
Lecture notes for Feb 6, 2023
Finding blocks and introduction of strongly

connected components of digraphs

Chun-Hung Liu

February 6, 2023

1 Finding blocks (same in the notes for Jan

30)

We go through the details of the following algorithm and the proof of cor-
rectness of the algorithm today. Detailed proofs can be found in the notes.
==
An algorithm for finding all blocks
Input: A connected simple graph G with |V (G)| ≥ 2.
Output: The set of all blocks of G.
Procedure:

Step 0: Pick a vertex r of V (G).

Step 1: Set T to be the rooted tree ({r}, ∅) rooted at r. Set all edges of G as
“unmarked”. Set S to be the sequence (r). Set Br = {r} and B = ∅.
Set f(r) = 1 and g(r) = 1.

(It is helpful to keep in mind that S and T will be constructed in the
same say as they were constructed in DFS, and the following statements
hold during the entire process:

(i) For every vertex v of G, once f(v) is defined, the value f(v) will
never be changed; but g(v) might be frequently updated.

1

(ii) f is a bijection from the current V (T) to [|V (T)|] indicating the
ordering of the vertices of G added into T .

(iii) g is the function with domain V (T) such that if v is the last entry
of the current S, then either

* g(v) = f(v) and no back edge for the current tree T incident
with v is marked, or

* g(v) equals the smallest i satisfying that there exists a back
edge for the current tree T between a descendant of v in the
current T and the vertex u with f(u) = i, and this back edge
is marked.

(iv) For every vertex v of G, all vertices in the current Bv are descen-
dants of v in the current tree T .

We will prove that the algorithm really preserves the above properties
later.)

Step 2: Terminate the algorithm and output B if S has no entry. So we may
assume that S is non-empty. Say the last entry of S is v. If there exists
an unmarked edge of G incident with v, then do Step 2-1; otherwise,
do Step 2-2.

Step 2-1 : Pick an unmarked edge e of G incident with v and mark e. Let
u be the end of e other than v.

* If u 6∈ V (T), then add e into T , add u into S as the last entry,
set Bu = {u}, define f(u) to be the minimum positive integer
that is not in the image of f , define g(u) = f(u), and then
repeat Step 2.

* If u ∈ V (T), then redefine g(v) to be min{g(v), f(u)}, and
then repeat Step 2.

Step 2-2: * If v = r, then remove v from S and repeat Step 2.

* Otherwise, let p be the parent of v in T .

· If g(v) = f(v), then add {v, p} into B, and then remove v
from S and repeat Step 2.

· If g(v) = f(p), then add Bv∪{p} into B, and then remove
v from S and repeat Step 2.

2

· If g(v) < f(p), then set Bp = Bp ∪ Bv, redefine g(p) to
be min{g(p), g(v)}, and then remove v from S and repeat
Step 2.
(Note that f(v) 6= g(v) > f(p) is possible due to (ii), (iii)
and the known fact that there is no crossing edge for a
DFS tree T .)

==

Now we prove the correctness of this algorithm. Clearly, properties (i),
(ii) and (iv) hold during the entire process.

Lemma 1 Property (iii) holds during the entire process.

Lemma 2 Let v be a vertex of G. Let B be a block of G containing a proper
ancestor of v in the final T and a proper descendant of v in the final T . Then
the final Bv contains {x ∈ V (B) : x is a descendant of v} and is contained
in B.

Lemma 3 The vertex-set of every block of G is a member of B, and every
member of B is the vertex-set of a block of G.

Theorem 4 The blocks of the input graph G can be found in linear time.

2 Strongly connected components of digraphs

Recall that two vertices u, v are contained in the same component of a graph
G if and only if there exists a path in G between u and v. Since paths have
directions in digraphs, we need a bit more when considering connectivity
of digraphs. A strongly connected component of a digraph D is a maximal
induced subgraph B of D satisfying that for any two vertices x, y in B, there
exist a (directed) path in D from x to y and a (directed) path in D from y
to x. Note that the maximality of B implies that the aforementioned both
directed paths between x and y are also in B.

Proposition 5 Let D be a digraph.

1. {V (M) : M is a strongly connected component} is a partition of D.

3

2. Every directed cycle in D is contained in some strongly connected com-
ponent of D.

3. Every strongly connected component of D containing at least two ver-
tices contains a directed cycle.

Proof. By the maximality in the definition of a strongly connected compo-
nent, every vertex of D is contained in some strongly connected component
of D. Suppose that there exist two distinct strongly connected components
M1,M2 of D share a vertex z. Then the maximality implies that there exist
x ∈ V (M1)− V (M2) and y ∈ V (M2)− V (M1). So there exist a path in M1

from x to z and a path in M2 from z to y, and hence there exists a path in
D from x to y. Similarly, there exists a path in D from y to x. So x, y are
contained in the same strongly connected component of D, a contradiction.
This proves Statement 1.

Statement 2 is obvious.
If M is a strongly connected component of D containing two vertices a

and b, then there exists a closed walk from a to b in D, and the shortest such
walk is a directed cycle C in D containing a and b, so Statements 1 and 2
imply that C (and hence a and b) are contained in M .

A digraph is acyclic if it does not contain a directed cycle. If a digraph
is loopless, then every directed cycle contains at least two vertices. So State-
ments 2 and 3 of Proposition 5 imply the following.

Corollary 6 A loopless digraph is acyclic and only if every its strongly con-
nected component has exactly one vertex.

4

