
Lecture notes for Jan 30, 2023
Finding blocks

Chun-Hung Liu

February 5, 2023

Let G be a graph. A cut-vertex of G is a vertex v of G such that G − v
has more components than G. A block of G is a maximal connected subgraph
H of G with no cut-vertex of H. Note that every block of G is an induced
subgraph of G. Also note that every block of G either is an isolated vertex
of G, or is a maximal 2-connected subgraph of G, or consists of an edge
that is not contained in any 2-connected subgraph of G. (Recall that a
graph is 2-connected if it contains at least three vertices and cannot be made
disconnected by deleting at most one vertex.) Usually problems on a graph
can be reduced to its blocks by inductive arguments.

The block structure (or block tree) of a connected graph G is a tree T that
has a bipartition {A,B} such that there exist a bijection f from A to the set
of cut-vertices of G and a bijection g from B to the set of blocks of G such
that for every edge ab of T with a ∈ A and b ∈ B, f(a) is contained in g(b).
The existence of the block structure of a connected graph can be proved in
various ways, and it can be constructed by using depth-first-search.

Now we show how to modify DFS to find all blocks and cut-vertices.
Note that loops and parallel edges play no rule in the definition of blocks,
cut-vertices and block structure. So we may assume that graphs are simple
in this subsection for simplicity.
==========================================
An algorithm for finding all blocks
Input: A connected simple graph G with |V (G)| ≥ 2.
Output: The set of all blocks of G.
Procedure:

Step 0: Pick a vertex r of V (G).

1



Step 1: Set T to be the rooted tree ({r}, ∅) rooted at r. Set all edges of G as
“unmarked”. Set S to be the sequence (r). Set Br = {r} and B = ∅.
Set f(r) = 1 and g(r) = 1.

(It is helpful to keep in mind that S and T will be constructed in the
same say as they were constructed in DFS, and the following statements
hold during the entire process:

(i) For every vertex v of G, once f(v) is defined, the value f(v) will
never be changed; but g(v) might be frequently updated.

(ii) f is a bijection from the current V (T ) to [|V (T )|] indicating the
ordering of the vertices of G added into T .

(iii) g is the function with domain V (T ) such that if v is the last entry
of the current S, then either

∗ g(v) = f(v) and no back edge for the current tree T incident
with v is marked, or

∗ g(v) equals the smallest i satisfying that there exists a back
edge for the current tree T between a descendant of v in the
current T and the vertex u with f(u) = i, and this back edge
is marked.

(iv) For every vertex v of G, all vertices in the current Bv are descen-
dants of v in the current tree T .

We will prove that the algorithm really preserves the above properties
later.)

Step 2: Terminate the algorithm and output B if S has no entry. So we may
assume that S is non-empty. Say the last entry of S is v. If there exists
an unmarked edge of G incident with v, then do Step 2-1; otherwise,
do Step 2-2.

Step 2-1 : Pick an unmarked edge e of G incident with v and mark e. Let
u be the end of e other than v.

∗ If u ̸∈ V (T ), then add e into T , add u into S as the last entry,
set Bu = {u}, define f(u) to be the minimum positive integer
that is not in the image of f , define g(u) = f(u), and then
repeat Step 2.

2



∗ If u ∈ V (T ), then redefine g(v) to be min{g(v), f(u)}, and
then repeat Step 2.

Step 2-2: ∗ If v = r, then remove v from S and repeat Step 2.

∗ Otherwise, let p be the parent of v in T .

· If g(v) = f(v), then add {v, p} into B, and then remove v
from S and repeat Step 2.

· If g(v) = f(p), then add Bv∪{p} into B, and then remove
v from S and repeat Step 2.

· If g(v) < f(p), then set Bp = Bp ∪ Bv, redefine g(p) to
be min{g(p), g(v)}, and then remove v from S and repeat
Step 2.
(Note that f(v) ̸= g(v) > f(p) is possible due to (ii), (iii)
and the known fact that there is no crossing edge for a
DFS tree T .)

==========================================

Now we prove the correctness of this algorithm. Clearly, properties (i),
(ii) and (iv) hold during the entire process.

Lemma 1 Property (iii) holds during the entire process.

Proof. Let v be the currently last entry in S. If v is just added into S, then
g(v) = f(v), and no back edge incident with v is marked. In particular, (iii)
holds at the end of Step 1 and holds at the round of executing Step 2 when
v is just added into S. So now we may assume that we are at the round of
executing Step 2 when v is already in S in the previous round.

Assume that Step 2-1 is executed in this round. Let u be the correspond-
ing vertex mentioned in Step 2-1. If u ̸∈ V (T ), then u becomes the last
entry and property (iii) holds. So we may assume u ∈ V (T ). Then the edge
e = uv is a back edge between v and u, and this edge becomes marked at
this moment. Note that v is a descendant of v, so uv is an edge between a
descendant of v and u. So if f(u) < g(v), then g(v) is redefined to be f(u),
as desired; if f(u) ≥ g(v), then g(v) remains unchanged, as desired.

Hence we may assume that Step 2-2 is executed in this round. If v = r,
then S becomes empty and the algorithm stops. So we may assume v ̸= r.
Hence the parent p of v exists. Recall that the entries of S form a path in
T from r to v. So once v is removed, p becomes the last entry of S. Since

3



property (iii) is preserved so far, we know either g(v) = f(v), or g(v) is
the minimum i such that some marked back edge is between a descendant
of v and the vertex z with f(z) = i. For the former or the latter with
g(v) = f(p), the current property (iii) preserved so far implies that there is
no marked back edge between a descendant of v and a proper ancestor of p,
so there is no need to update g(p). For the latter with g(v) ̸= f(p), we know
that g(v) is defined by a marked back edge between a descendant of v (and
hence a descendant of p) and a proper ancestor of p, so g(p) is updated to
be min{g(p), g(v)}, as desired. (Note that the contribution of the back edge
between a descendant of a child c of p other than v and a proper ancestor of
p has been attributed to g(p) when c was removed from S and p became the
last entry of S in the past.) This proves the lemma.

Lemma 2 Let v be a vertex of G. Let B be a block of G containing a proper
ancestor of v in the final T and a proper descendant of v in the final T . Then
the final Bv contains {x ∈ V (B) : x is a descendant of v} and is contained
in B.

Proof. We prove this lemma by induction on |V (T )| − f(v). This lemma
holds when v has no children. In particular, the lemma holds when |V (T )|−
f(v) = 0. So the induction base holds, and we may assume that the lemma
holds when |V (T )| − f(v) is smaller.

Note that every proper descendant of v is a descendant of some child of v.
Let c be an arbitrary child of v such that B contains a descendant of c. Since
B contains a proper ancestor of v and a descendant of c, B − v contains a
path between a proper ancestor of v and a descendant of c. Since there exists
no crossing edge, there exists a back edge ec in B between a descendant of c
and a proper ancestor of v contained in B. Since property (iii) is preserved,
we know g(c) < f(v) when c is about to be removed from S. So the final
Bv contains the final Bc according to the algorithm. Since f(c) > f(v), we
know |V (T )| − f(c) < |V (T )| − f(v). So by the induction hypothesis, if B
contains a proper descendant of c, then the final Bc contains {x ∈ V (B) : x
is a descendant of c} and is contained in B; if B does not contain a proper
descendant of c, then c is the unique vertex in {x ∈ V (B) : x is a descendant
of c}, so the final Bc contains {c} = {x ∈ V (B) : x is a descendant of c}
and is contained in B. Hence the final Bv ⊇ Bc contains {x ∈ V (B) : x is a
descendant of c}, and {x ∈ Bv : x is a descendant of c} ⊆ V (B).

Since c is an arbitrary child of v such that B contains a descendant of c,
we have the final Bv ⊇ {x ∈ V (B) : x is a proper descendant of v}. Since

4



v ∈ Bv by definition, the final Bv contains {x ∈ V (B) : x is a descendant of
v}.

Recall there exists a back edge ec in B between a descendant of c and a
proper ancestor of v contained in B. Since ec and the tree path connecting
the ends of ec forms a cycle containing ec ∈ E(B) and the edge pv, where p
is the parent of v, we know that this cycle is in B. In particular, v ∈ V (B).

Suppose that the final Bv is not contained in B. Since v ∈ V (B) and
property (iv) is preserved, there exists a child c′ of v such that B does not
contain any descendant of c′ but Bc′ is merged into Bv when c′ is about to
be removed from S. It implies that g(c′) < f(v), so property (iii) implies
that there exists a back edge from a descendant of c′ to a proper ancestor of
v. Hence there exists a cycle C containing pvc′ and sharing pv with B, so C
is contained in B, contradicting that B does not contain a descendant of c′.
So the final Bv is contained in B.

Lemma 3 The vertex-set of every block of G is a member of B, and every
member of B is the vertex-set of a block of G.

Proof. We first prove that the vertex-set of every block of G is a member of
B. Let B be a block of G. Since |V (G)| ≥ 2 and G is connected, |V (B)| ≥ 2.
Let v∗ be the vertex with f(v∗) = minx∈V (B) f(x). Since |V (B)| ≥ 2 and
there exists no crossing edge, there exists a unique child c of v∗ such that
B contains a descendant of c. If B contains a proper descendant of c, then
Lemma 2 implies that the final Bc contains {x ∈ V (B) : x is a descendant
of c} = V (B) − {v∗} and is contained in B, and property (iii) implies that
g(c) = f(v∗) when c is about to be removed from S, so V (B) = Bc ∪ {v∗} is
added into B when c is about to be removed from S. If B does not contain a
proper descendant of c, then V (B) = {v∗, c}, so g(c) = f(c) when c is about
to be removed from S, and hence V (B) = {v∗, c} is added into B when c is
about to be removed from S. This proves that the vertex-set of any block of
G is a member of B.

Now we prove that every member of B is the vertex-set of a block of G.
Let M be a member of B. Let v be the vertex of G such that M is added
into B when v is about to be removed from S. By the algorithm, M contains
v and its parent p. Note that there exists a unique block BM containing vp.
So {v, p} ⊆ M ∩V (BM). Since BM is a block of G, V (BM) is a member of B.
Let y be the vertex of G such that V (BM) is added into B when y is about
to be removed from S. If y = v, then M = V (BM) and we are done. So we

5



may assume y ̸= v. Since property (iv) is preserved, every vertex in BM is
either a descendant of y or the parent of y. Since p ∈ M ∩V (BM) ⊆ V (BM),
p is a descendant of the parent of y, so v is a descendant of y. Since y ̸= v, v
is a proper descendant of y. Since property (iv) is preserved, if the final Bp

contains v, then Bp has to be updated to be Bp ∪ Bv when v is about to be
removed from S. But M is added into B when v is about to be removed, so
Bp is not updated at that moment. So v is not in the final Bp. This implies
that v is not in the final Ba for every proper ancestor a of v. In particular,
v is not in the final By. So v ̸∈ V (BM), a contradiction.

Theorem 4 The blocks of the input graph G can be found in linear time.

Proof. By Lemma 3, the vertex-sets of all blocks are output by our algo-
rithm. So we can find all blocks by simply taking the subgraphs induced by
those sets. And it is easy to see that this algorithm runs in linear time.

We remark that the cut-vertices of G are exactly the vertices of G con-
tained in at least two blocks. So we can find all cut-vertices of G in linear
time after we know all the blocks. In fact, it is not hard to see that z is a
cut-vertex of G if and only if either z = r and r has at least two children, or z
equals the vertex p whenever we add a member into B during the algorithm.
Moreover, since we know all the cut-vertices and blocks, we can construct
the block structure of G in linear time.

6


