Lecture notes for Jan 30, 2023
Finding blocks

Chun-Hung Liu
February 5, 2023

Let G be a graph. A cut-vertex of G is a vertex v of G such that G — v
has more components than GG. A block of GG is a maximal connected subgraph
H of G with no cut-vertex of H. Note that every block of G is an induced
subgraph of GG. Also note that every block of G either is an isolated vertex
of G, or is a maximal 2-connected subgraph of G, or consists of an edge
that is not contained in any 2-connected subgraph of G. (Recall that a
graph is 2-connected if it contains at least three vertices and cannot be made
disconnected by deleting at most one vertex.) Usually problems on a graph
can be reduced to its blocks by inductive arguments.

The block structure (or block tree) of a connected graph G is a tree T" that
has a bipartition { A, B} such that there exist a bijection f from A to the set
of cut-vertices of G and a bijection g from B to the set of blocks of G such
that for every edge ab of T' with a € A and b € B, f(a) is contained in g(b).
The existence of the block structure of a connected graph can be proved in
various ways, and it can be constructed by using depth-first-search.

Now we show how to modify DFS to find all blocks and cut-vertices.
Note that loops and parallel edges play no rule in the definition of blocks,
cut-vertices and block structure. So we may assume that graphs are simple
in this subsection for simplicity.

An algorithm for finding all blocks

Input: A connected simple graph G with |[V(G)| > 2.
Output: The set of all blocks of G.

Procedure:

Step 0: Pick a vertex r of V(G).

Step 1:

Step 2:

Set T to be the rooted tree ({r},0) rooted at r. Set all edges of G as
“unmarked”. Set S to be the sequence (r). Set B, = {r} and B = 0.
Set f(r) =1 and g(r) = 1.

(It is helpful to keep in mind that S and 7" will be constructed in the
same say as they were constructed in DFS, and the following statements
hold during the entire process:

(i) For every vertex v of G, once f(v) is defined, the value f(v) will
never be changed; but g(v) might be frequently updated.

(ii) f is a bijection from the current V(7T) to [|V(T)|] indicating the
ordering of the vertices of G added into 7'

(iii) g is the function with domain V(7T') such that if v is the last entry
of the current S, then either

x g(v) = f(v) and no back edge for the current tree 7" incident
with v is marked, or

* g(v) equals the smallest 7 satisfying that there exists a back
edge for the current tree T" between a descendant of v in the
current 7" and the vertex u with f(u) = ¢, and this back edge
is marked.

(iv) For every vertex v of G, all vertices in the current B, are descen-
dants of v in the current tree 7.

We will prove that the algorithm really preserves the above properties
later.)

Terminate the algorithm and output B if S has no entry. So we may
assume that S is non-empty. Say the last entry of S is v. If there exists
an unmarked edge of G incident with v, then do Step 2-1; otherwise,
do Step 2-2.

Step 2-1 : Pick an unmarked edge e of G incident with v and mark e. Let

u be the end of e other than v.

x If u g V(T), then add e into T, add w into S as the last entry,
set B, = {u}, define f(u) to be the minimum positive integer
that is not in the image of f, define g(u) = f(u), and then
repeat Step 2.

x If uw € V(T), then redefine g(v) to be min{g(v), f(u)}, and
then repeat Step 2.

Step 2-2: x If v = r, then remove v from S and repeat Step 2.
x Otherwise, let p be the parent of v in T

- If g(v) = f(v), then add {v, p} into B, and then remove v
from S and repeat Step 2.

- If g(v) = f(p), then add B, U{p} into B, and then remove
v from S and repeat Step 2.

- If g(v) < f(p), then set B, = B, U B,, redefine g(p) to
be min{g(p), g(v)}, and then remove v from S and repeat
Step 2.

(Note that f(v) # g(v) > f(p) is possible due to (ii), (iii)
and the known fact that there is no crossing edge for a
DFS tree T'.)

Now we prove the correctness of this algorithm. Clearly, properties (i),
(ii) and (iv) hold during the entire process.

Lemma 1 Property (iii) holds during the entire process.

Proof. Let v be the currently last entry in S. If v is just added into S, then
g(v) = f(v), and no back edge incident with v is marked. In particular, (iii)
holds at the end of Step 1 and holds at the round of executing Step 2 when
v is just added into S. So now we may assume that we are at the round of
executing Step 2 when v is already in .S in the previous round.

Assume that Step 2-1 is executed in this round. Let u be the correspond-
ing vertex mentioned in Step 2-1. If uw ¢ V(T'), then u becomes the last
entry and property (iii) holds. So we may assume u € V(7). Then the edge
e = uv is a back edge between v and wu, and this edge becomes marked at
this moment. Note that v is a descendant of v, so wv is an edge between a
descendant of v and w. So if f(u) < g(v), then g(v) is redefined to be f(u),
as desired; if f(u) > g(v), then g(v) remains unchanged, as desired.

Hence we may assume that Step 2-2 is executed in this round. If v = r,
then S becomes empty and the algorithm stops. So we may assume v # r.
Hence the parent p of v exists. Recall that the entries of S form a path in
T from r to v. So once v is removed, p becomes the last entry of S. Since

3

property (iii) is preserved so far, we know either g(v) = f(v), or g(v) is
the minimum ¢ such that some marked back edge is between a descendant
of v and the vertex z with f(z) = i. For the former or the latter with
g(v) = f(p), the current property (iii) preserved so far implies that there is
no marked back edge between a descendant of v and a proper ancestor of p,
so there is no need to update g(p). For the latter with g(v) # f(p), we know
that g(v) is defined by a marked back edge between a descendant of v (and
hence a descendant of p) and a proper ancestor of p, so ¢g(p) is updated to
be min{g(p), g(v)}, as desired. (Note that the contribution of the back edge
between a descendant of a child ¢ of p other than v and a proper ancestor of
p has been attributed to g(p) when ¢ was removed from S and p became the
last entry of S in the past.) This proves the lemma. =

Lemma 2 Let v be a vertex of G. Let B be a block of G containing a proper
ancestor of v in the final T' and a proper descendant of v in the final T'. Then
the final B, contains {x € V(B) : x is a descendant of v} and is contained
in B.

Proof. We prove this lemma by induction on |V(T')| — f(v). This lemma
holds when v has no children. In particular, the lemma holds when |V(T')| —
f(v) = 0. So the induction base holds, and we may assume that the lemma
holds when |V(T')| — f(v) is smaller.

Note that every proper descendant of v is a descendant of some child of v.
Let ¢ be an arbitrary child of v such that B contains a descendant of ¢. Since
B contains a proper ancestor of v and a descendant of ¢, B — v contains a
path between a proper ancestor of v and a descendant of ¢. Since there exists
no crossing edge, there exists a back edge e, in B between a descendant of ¢
and a proper ancestor of v contained in B. Since property (iii) is preserved,
we know g(c) < f(v) when c¢ is about to be removed from S. So the final
B, contains the final B, according to the algorithm. Since f(c) > f(v), we
know |V(T)| — f(c) < |[V(T)| — f(v). So by the induction hypothesis, if B
contains a proper descendant of ¢, then the final B, contains {z € V(B) : x
is a descendant of ¢} and is contained in B; if B does not contain a proper
descendant of ¢, then ¢ is the unique vertex in {z € V(B) : z is a descendant
of ¢}, so the final B, contains {c¢} = {z € V(B) : x is a descendant of c}
and is contained in B. Hence the final B, O B, contains {z € V/(B) : z is a
descendant of ¢}, and {z € B, : x is a descendant of ¢} C V(B).

Since c is an arbitrary child of v such that B contains a descendant of c,
we have the final B, O {x € V(B) : = is a proper descendant of v}. Since

4

v € B, by definition, the final B, contains {x € V(B) : x is a descendant of
v}

Recall there exists a back edge e. in B between a descendant of ¢ and a
proper ancestor of v contained in B. Since e. and the tree path connecting
the ends of e. forms a cycle containing e. € F(B) and the edge pv, where p
is the parent of v, we know that this cycle is in B. In particular, v € V(B).

Suppose that the final B, is not contained in B. Since v € V(B) and
property (iv) is preserved, there exists a child ¢ of v such that B does not
contain any descendant of ¢’ but B. is merged into B, when ¢ is about to
be removed from S. It implies that g(¢’) < f(v), so property (iii) implies
that there exists a back edge from a descendant of ¢’ to a proper ancestor of
v. Hence there exists a cycle C containing pvc’ and sharing pv with B, so C
is contained in B, contradicting that B does not contain a descendant of ¢'.
So the final B, is contained in B. =

Lemma 3 The vertez-set of every block of G is a member of B, and every
member of B is the vertex-set of a block of G.

Proof. We first prove that the vertex-set of every block of G is a member of
B. Let B be a block of G. Since |V(G)| > 2 and G is connected, |V (B)| > 2.
Let v* be the vertex with f(v*) = mingey(p) f(x). Since [V(B)| > 2 and
there exists no crossing edge, there exists a unique child ¢ of v* such that
B contains a descendant of ¢. If B contains a proper descendant of ¢, then
Lemma 2 implies that the final B, contains {x € V(B) : x is a descendant
of ¢} = V(B) — {v*} and is contained in B, and property (iii) implies that
g(c) = f(v*) when ¢ is about to be removed from S, so V(B) = B. U {v*} is
added into B when c is about to be removed from S. If B does not contain a
proper descendant of ¢, then V(B) = {v*, ¢}, so g(c¢) = f(c) when ¢ is about
to be removed from S, and hence V(B) = {v*, ¢} is added into B when c is
about to be removed from S. This proves that the vertex-set of any block of
G is a member of B.

Now we prove that every member of B is the vertex-set of a block of G.
Let M be a member of B. Let v be the vertex of G such that M is added
into B when v is about to be removed from S. By the algorithm, M contains
v and its parent p. Note that there exists a unique block B, containing vp.
So {v,p} € M NV (Byy). Since By, is a block of G, V(Byy) is a member of B.
Let y be the vertex of G such that V(B),) is added into B when y is about
to be removed from S. If y = v, then M = V(B),) and we are done. So we

may assume y # v. Since property (iv) is preserved, every vertex in Bj; is
either a descendant of y or the parent of y. Since p € M NV (By) C V(Buy),
p is a descendant of the parent of y, so v is a descendant of y. Since y # v, v
is a proper descendant of y. Since property (iv) is preserved, if the final B,
contains v, then B, has to be updated to be B, U B, when v is about to be
removed from S. But M is added into B when v is about to be removed, so
B, is not updated at that moment. So v is not in the final B,. This implies
that v is not in the final B, for every proper ancestor a of v. In particular,
v is not in the final B,. So v € V(By), a contradiction. m

Theorem 4 The blocks of the input graph G can be found in linear time.

Proof. By Lemma 3, the vertex-sets of all blocks are output by our algo-
rithm. So we can find all blocks by simply taking the subgraphs induced by
those sets. And it is easy to see that this algorithm runs in linear time. m

We remark that the cut-vertices of G are exactly the vertices of G' con-
tained in at least two blocks. So we can find all cut-vertices of G in linear
time after we know all the blocks. In fact, it is not hard to see that z is a
cut-vertex of GG if and only if either 2z = r and r has at least two children, or z
equals the vertex p whenever we add a member into B during the algorithm.
Moreover, since we know all the cut-vertices and blocks, we can construct
the block structure of G in linear time.

