respect to (T, r)) of v distinct from v.
- If v is not the root, then the parent of v is the unique proper ancestor adjacent to v.
- For a vertex v, every vertex that is a proper descendant adjacent to v is called a child of v.
- Two vertices u, v are incomparable (with respect to (T, r)) if none of u, v is an ancestor of the other.

Let G be a graph. Let T be a spanning tree of G. Let r be a vertex of G. When treating T as a rooted tree with root r, we say that an edge $e \in E(G)-E(T)$ is

- a back edge if one end of e is a proper ancestor of the other end of e, and
- a crossing edge if the ends of e are incomparable with respect to (T, r).

2 Distance and breadth-first-search

2.1 Distance in graphs

The length of a path is the number of edges of this path. For a graph G and vertices u, v of G, we say that a path P in G is a shortest path between u and v if it is a path between u and v, and no path between u and v is shorter than P.

Proposition 1 Let G be a graph. Let u, v be vertices of G. If P is a shortest path between u and v, then for every vertex w in P, the subpath of P between u and w is a shortest path between u and w.

Proof. If there exists a path Q between u and w shorter than the subpath of P between u and w, then the union of Q and the subpath of P between w and v is a walk shorter than P, a contradiction.

Let G be a graph. The distance between two vertices u and v of G, denoted by $d_{G}(u, v)$, is the length of a shortest path in G between u and v. (If no such a path exists, the distance is defined to be ∞.)

Proposition 2 If H is a subgraph of G, then for any vertices $u, v \in V(H) \subseteq$ $V(G), d_{H}(u, v) \geq d_{G}(u, v)$.

Proof. Every path between u, v in H is a path in G. So a shortest path between u, v in H is a path in G whose length is at least the length of a shortest path between u, v in G.

Note that it is possible $d_{H}(u, v)=d_{G}(u, v)$, and it is possible that $d_{H}(u, v)>$ $d_{G}(u, v)$.

2.2 Breadth-first-search

Breadth-first-search is an algorithm that helps us compute the distance between two vertices.
$=====-=====-=-=-1$
Breadth-First-Search (BFS)
Input: A connected graph G and a vertex r of G.
Output: A tree rooted at r.
Procedure:
Step 1: Label r as v_{1}. Set $i=1$. Set T to be the graph $(\{r\}, \emptyset)$. (That is, T is the graph consisting of the single vertex r and with no edge.)

Step 2: Repeatedly picking one edge e of G incident with v_{i} and do Step 2-1, until all edges incident with v_{i} have been seen.

Step 2-1: If e has one end in $V(T)$ and one end not in $V(T)$, then adding e into T and label the end of e not in $V(G)$ as v_{j}, where j is least positive integer such that no vertex in $V(T)$ has been labelled as v_{j}.

Step 3: Set i to be $i+1$. Do Step 2, unless $i>|V(G)|$.
$==$

Remark:

- It is easy to prove that T is always a tree during the algorithm by induction on i. In particular, T is a tree when the algorithm terminates. The final tree T is called a breadth-first-search (BFS) tree rooted at r.
- Note that T is a subgraph of G. Since G is connected, $V(T)=V(G)$. Hence T is a spanning tree of G.
- BFS runs in time $O(|E(G)|)$ since we visit every edge at most twice. When G is disconnected, we can run BFS for each component of G to obtain a spanning forest F in time $O(|V(G)|+|E(G)|)$, where each component of F is a BFS tree of a component of G.

Now we prove nice properties of a BFS tree. For simplicity, until the end of this subsection, G, r, T denotes the graph G, vertex r and tree T mentioned in the BFS algorithm.

Note that during the algorithm, for each vertex $v \neq r$, when it is added into T, it must be added at Step 2-1 and the edge $v_{i} v$ is added into T for some i, so v_{i} is the parent of v in T.

Lemma 3 If $v \neq r$ and v is a child of u, then $d_{T}(r, v)=d_{T}(r, u)+1$.
Proof. Note that there exists a unique path P in T from r to v. According to the algorithm, the edge $\{u, v\}$ is in T and hence in P. So P passes through r, u, v in the order listed. So $d_{T}(r, v)=d_{T}(r, u)+1$.

Lemma 4 Let x, y be integers with $2 \leq x<y$. If v_{x} is a child of v_{α} and v_{y} is a child of v_{β}, then $\alpha \leq \beta$.

Proof. If $\alpha>\beta$, then when we do step 2-1 for $i=\beta, v_{y}$ must be added into T, but v_{x} is not added into T until $i=\alpha>\beta$, contracting $x<y$.

Lemma $5 d_{T}\left(r, v_{1}\right) \leq d_{T}\left(r, v_{2}\right) \leq d_{T}\left(r, v_{3}\right) \leq \ldots \leq d_{T}\left(r, v_{n}\right)$.
Proof. We shall prove $d_{T}\left(r, v_{1}\right) \leq d_{T}\left(r, v_{2}\right) \leq d_{T}\left(r, v_{3}\right) \leq \ldots \leq d_{T}\left(r, v_{k}\right)$ by induction on k. When $k=1$, there is nothing to prove. When $k=2, v_{2}$ is a neighbor of $v_{1}=r$, so $d_{T}\left(r, v_{1}\right)=d_{T}(r, r)=0<1=d_{T}\left(r, v_{2}\right)$. So we may assume that $k \geq 3$ and $d_{T}\left(r, v_{1}\right) \leq d_{T}\left(r, v_{2}\right) \leq d_{T}\left(r, v_{3}\right) \leq \ldots \leq d_{T}\left(r, v_{k-1}\right)$.

Since $k \geq 3, k-1 \geq 2$. So v_{k-1} is a child of v_{α} and v_{k} is a child of v_{β} for some $\alpha \leq \beta$ by Lemma 4. By the induction hypothesis, $d_{T}\left(r, v_{\alpha}\right) \leq d_{T}\left(r, v_{\beta}\right)$. By Lemma 3, $d_{T}\left(r, v_{k-1}\right)=d_{T}\left(r, v_{\alpha}\right)+1 \leq d_{T}\left(r, v_{\beta}\right)+1=d_{T}\left(r, v_{k}\right)$. This proves the lemma.

Lemma 6 For every nonnegative integer j, let $L_{j}=\{v \in V(G)=V(T)$: $\left.d_{T}(v, r)=j\right\}$. Then no edge of G has one end in L_{α} and one end in L_{β} for some integers α, β with $\beta \geq \alpha+2$. In other words, if $x y$ is an edge of G, then $\left|d_{T}(r, x)-d_{T}(r, y)\right| \leq 1$. In particular, there exists no back edge.

Proof. Suppose there exists an edge e of G between a vertex u in L_{α} and a vertex v in L_{β} for some $\beta \geq \alpha+2$. Since $v \in L_{\beta}, v$ is a child of a vertex w in $L_{\beta-1}$ by Lemma 3. Since $\alpha<\beta-1$, we know $d_{T}(r, u)=\alpha<\beta-1=d_{T}(r, w)$. By Lemma 5, u joins T earlier than w. Since $u v \in E(G), v$ should be added into T before all neighbors of u are seen in the algorithm, a contradiction.

Theorem 7 For every vertex $v \in V(G), d_{G}(r, v)=d_{T}(r, v)$.
Proof. We shall prove this theorem by induction on $d_{G}(r, v)$.
When $d_{G}(r, v)=0, r=v$, so $d_{T}(r, v)=0=d_{G}(r, v)$. So we may assume that $d_{G}(r, v) \geq 1$ and $d_{G}\left(r, v^{\prime}\right)=d_{T}\left(r, v^{\prime}\right)$ for every vertex v^{\prime} with $d_{G}\left(r, v^{\prime}\right)<d_{G}(r, v)$.

Note that since every path in T is a path in $G, d_{G}(r, v) \leq d_{T}(r, v)$. So it suffices to prove that $d_{G}(r, v) \geq d_{T}(r, v)$.

Let P be a shortest path in G from r to v. Note that P contains at least 2 vertices since $r \neq v$. Let u be the neighbor of v in P. By Proposition 1, $d_{G}(r, v)=d_{G}(r, u)+1$. So $d_{G}(r, u)<d_{G}(r, v)$. By the induction hypothesis, $d_{G}(r, v)=d_{G}(r, u)+1=d_{T}(r, u)+1$. By Lemma $6,\left|d_{T}(r, u)-d_{T}(r, v)\right| \leq 1$, so $d_{T}(r, v) \leq d_{T}(r, u)+1=d_{G}(r, v)$. This proves the theorem.

2.3 Applications of BFS

Corollary 8 Let G be a connected graph. Let r be a vertex. Then in linear time, we can compute $d_{G}(r, v)$ and a shortest path in G from r to v for all vertices v of G at once.

Proof. Find a BFS tree rooted at r. We can compute $d_{T}(r, v)$ for every $v \in V(G)$ during BFS. And $d_{G}(r, v)=d_{T}(r, v)$ by Theorem 7. Moreover, the unique path in T from r to v is a shortest path in G from r to v.

The diameter of a graph G is the largest distance between two vertices in G. That is, the diameter of G equals $\sup _{u, v \in V(G)} d_{G}(u, v)$. Note that if G is connected, then this supremum is actually a maximum; if G is disconnected, then the diameter is infinite.

Corollary 9 The diameter of an input graph G can be computed in time $O\left(|V(G)|^{2}+|V(G)||E(G)|\right)$.
Proof. For each vertex r of G, we can compute $\sup _{v \in V(G)} d_{G}(r, v)$ in linear time by Corollary 8. So $\sup _{u, v \in V(G)} d_{G}(u, v)=\sup _{u \in V(G)} \sup _{v \in V(G)} d_{G}(u, v)$ can be computed in $O(|V(G)| \cdot(|V(G)|+|E(G)|))=O\left(|V(G)|^{2}+|V(G)||E(G)|\right)$.

A graph G is bipartite if $V(G)$ can be partitioned into two (possibly empty) sets A, B such that every edge of G has one end in A and one end in B. Such a partition $\{A, B\}$ is called a bipartition of G. Note that a graph is bipartite if and only if it is 2-colorable.

Corollary 10 Given the input graph G, we can either find a bipartition of G or an odd cycle in G in linear time.

Proof. Find a BFS tree T rooted at an arbitrary vertex r. Let $A=\{v \in$ $V(G): d_{T}(r, v)$ is even $\}$ and let $B=\left\{v \in V(G): d_{T}(r, v)\right.$ is odd $\}$.

We can check whether there is an edge of G with both ends in A or with both ends in B in linear time. If there exists no such an edge, then $\{A, B\}$ is a bipartition of G and we output it.

So we may assume that there exists an edge e with both ends in C for some $C \in\{A, B\}$, say $e=u v$. For $x \in\{u, v\}$, let P_{x} be the unique path in T from r to x. Note that $P_{u} \cap P_{v}$ is a path R in T from r to a common ancestor w of u and v. And $P_{u} \cup P_{v}$ is the union of R and the unique path P in T from u to v, where P and R are edge-disjoint, so $|E(P)|=$ $\left|E\left(P_{u}\right)\right|+\left|E\left(P_{v}\right)\right|-2|E(R)|$. Since both u, v are in $C,\left|E\left(P_{u}\right)\right|+\left|E\left(P_{v}\right)\right|$ is even, so $|E(P)|=\left|E\left(P_{u}\right)\right|+\left|E\left(P_{v}\right)\right|-2|E(R)|$ is even. Therefore, the cycle $P+u v$ is an odd cycle O, and we output O. Note that P_{u}, P_{v}, w, R, P can be found in linear time. So O can be found in linear time.

Corollary 11 A graph G is bipartite if and only if G does not contain an odd cycle (as a subgraph).

Proof. (\Rightarrow) Since every odd cycle is not bipartite, no bipartite graph can contain an odd cycle.
(\Leftarrow) If G has no odd cycle, then the algorithm in Corollary 10 must find a bipartition of G, so G is bipartite.

Corollary 12 Given a graph G, in linear time, we can find a bipartition of G to correctly conclude that G is bipartite if G is bipartite, and output an odd cycle in G to correctly conclude that G is not bipartite if G is non-bipartite. In particular, 2-COLORABILITY is in \mathbf{P}.

3 Depth-first-search

Depth-First-Search (DFS)

Input: A connected graph G and a vertex r of G.
Output: A tree rooted at r.
Procedure:

Step 1: Set T to be the rooted tree $(\{r\}, \emptyset)$ rooted at r. Set all edges of G as "unmarked". Set S to be the sequence (r).

Step 2: Terminate the algorithm if S has no entry. Say the last entry of S is v. If there exists no unmarked edge of G incident with v, then remove v from S and repeat Step 2. Otherwise, pick an unmarked edge e of G incident with v and mark e. If e is not a loop and the end u of e other than v is not in $V(T)$, then add e into T, add u into S as the last entry, and repeat Step 2; otherwise, just repeat Step 2.

Remark:

- Clearly, T is a tree during the entire process, and the final tree T is a spanning tree of G rooted at r. We call the final tree T a depth-firstsearch (DFS) tree rooted at r.
- During the process, if a vertex v is removed from S, then all edges incident with v have been marked, so v cannot be added into S in the future.
- So Step 2 is executed at most $|V(G)|+|E(G)|+O(1)$ times. We can implement the algorithm so that finding an unmarked edge incident with v can be done in $O(1)$ time. Hence the algorithm runs in time $O(|V(G)|+|E(G)|)$.
- Clearly, during the entire process, the entries of S always form a path in T from r to the last entry of S passing all entries in the order listed.

Like having no back edge is a key feature of every BFS tree, a key feature of every DFS tree is that it has no crossing edge.

Lemma 13 If T is a DFS tree of a connected graph G, then there exists no crossing edge.

Proof. Suppose to the contrary that e is a crossing edge. Let x, y be the ends of e, where x is added into T earlier than y. When x leaves S, e is already marked. Let z be the last entry of S when we mark e. So $z \in\{x, y\}$ and S contains both x and z at this moment. Hence x is an ancestor of z in T. If $z=x$, then e must be added into the tree T, a contradiction. If $z=y$, then since x is an ancestor of $z=y, e$ is a back edge, a contradiction.

