Lecture notes for Jan 25, 2023
BES and applications and DF'S

Chun-Hung Liu
January 25, 2023

1 Rooted trees

A rooted tree is a tree T with a special vertex r € V(T'). The vertex r is
called the root of 7'
Let T' be a rooted tree with root r.

e For a vertex v € V(T'), we say that a vertex u € V(T) is an ancestor
(with respect to (T',r)) of v if w is in the unique path in 7" from r to v.
Note that every vertex is an ancestor of itself.

e A proper ancestor (with respect to (T,r)) of a vertex v is an ancestor
(with respect to (T, 7)) of v distinct from v.

e A vertex u is a descendant (with respect to (T, r)) of v if v is an ancestor
(with respect to (7', 7)) of w.

o A proper descendant (with respect to (T, 1)) of a vertex v is a descendant
(with respect to (T, 7)) of v distinct from v.

e If v is not the root, then the parent of v is the unique proper ancestor
adjacent to v.

e For a vertex v, every vertex that is a proper descendant adjacent to v
is called a child of v.

e Two vertices u,v are incomparable (with respect to (T,r)) if none of
u, v is an ancestor of the other.

Let G be a graph. Let T" be a spanning tree of G. Let r be a vertex

of G. When treating T" as a rooted tree with root r, we say that an edge
e€ E(G)— E(T) is

e a back edge if one end of e is a proper ancestor of the other end of e,
and

e a crossing edge if the ends of e are incomparable with respect to (7', 7).

2 Distance and breadth-first-search

2.1 Distance in graphs

The length of a path is the number of edges of this path. For a graph G and
vertices u, v of GG, we say that a path P in GG is a shortest path between u and

v if it is a path between u and v, and no path between u and v is shorter
than P.

Proposition 1 Let G be a graph. Let u,v be vertices of G. If P is a shortest
path between u and v, then for every vertex w in P, the subpath of P between
u and w is a shortest path between u and w.

Proof. If there exists a path) between v and w shorter than the subpath
of P between u and w, then the union of () and the subpath of P between
w and v is a walk shorter than P, a contradiction. m

Let G be a graph. The distance between two vertices u and v of G,
denoted by dg(u,v), is the length of a shortest path in G between u and v.
(If no such a path exists, the distance is defined to be 00.)

Proposition 2 If H is a subgraph of G, then for any vertices u,v € V(H) C
V(G), du(u,v) > dg(u,v).

Proof. Every path between u,v in H is a path in G. So a shortest path
between u,v in H is a path in G whose length is at least the length of a
shortest path between u,v in G. =

Note that it is possible dy (u, v) = dg(u, v), and it is possible that dy (u, v) >
dg(u,v).

2.2 Breadth-first-search

Breadth-first-search is an algorithm that helps us compute the distance be-
tween two vertices.

Breadth-First-Search (BFS)

Input: A connected graph G and a vertex r of G.
Output: A tree rooted at r.

Procedure:

Step 1: Label r as v1. Set i = 1. Set T to be the graph ({r},0). (That is, T is
the graph consisting of the single vertex r and with no edge.)

Step 2: Repeatedly picking one edge e of GG incident with v; and do Step 2-1,
until all edges incident with v; have been seen.

Step 2-1: If e has one end in V(7') and one end not in V(7'), then adding e
into 7" and label the end of e not in V(G) as v;, where j is least
positive integer such that no vertex in V' (7') has been labelled as
Vj.

Step 3: Set i to be i + 1. Do Step 2, unless i > |V(G)].

Remark:

e [t is easy to prove that T is always a tree during the algorithm by
induction on ¢. In particular, 7" is a tree when the algorithm terminates.
The final tree T is called a breadth-first-search (BFS) tree rooted at r.

e Note that 7" is a subgraph of G. Since G is connected, V(T') = V(G).
Hence 7' is a spanning tree of G.

e BFS runs in time O(|E(G)|) since we visit every edge at most twice.
When G is disconnected, we can run BFS for each component of G
to obtain a spanning forest F' in time O(|V(G)| + |E(G)|), where each
component of F'is a BF'S tree of a component of G.

Now we prove nice properties of a BFS tree. For simplicity, until the
end of this subsection, GG, r, T" denotes the graph G, vertex r and tree T
mentioned in the BFS algorithm.

Note that during the algorithm, for each vertex v # r, when it is added
into 7', it must be added at Step 2-1 and the edge v;v is added into T for
some 17, so v; is the parent of v in T

Lemma 3 Ifv #r and v is a child of u, then dr(r,v) = dr(r,u) + 1.

Proof. Note that there exists a unique path P in T from r to v. According
to the algorithm, the edge {u, v} is in 7" and hence in P. So P passes through
r,u,v in the order listed. So dr(r,v) =dp(r,u) +1. =

Lemma 4 Let z,y be integers with 2 < x < y. If vy is a child of v, and v,
is a child of v, then a < 3.

Proof. If o > (3, then when we do step 2-1 for ¢ = 3, v, must be added into
T, but v, is not added into T" until i = a > 3, contracting r < y. m

Lemma 5 dp(r,v1) < dp(r,ve) < dp(r,vs) < ... <dp(r,v,).

Proof. We shall prove dr(r,v1) < dp(r,ve) < dp(r,vs) < ... < dp(r,v) by
induction on k. When k = 1, there is nothing to prove. When k = 2, v, is
a neighbor of vy = r, so dr(r,v1) = dr(r,r) =0 < 1 = dr(r,v5). So we may
assume that k > 3 and dr(r,v1) < dr(r,ve) < dp(r,vs) < ... < dp(r,ve—1).

Since k > 3, k —1 > 2. So v;_; is a child of v, and vy, is a child of vg for
some o < 3 by Lemma 4. By the induction hypothesis, dr(r, v,) < dr(r, vgs).
By Lemma 3, dr(r,vz_1) = dr(r,va) + 1 < dp(r,vs) + 1 = dp(r,v;). This
proves the lemma. =

Lemma 6 For every nonnegative integer j, let L; = {v € V(G) = V(T) :
dr(v,r) = j}. Then no edge of G has one end in L, and one end in Lg for
some integers a, B with B > « + 2. In other words, if xy is an edge of G,
then |dr(r,x) — dr(r,y)| < 1. In particular, there exists no back edge.

Proof. Suppose there exists an edge e of G between a vertex v in L, and a
vertex v in Lg for some > a4 2. Since v € Lg, v is a child of a vertex w in
Ls_1 by Lemma 3. Since a < f—1, we know dr(r,u) = o < f—1 = dp(r,w).
By Lemma 5, u joins T earlier than w. Since uv € F(G), v should be added
into T" before all neighbors of u are seen in the algorithm, a contradiction.
]

Theorem 7 For every vertex v € V(G), dg(r,v) = dr(r,v).

Proof. We shall prove this theorem by induction on dg(r,v).

When dg(r,v) = 0, r = v, so dr(r,v) = 0 = dg(r,v). So we may
assume that dg(r,v) > 1 and dg(r,v") = dp(r,v’) for every vertex v' with
dg(r,v") < dg(r,v).

Note that since every path in T is a path in G, dg(r,v) < dp(r,v). So it
suffices to prove that dg(r,v) > dp(r,v).

Let P be a shortest path in G from r to v. Note that P contains at least
2 vertices since r # v. Let u be the neighbor of v in P. By Proposition 1,
dg(r,v) = dg(r,u) + 1. So dg(r,u) < dg(r,v). By the induction hypothesis,
dg(r,v) = dg(r,u) + 1 = dp(r,u) + 1. By Lemma 6, |dp(r,u) — dp(r,v)| < 1,
so dr(r,v) < dr(r,u) +1 = dg(r,v). This proves the theorem. m

2.3 Applications of BFS

Corollary 8 Let G be a connected graph. Let r be a vertex. Then in linear
time, we can compute dg(r,v) and a shortest path in G from r to v for all
vertices v of G at once.

Proof. Find a BFS tree rooted at r. We can compute dr(r,v) for every
v € V(G) during BFS. And dg(r,v) = dr(r,v) by Theorem 7. Moreover, the
unique path in 7" from r to v is a shortest path in G from r to v. =

The diameter of a graph G is the largest distance between two vertices in
G. That is, the diameter of G equals sup,, ey () da(u,v). Note that if G is
connected, then this supremum is actually a maximum; if G is disconnected,
then the diameter is infinite.

Corollary 9 The diameter of an input graph G can be computed in time
O([V(G)P? + V(GIE(G)]).-

Proof. For each vertex r of GG, we can compute sup,cy () de(r, v) in linear
time by Corollary 8. So sup, ,ev(q) da (U, v) = Sup,ey(q) SUPev (q) da (U, v)
can be computed in O(|V(G)|-([V(G)|+|E(G)])) = O(|V(G)*+|V (G)|| E(G)]).

A graph G is bipartite if V(G) can be partitioned into two (possibly
empty) sets A, B such that every edge of G has one end in A and one end in
B. Such a partition {A, B} is called a bipartition of G. Note that a graph is
bipartite if and only if it is 2-colorable.

5

Corollary 10 Given the input graph G, we can either find a bipartition of
G or an odd cycle in G in linear time.

Proof. Find a BFS tree T rooted at an arbitrary vertex r. Let A = {v €
V(G) : dr(r,v) is even} and let B = {v € V(G) : dr(r,v) is odd}.

We can check whether there is an edge of G with both ends in A or with
both ends in B in linear time. If there exists no such an edge, then {A, B}
is a bipartition of G and we output it.

So we may assume that there exists an edge e with both ends in C' for
some C' € {A, B}, say e = uv. For x € {u,v}, let P, be the unique path
in T from r to x. Note that P, N P, is a path R in T from r to a common
ancestor w of v and v. And P, U P, is the union of R and the unique
path P in T from u to v, where P and R are edge-disjoint, so |E(P)| =
|E(P,)| + |E(P,)| — 2|E(R)|. Since both u,v are in C, |E(P,)|+ |E(P,)] is
even, so |E(P)| = |E(P,)| + |E(P,)| — 2|E(R)| is even. Therefore, the cycle
P + wv is an odd cycle O, and we output O. Note that P,, P,,w, R, P can
be found in linear time. So O can be found in linear time. =

Corollary 11 A graph G is bipartite if and only if G does not contain an
odd cycle (as a subgraph).

Proof. (=) Since every odd cycle is not bipartite, no bipartite graph can
contain an odd cycle.

(<) If G has no odd cycle, then the algorithm in Corollary 10 must find
a bipartition of GG, so GG is bipartite. m

Corollary 12 Given a graph G, in linear time, we can find a bipartition of
G to correctly conclude that G is bipartite if G is bipartite, and output an odd
cycle in G to correctly conclude that G is not bipartite if G is non-bipartite.
In particular, 2-COLORABILITY 1is in P.

3 Depth-first-search

Depth-First-Search (DFS)

Input: A connected graph GG and a vertex r of G.
Output: A tree rooted at r.

Procedure:

Step 1:

Step 2:

Set T to be the rooted tree ({r},0) rooted at r. Set all edges of G as
“unmarked”. Set S to be the sequence (r).

Terminate the algorithm if S has no entry. Say the last entry of S is
v. If there exists no unmarked edge of G incident with v, then remove
v from S and repeat Step 2. Otherwise, pick an unmarked edge e of G
incident with v and mark e. If e is not a loop and the end u of e other
than v is not in V(7T'), then add e into 7', add w into S as the last entry,
and repeat Step 2; otherwise, just repeat Step 2.

Remark:

Clearly, T' is a tree during the entire process, and the final tree 7" is a
spanning tree of GG rooted at r. We call the final tree T" a depth-first-
search (DFS) tree rooted at r.

During the process, if a vertex v is removed from S, then all edges
incident with v have been marked, so v cannot be added into .S in the
future.

So Step 2 is executed at most |V(G)| + |E(G)| + O(1) times. We can
implement the algorithm so that finding an unmarked edge incident
with v can be done in O(1) time. Hence the algorithm runs in time

O(V(&)| + |E(G)]).

Clearly, during the entire process, the entries of S always form a path
in T" from r to the last entry of S passing all entries in the order listed.

Like having no back edge is a key feature of every BFS tree, a key feature
of every DFS tree is that it has no crossing edge.

Lemma 13 IfT is a DFS tree of a connected graph G, then there exists no
crossing edge.

Proof. Suppose to the contrary that e is a crossing edge. Let x,y be the
ends of e, where x is added into T earlier than y. When z leaves S, e is
already marked. Let z be the last entry of S when we mark e. So z € {x,y}
and S contains both z and z at this moment. Hence x is an ancestor of z in
T. If z =z, then e must be added into the tree T', a contradiction. If z =y,
then since z is an ancestor of z = y, e is a back edge, a contradiction. m

7

