
Lecture notes for Jan 25, 2023
BFS and applications and DFS

Chun-Hung Liu

January 25, 2023

1 Rooted trees

A rooted tree is a tree T with a special vertex r ∈ V (T). The vertex r is
called the root of T .

Let T be a rooted tree with root r.

• For a vertex v ∈ V (T), we say that a vertex u ∈ V (T) is an ancestor
(with respect to (T, r)) of v if u is in the unique path in T from r to v.
Note that every vertex is an ancestor of itself.

• A proper ancestor (with respect to (T, r)) of a vertex v is an ancestor
(with respect to (T, r)) of v distinct from v.

• A vertex u is a descendant (with respect to (T, r)) of v if v is an ancestor
(with respect to (T, r)) of u.

• A proper descendant (with respect to (T, r)) of a vertex v is a descendant
(with respect to (T, r)) of v distinct from v.

• If v is not the root, then the parent of v is the unique proper ancestor
adjacent to v.

• For a vertex v, every vertex that is a proper descendant adjacent to v
is called a child of v.

• Two vertices u, v are incomparable (with respect to (T, r)) if none of
u, v is an ancestor of the other.

1

Let G be a graph. Let T be a spanning tree of G. Let r be a vertex
of G. When treating T as a rooted tree with root r, we say that an edge
e ∈ E(G)− E(T) is

• a back edge if one end of e is a proper ancestor of the other end of e,
and

• a crossing edge if the ends of e are incomparable with respect to (T, r).

2 Distance and breadth-first-search

2.1 Distance in graphs

The length of a path is the number of edges of this path. For a graph G and
vertices u, v of G, we say that a path P in G is a shortest path between u and
v if it is a path between u and v, and no path between u and v is shorter
than P .

Proposition 1 Let G be a graph. Let u, v be vertices of G. If P is a shortest
path between u and v, then for every vertex w in P , the subpath of P between
u and w is a shortest path between u and w.

Proof. If there exists a path Q between u and w shorter than the subpath
of P between u and w, then the union of Q and the subpath of P between
w and v is a walk shorter than P , a contradiction.

Let G be a graph. The distance between two vertices u and v of G,
denoted by dG(u, v), is the length of a shortest path in G between u and v.
(If no such a path exists, the distance is defined to be ∞.)

Proposition 2 If H is a subgraph of G, then for any vertices u, v ∈ V (H) ⊆
V (G), dH(u, v) ≥ dG(u, v).

Proof. Every path between u, v in H is a path in G. So a shortest path
between u, v in H is a path in G whose length is at least the length of a
shortest path between u, v in G.

Note that it is possible dH(u, v) = dG(u, v), and it is possible that dH(u, v) >
dG(u, v).

2

2.2 Breadth-first-search

Breadth-first-search is an algorithm that helps us compute the distance be-
tween two vertices.

==
Breadth-First-Search (BFS)
Input: A connected graph G and a vertex r of G.
Output: A tree rooted at r.
Procedure:

Step 1: Label r as v1. Set i = 1. Set T to be the graph ({r}, ∅). (That is, T is
the graph consisting of the single vertex r and with no edge.)

Step 2: Repeatedly picking one edge e of G incident with vi and do Step 2-1,
until all edges incident with vi have been seen.

Step 2-1: If e has one end in V (T) and one end not in V (T), then adding e
into T and label the end of e not in V (G) as vj, where j is least
positive integer such that no vertex in V (T) has been labelled as
vj.

Step 3: Set i to be i+ 1. Do Step 2, unless i > |V (G)|.

==

Remark:

• It is easy to prove that T is always a tree during the algorithm by
induction on i. In particular, T is a tree when the algorithm terminates.
The final tree T is called a breadth-first-search (BFS) tree rooted at r.

• Note that T is a subgraph of G. Since G is connected, V (T) = V (G).
Hence T is a spanning tree of G.

• BFS runs in time O(|E(G)|) since we visit every edge at most twice.
When G is disconnected, we can run BFS for each component of G
to obtain a spanning forest F in time O(|V (G)|+ |E(G)|), where each
component of F is a BFS tree of a component of G.

3

Now we prove nice properties of a BFS tree. For simplicity, until the
end of this subsection, G, r, T denotes the graph G, vertex r and tree T
mentioned in the BFS algorithm.

Note that during the algorithm, for each vertex v ̸= r, when it is added
into T , it must be added at Step 2-1 and the edge viv is added into T for
some i, so vi is the parent of v in T .

Lemma 3 If v ̸= r and v is a child of u, then dT (r, v) = dT (r, u) + 1.

Proof. Note that there exists a unique path P in T from r to v. According
to the algorithm, the edge {u, v} is in T and hence in P . So P passes through
r, u, v in the order listed. So dT (r, v) = dT (r, u) + 1.

Lemma 4 Let x, y be integers with 2 ≤ x < y. If vx is a child of vα and vy
is a child of vβ, then α ≤ β.

Proof. If α > β, then when we do step 2-1 for i = β, vy must be added into
T , but vx is not added into T until i = α > β, contracting x < y.

Lemma 5 dT (r, v1) ≤ dT (r, v2) ≤ dT (r, v3) ≤ ... ≤ dT (r, vn).

Proof. We shall prove dT (r, v1) ≤ dT (r, v2) ≤ dT (r, v3) ≤ ... ≤ dT (r, vk) by
induction on k. When k = 1, there is nothing to prove. When k = 2, v2 is
a neighbor of v1 = r, so dT (r, v1) = dT (r, r) = 0 < 1 = dT (r, v2). So we may
assume that k ≥ 3 and dT (r, v1) ≤ dT (r, v2) ≤ dT (r, v3) ≤ ... ≤ dT (r, vk−1).

Since k ≥ 3, k − 1 ≥ 2. So vk−1 is a child of vα and vk is a child of vβ for
some α ≤ β by Lemma 4. By the induction hypothesis, dT (r, vα) ≤ dT (r, vβ).
By Lemma 3, dT (r, vk−1) = dT (r, vα) + 1 ≤ dT (r, vβ) + 1 = dT (r, vk). This
proves the lemma.

Lemma 6 For every nonnegative integer j, let Lj = {v ∈ V (G) = V (T) :
dT (v, r) = j}. Then no edge of G has one end in Lα and one end in Lβ for
some integers α, β with β ≥ α + 2. In other words, if xy is an edge of G,
then |dT (r, x)− dT (r, y)| ≤ 1. In particular, there exists no back edge.

Proof. Suppose there exists an edge e of G between a vertex u in Lα and a
vertex v in Lβ for some β ≥ α+2. Since v ∈ Lβ, v is a child of a vertex w in
Lβ−1 by Lemma 3. Since α < β−1, we know dT (r, u) = α < β−1 = dT (r, w).
By Lemma 5, u joins T earlier than w. Since uv ∈ E(G), v should be added
into T before all neighbors of u are seen in the algorithm, a contradiction.

4

Theorem 7 For every vertex v ∈ V (G), dG(r, v) = dT (r, v).

Proof. We shall prove this theorem by induction on dG(r, v).
When dG(r, v) = 0, r = v, so dT (r, v) = 0 = dG(r, v). So we may

assume that dG(r, v) ≥ 1 and dG(r, v
′) = dT (r, v

′) for every vertex v′ with
dG(r, v

′) < dG(r, v).
Note that since every path in T is a path in G, dG(r, v) ≤ dT (r, v). So it

suffices to prove that dG(r, v) ≥ dT (r, v).
Let P be a shortest path in G from r to v. Note that P contains at least

2 vertices since r ̸= v. Let u be the neighbor of v in P . By Proposition 1,
dG(r, v) = dG(r, u) + 1. So dG(r, u) < dG(r, v). By the induction hypothesis,
dG(r, v) = dG(r, u) + 1 = dT (r, u) + 1. By Lemma 6, |dT (r, u)− dT (r, v)| ≤ 1,
so dT (r, v) ≤ dT (r, u) + 1 = dG(r, v). This proves the theorem.

2.3 Applications of BFS

Corollary 8 Let G be a connected graph. Let r be a vertex. Then in linear
time, we can compute dG(r, v) and a shortest path in G from r to v for all
vertices v of G at once.

Proof. Find a BFS tree rooted at r. We can compute dT (r, v) for every
v ∈ V (G) during BFS. And dG(r, v) = dT (r, v) by Theorem 7. Moreover, the
unique path in T from r to v is a shortest path in G from r to v.

The diameter of a graph G is the largest distance between two vertices in
G. That is, the diameter of G equals supu,v∈V (G) dG(u, v). Note that if G is
connected, then this supremum is actually a maximum; if G is disconnected,
then the diameter is infinite.

Corollary 9 The diameter of an input graph G can be computed in time
O(|V (G)|2 + |V (G)||E(G)|).

Proof. For each vertex r of G, we can compute supv∈V (G) dG(r, v) in linear
time by Corollary 8. So supu,v∈V (G) dG(u, v) = supu∈V (G) supv∈V (G) dG(u, v)
can be computed inO(|V (G)|·(|V (G)|+|E(G)|)) = O(|V (G)|2+|V (G)||E(G)|).

A graph G is bipartite if V (G) can be partitioned into two (possibly
empty) sets A,B such that every edge of G has one end in A and one end in
B. Such a partition {A,B} is called a bipartition of G. Note that a graph is
bipartite if and only if it is 2-colorable.

5

Corollary 10 Given the input graph G, we can either find a bipartition of
G or an odd cycle in G in linear time.

Proof. Find a BFS tree T rooted at an arbitrary vertex r. Let A = {v ∈
V (G) : dT (r, v) is even} and let B = {v ∈ V (G) : dT (r, v) is odd}.

We can check whether there is an edge of G with both ends in A or with
both ends in B in linear time. If there exists no such an edge, then {A,B}
is a bipartition of G and we output it.

So we may assume that there exists an edge e with both ends in C for
some C ∈ {A,B}, say e = uv. For x ∈ {u, v}, let Px be the unique path
in T from r to x. Note that Pu ∩ Pv is a path R in T from r to a common
ancestor w of u and v. And Pu ∪ Pv is the union of R and the unique
path P in T from u to v, where P and R are edge-disjoint, so |E(P)| =
|E(Pu)| + |E(Pv)| − 2|E(R)|. Since both u, v are in C, |E(Pu)| + |E(Pv)| is
even, so |E(P)| = |E(Pu)|+ |E(Pv)| − 2|E(R)| is even. Therefore, the cycle
P + uv is an odd cycle O, and we output O. Note that Pu, Pv, w,R, P can
be found in linear time. So O can be found in linear time.

Corollary 11 A graph G is bipartite if and only if G does not contain an
odd cycle (as a subgraph).

Proof. (⇒) Since every odd cycle is not bipartite, no bipartite graph can
contain an odd cycle.

(⇐) If G has no odd cycle, then the algorithm in Corollary 10 must find
a bipartition of G, so G is bipartite.

Corollary 12 Given a graph G, in linear time, we can find a bipartition of
G to correctly conclude that G is bipartite if G is bipartite, and output an odd
cycle in G to correctly conclude that G is not bipartite if G is non-bipartite.
In particular, 2-COLORABILITY is in P.

3 Depth-first-search

==
Depth-First-Search (DFS)
Input: A connected graph G and a vertex r of G.
Output: A tree rooted at r.
Procedure:

6

Step 1: Set T to be the rooted tree ({r}, ∅) rooted at r. Set all edges of G as
“unmarked”. Set S to be the sequence (r).

Step 2: Terminate the algorithm if S has no entry. Say the last entry of S is
v. If there exists no unmarked edge of G incident with v, then remove
v from S and repeat Step 2. Otherwise, pick an unmarked edge e of G
incident with v and mark e. If e is not a loop and the end u of e other
than v is not in V (T), then add e into T , add u into S as the last entry,
and repeat Step 2; otherwise, just repeat Step 2.

==
Remark:

• Clearly, T is a tree during the entire process, and the final tree T is a
spanning tree of G rooted at r. We call the final tree T a depth-first-
search (DFS) tree rooted at r.

• During the process, if a vertex v is removed from S, then all edges
incident with v have been marked, so v cannot be added into S in the
future.

• So Step 2 is executed at most |V (G)| + |E(G)| + O(1) times. We can
implement the algorithm so that finding an unmarked edge incident
with v can be done in O(1) time. Hence the algorithm runs in time
O(|V (G)|+ |E(G)|).

• Clearly, during the entire process, the entries of S always form a path
in T from r to the last entry of S passing all entries in the order listed.

Like having no back edge is a key feature of every BFS tree, a key feature
of every DFS tree is that it has no crossing edge.

Lemma 13 If T is a DFS tree of a connected graph G, then there exists no
crossing edge.

Proof. Suppose to the contrary that e is a crossing edge. Let x, y be the
ends of e, where x is added into T earlier than y. When x leaves S, e is
already marked. Let z be the last entry of S when we mark e. So z ∈ {x, y}
and S contains both x and z at this moment. Hence x is an ancestor of z in
T . If z = x, then e must be added into the tree T , a contradiction. If z = y,
then since x is an ancestor of z = y, e is a back edge, a contradiction.

7

