
Lecture notes for Feb 8, 2023
Finding strongly connected components and

topological ordering of digraphs

Chun-Hung Liu

February 8, 2023

A strongly connected component of a digraph D is a maximal induced
subgraph B of D satisfying that for any two vertices x, y in B, there exist a
directed path in D from x to y and a directed path in D from y to x.

We proved the following two results last time.

Proposition 1 Let D be a digraph.

1. {V (M) : M is a strongly connected component} is a partition of D.

2. Every directed cycle in D is contained in some strongly connected com-
ponent of D.

3. Every strongly connected component of D containing at least two ver-
tices contains a directed cycle.

Corollary 2 A loopless digraph is acyclic if and only if every its strongly
connected component has exactly one vertex.

1 Finding strongly connected components

We can apply DFS to digraph in a very similar way, except that we only
traverse edges from tails to heads. Then the rooted tree constructed in this
way has the property that any tree path between two vertices u, v, where u
is an ancestor of v, is a directed path from u to v. It makes us be able to

1

find all strongly connected components of a digraph in a very similar way as
we find all blocks of a graph.

Before we state the algorithm, we remark that the definition of back edges
with respect to a rooted tree in a digraph is slightly different from the ones
for graphs because of the directions. Let T be a rooted tree in a digraph D.
We say an edge e in E(D) − E(T) is a back edge if the tail of e is a proper
descendant of the head of e. And we say an edge e in E(D) − E(T) is a
forward edge if the head of e is a proper descendant of the tail of e.

Recall that the rooted tree that we will construct by DFS in D has the
property that any tree path between two comparable vertices is a directed
path from the ancestor to the descendant. So every back edge e together
with the tree path connecting the ends of e is a directed cycle C in D, so C
is contained a strongly connected component of D.

Unlike the DFS tree of undirected graphs, it is possible to have an edge
of a digraph between two incomparable vertices in the DFS tree. But such
an edge (x, y) must satisfy that the tail x is added into the tree later than
the head y.

A digraph D is simple if its edge-set is set of ordered pairs of vertices of
D with distinct entries. That is, D has no edge whose tail equals its head,
and D has no two edges that have the same tail and the same head. But two
edges with the same ends but with different directions are allowed.

Now we state the algorithm.

==
An algorithm for finding strongly connected components
Input: A simple digraph D.
Output: The set of the vertex-sets of all strongly connected components of
D.
Procedure:

Step 0: Set all edges and vertices of D as “unmarked”. Set B = ∅.

Step 1: Terminate the algorithm if all vertices of D are marked. Otherwise, do
the following: Pick an unmarked vertex of D and call it r. Set T to be
the rooted tree ({r}, ∅) rooted at r. Set S to be the sequence (r). Set
Br = {r}. Set f(r) to be the minimum positive integer that is not in
the image of f . Set g(r) = f(r).

2

Step 2: If S is empty, then do Step 1. Otherwise, do the following: Say the
last entry of S is v. If there exists an unmarked edge of D with tail v,
then do Step 2-1; otherwise, do Step 2-2.

Step 2-1 : Pick an unmarked edge e of D with tail v. Mark e. Let u be the
head of e.

* If u 6∈ V (T) and u is unmarked, then add e into T , add u
into S as the last entry, set Bu = {u}, define f(u) to be the
minimum positive integer that is not in the image of f , define
g(u) = f(u), and then repeat Step 2.

* If u ∈ V (T), then redefine g(v) to be min{g(v), f(u)}, and
then repeat Step 2.

Step 2-2: * If g(v) = f(v), then mark all vertices in Bv, add Bv into B,
and then remove v from S and repeat Step 2.

* If g(v) < f(v), then v has the parent in T , called the parent p,
and we set Bp = Bp∪Bv, redefine g(p) to be min{g(p), g(v)},
and then remove v from S and repeat Step 2.

==

Lemma 3 The following properties are preserved during the entire process:

1. For every vertex v of G, all vertices in the current Bv are descendants
of v in the current tree T .

2. The marked vertices of D are exactly the vertices contained in members
of B.

Proof. It is straightforward to verify that these properties are preserved.

Lemma 4 Let v be a vertex of D. Let av be the ancestor of v such that
Bav is added into B when av is about to be removed from S, and subject to
this property, av is as far from r as possible. (Note that av exists since r
is a candidate for av.) Then when av is about to be removed from S, v is
contained in Bav and Bav is added into B.

Proof. It is easy to verify this lemma from the description of the algorithm.

3

Lemma 5 B is a partition of V (D).

Proof. By Lemma 4, the union of the members of B contains V (D). Let
v be a vertex of D. Let av be the vertex mentioned in Lemma 4. Then no
proper ancestor x of av satisfies v ∈ Bx since Bav is not merged into Bp′ ,
where p′ is the parent of av. Hence members of B are disjoint by property 1
in Lemma 3. So B is a partition of V (D).

Lemma 6 The following properties are preserved during the entire process:

1. g is the function with domain V (T) such that if v is the last entry of
the current S, then either

� g(v) = f(v) and there exists no marked edge from a descendant of
v in the current tree T to an unmarked vertex u with f(u) < f(v),
or

� g(v) equals the smallest i satisfying that there exists a marked edge
from a descendant of v in the current tree T to an unmarked vertex
u with f(u) = i < f(v).

2. For every vertex v of D with g(v) < f(v), there exists a directed path
in D from v to u, where u is the vertex with f(u) = g(v).

3. There exists no edge of D from
⋃

M∈B M to V (D)−
⋃

M∈B M .

4. For every unmarked vertex v of G with g(v) < f(v), we have that u is
unmarked, where u is the vertex with f(u) = g(v).

Proof. Now we show that property 1 is preserved. Observe that for every
vertex x, x is marked when the proper ancestor ax of x mentioned in Lemma
4 is removed from S. Then it is straightforward to verify that property 1 is
preserved by using this observation and the fact that the entires of S form a
tree path starting at the root.

Property 2 holds by property 1 by considering the edge from a descendant
of v to u and a tree path from v to that descendant. By property 1 and the
DFS ordering, property 3 is preserved.

Now we prove that property 4 is preserved. Suppose to the contrary that
u is marked. Then u is marked when au is removed from S, where au is the
vertex mentioned in Lemma 4. Since v is unmarked, au is not an ancestor

4

of v. In particular, u is not an ancestor of v. Since f(u) = g(v) < f(v),
u was unmarked when v is in S by property 1. So f(au) > f(v). It is a
contradiction since f(au) ≤ f(u) < f(v).

Lemma 7 Let v be a vertex of D such that the final g(v) is smaller than
f(v). Then there exists a directed path in D from v to a proper ancestor of
v.

Proof. Suppose to the contrary that v is a counterexample of this lemma
such that f(v) is as small as possible. Let u be the vertex with f(u) = g(v).
By property 2 of Lemma 6, there exists a directed path in D from v to u.
And by property 4 of Lemma 6, u is marked no earlier than v. Let x be the
vertex of D such that x is marked no earlier than v and there exists a directed
path Pv in D from v to x, and subject to this, f(x) is as small as possible.
Note that x exists since u is a candidate. So f(x) ≤ f(u) = g(v) < f(v).
Since v is a counterexample, x is not an ancestor of v. By the minimality of
f(v), if g(x) < f(x), then there exists a directed path Px in D from x to a
proper ancestor y of x, so there exists a directed path in Pv ∪Px from v to a
vertex y with f(y) < f(x), and y is marked no earlier than x and hence no
earlier than v, contradicting the choice of x. So g(x) = f(x). Since x is not
an ancestor of v and f(x) < f(v), x is marked before v is added into S, a
contradiction.

Lemma 8 Let B be a strongly connected component of D. Then V (B) ⊆M
for some M ∈ B.

Proof. Since B is a partition of V (D) by Lemma 5, it suffices to show that
V (B) only intersects at most one member of B. Suppose to the contrary
that there exist distinct M1,M2 ∈ B with V (B) ∩M1 6= ∅ 6= V (B) ∩M2.
By symmetry, we may assume that M1 is added into B earlier than M2. Let
X be the union of all members of B when M1 is just added into B. Let
Y = V (D) − X. Then M1 ⊆ X and M2 ⊆ Y . And there exists no edge of
D from X to Y by Property 2 in Lemma 6. Since B is a strongly connected
component of D, there exists a directed path P in D from V (B) ∩M1 ⊆ X
to V (B)∩M2 ⊆ Y . Since {X, Y } is a partition of V (D), P contains an edge
from X to Y , a contradiction.

Lemma 9 Let M ∈ B. Then there exists a strongly connected component B
of D with M ⊆ V (B).

5

Proof. It suffices to show that at any moment during the algorithm, for
every v ∈ V (D), Bv is contained in some strongly connected component of
D. And it suffices to show that this property is preserved whenever Bv is
updated to be Bv ∪ Bc when a child c is about to be removed from S. It
only happens when g(c) < f(v), which implies that there exists a directed
path in D from c to a proper ancestor of c by Lemma 7. In particular it
implies that there exists a directed cycle containing the edge (v, c). So v and
c lie in the same strongly connected component B of D. Let Cv and Cc be
the strongly connected component of D containing the current of Bv and Bc,
respectively. Since strongly connected components are pairwise disjoint and
v ∈ Bv ⊆ V (Cv) and c ∈ Bc ⊆ V (Cc), we have Cv = B = Cc. Therefore,
once Bv is updated to Bv ∪ Bc, it is still contained in a strongly connected
component B of D.

Lemma 10 B is the set of vertex-sets of the strongly connected components
of D.

Proof. It immediately follows from Lemmas 8 and 9.

Theorem 11 Given the input digraph D, in linear time, we can find all
strongly connected components of D and order them into C1, C2, ..., Ck such
that for every 1 ≤ i ≤ k, there exists no edge of D from

⋃i
j=1 V (Cj) to

V (D)−
⋃i

j=1 V (Cj).

Proof. By Lemma 10, the output B consists of the vertex-sets of the
strongly connected components of D. And it is easy to see that this al-
gorithm runs in linear time. By taking induced subgraphs of those vertex-
sets, we find all strongly connected components of D in linear time. More-
over, let M1,M2, ...,Mk be the members of B, ordered by the time that they
were added into B. For each i ∈ [k], let Ci be the strongly component of
D with V (Ci) = Mi. Then Property 3 in Lemma 6 implies that for ev-
ery 1 ≤ i ≤ k, there exists no edge of D from

⋃i
j=1Mj =

⋃i
j=1 V (Cj) to

V (D)−
⋃i

j=1Mj = V (D)−
⋃i

j=1 V (Cj).

2 Topological ordering

A topological ordering of a digraph D is an ordering of the vertices v1, v2, ..., v|V (D)|
of D such that for every 1 ≤ i ≤ |V (D)|, every edge of D between {v1, v2, ..., vi}
and {vi+1, vi+2, ..., v|V (D)|} has its tail in {v1, v2, ..., vi}.

6

Proposition 12 Let D be a digraph. If D has a topological ordering, then
D is acyclic.

Proof. Suppose to the contrary that D has a directed cycle C. Let v1, v2, ..., v|V (C)|
be the vertices of C appearing in the topological ordering of D in the order
listed. Since C is a directed cycle, there exists a directed path in C from
{v2, v3, ..., v|V (D)|} to v1. So there exists an edge e of C from {v2, v3, ..., v|V (D)|}
to v1. Hence e is an edge of D from {x ∈ V (D) : v1 ≺ x} to {x ∈ V (D) :
x � v1}, where � is the topological ordering of V (D), a contradiction.

Corollary 13 A loopless digraph has a topological ordering if and only if
it is acyclic. Moreover, given a loopless digraph D, we can find either a
topological ordering of D or a directed cycle in D in linear time.

Proof. Let D be a loopless digraph. We can remove parallel edges from D
to make it simple in linear time. Run the linear time algorithm mentioned in
Theorem 11 to obtain all strongly connected components of D and the cor-
responding ordering. Check the size of each strongly connected components
(which can be done in linear time). If every strongly connected component
contains exactly one vertex, then we obtain a topological ordering of D by
reversing the order of the strongly connected components, which takes linear
time; if some strongly connected component B contains at least two vertices,
then we can find a directed cycle in B by doing DFS in B, which takes linear
time. (Note that if D is acyclic, then Corollary 2 implies that every strongly
connected component of D has exactly one vertex, so there exists a topolog-
ical ordering by the former; together with Proposition 12, we know that D
has a topological ordering if and only if D is acyclic.) Therefore, in linear
time, we can find either a topological ordering of D or a directed cycle in D.

7

