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Recall that we proved the following theorem last time.

Theorem 1 Given the input digraph D, in linear time, we can find all
strongly connected components of D and order them into Cy, Cs, ..., C, such
that for every 1 < i < k, there exists no edge of D from \J;_, V(Cy) to
V(D) = U;2 V().

1 2-SAT

Knowing how to find strongly connected components also helps us to solve
2-SAT.

Corollary 2 2-SAT can be solved in linear time.

Proof. Let f be an instance of 2-SAT. Let x1, xo, ..., ,, be the variables, and
let ¢1, ca, ..., ¢y, be the clauses. Let D be the digraph with V(D) = {z;, ~z; :
i € [n]} and E(D) = {(u,v) : some clause in f is logically equivalent to
—u V v}. Note that |V (D)| = 2n, |E(D)| = 2m, and constructing D takes
time O(n + m).

Use the previous algorithm to find all strongly connected components and
an ordering of them By, By, ..., By, such that for every 1 < i < k, there exists
no edge of D from (J;_, V(B;) to V(D) — U;_, V(B;). This step takes time
O(IV(D)| + |[E(D)]) = O(n +m).

Claim 1: If there exist i € [n] and j € [k] such that {z;, —2;} C V(B,), then
f is a negative instance.



Proof of Claim: Suppose to the contrary that f is satisfiable. Let g be a
truth assignment. By symmetry, we may assume that g(x;) is True. Equiv-
alently, g(—z;) is False. Since z; and —z; are contained in Bj;, there exists
a directed path P in D from z; to —x;. Denote P by x;-y1-ys-...~y-—x; for
some nonnegative integer t. Let yo = z; and y;41 = —x;. By the definition
of E(D), for every 0 < j < t, some clause of f is logically equivalent to
—y; V yj+1. Since yp = x; is assigned to be True and f is satisfiable, y; is
assigned to be True. By induction, we know y; is assigned to be True for all
0 <j <t+ 1. In particular, —x; is assigned to True, a contradiction. [J

Note that we can test whether there exist ¢ € [n| and j € [k] such that
{z;,—x;} C V(B,) in linear time. If it happens, then we conclude that f is
a negative instance, which is correct by Claim 1. So now we may assume
that for every i € [n], z; and —z; are contained in different members of
[B;:j € K]}

For every i € [n], let a; be the member of {x;, ~x;} such that o; € V(B;)
and the element in {x;, ~z;} — {o;} is contained in V(Bj/) for some j < j'.
For every i € [n], let g(x;) be True if oy = z;, and let g(z;) be False if
a; = —z;. (Equivalently, g(a;) is True and g(—qy) is False.) Note that g can
be constructed in linear time.

Claim 2: g is a truth assignment of f.

Proof of Claim: Suppose to the contrary that g is not a truth assignment of
f. So there exists a clause ¢ = §;V 3 such that §; € {x;, ~z;}, 5; € {z;, ~x;},
and ¢(f;) and ¢(B;) are False. By the definition of g, 5; = —a; and §; = —a;.
By the definition of «;, we know that 5, = —q; is contained in B), and o
is contained in B,, for some b; > @;. Similarly, §; = —a; is contained in
By, and «; is contained in B,; for some b; > a;. Since ¢ = 3; V f3;, there
exist an edge from —f3; = o; to ; and an edge from —3; = «; to 3;. By the
ordering for By, By, ..., By, we know a; > b; and a; > b,. But b; > a;, so
a; > bj > a; > b;, contracting b; > a;. U

By Claim 2, we correctly find a truth assignment of f. m

2 Greedy algorithms

A greedy algorithm is an algorithm that repeatedly chooses the “most fa-
vorite” element during the process. For example, BFS is a greedy algorithm
because we construct the tree by repeatedly adding new edges, and at each
time we add an edge, this edge is incident with the “oldest” vertices in the



tree, which is how we define “favorite” in this case. Similarly, DFS is a greedy
algorithm. We will see more examples of greedy algorithms.

2.1 Minimum weighted spanning tree

A weighted graph is a pair (G,w), where G is a graph and w : F(G) — R
is a function. For each edge e of G, we call w(e) the weight of e. Note that
in some context, the weights are on the vertices, and the weights can be a
non-real number. But we focus on real edge-weighted graphs here, unless
otherwise specified.

For a weighted graph (G, w), the weight of a subgraph H, denoted by
w(H), is defined to be 3 p sy w(e). A natural question is to find a spanning
tree with minimum weight.

Kruskal’s algorithm for finding minimum weighted spanning tree
Input: A weighted connected graph (G, w).

Output: A spanning tree 7' of G with w(7") minimum.

Procedure:

Step 1: Sort the edges to obtain an ordering of the edges e, ey, ..., /g of G
so that w(e;) < w(ex) < ... < w(ep@))- Set T to be the spanning
subgraph of G with no edge.

Step 2: For i =1,2,...,|E(G)|, if T + e; is a forest, then add e; into T.

Remark:

e Step 1 takes time O(|E(G)|log |E(G)| + |[V(G)|). Step 2 can be im-
plemented in a sophisticated way so that it runs in time O(|E(G)| -
a(|V(G)])), where « is the inverse Achermann function. So the entire
algorithm runs in time O(|E(G)|log |E(G)| + |V (G)|).

e The proof for the correctness is almost identical to a more general
algorithm for finding minimum weighted base of a matroid. We will
only prove the matroid version.



2.2 Matroids

A matroid M is the pair (E,Z), where E is a set and Z is a set of subsets of
E satisfying the following conditions:

(M1) 0 e

(M2) Every subset of a member of Z is a member of Z. (i.e. if X C Y and
Y €Z,then X € 7.)

(M3) If A,B € T with |A] < |B]J, then there exists z € B — A such that
Au{z} €.

The set E is called the ground set of M. Every member of Z is called an
independent set of M. Every maximal independent set is called a base. For
every subset X of F, the rank of X is the maximum size of an independent
subset of X. The rank of M is the rank of E. Every subset of E that is not
a member of Z is called a dependent set of M. Every minimal dependent set
is called a circusit.

Examples:

e Let I be afield. Let A be a matrix over F' (with finitely many rows and
columns). Let E be the set of column vectors of A. Let Z = {S C E":
the vectors in S are linearly independent}. Then it is easy to verify
(M1)-(M3) by using standard results in linear algebra, so (E,Z) is a
matroid. Every matroid that is isomorphic to such a matroid is called
a representable matroid. Note that each base of (F,Z) is a basis of the
column space of A, and the rank of (E,Z) equals the rank of A.

e Let k be a nonnegative integer. Let E be a set with size at least k. Let
Z={SCE:|S| <k} Itiseasy toseethat (£,7) is a matroid. Such
a matroid is called a wuniform matroid. Note that the rank of (F,Z)
equals k, and every circuit has size k + 1.

e Let G be a graph. Let E = E(G). Let T = {S C E : the graph
(V(G),S) is a forest}. Then (E,Z) is a matroid.

(Proof: (M1) and (M2) obviously hold. So it suffices to prove (M3).
Let A,B € 7 with |A| < |B|. If B contains an edge e between dif-
ferent components of the graph (V(G), A), then A U {e} € Z and



we are done. So we may assume that every edge in B has both
ends in the same component of (V(G),A). Hence every component
of (V(G), B) is a contained in a component of (V(G), A). So the num-
ber of components cg of (V(G),B) is at least the number of com-
ponents ¢4 of (V(G),A). Since (V(G), A) and (V(G), B) are forests,
|A| = |V(G)| —ca > |V(G)| — cg = |B|, a contradiction. [OJ)

Such a matroid is called the cycle matroid of G. Every matroid isomor-
phic to the cycle matroid of a graph is called a graphic matroid. Note
that if G is connected, then bases of (E,Z) are exactly the edge-sets of
spanning trees of G, and the rank equals |V (G)| — 1. And circuits of
(E,Z) are exactly the edge-sets of cycles. Note that not every circuit
has the same size.

Let G be a connected graph. Let F = E(G). Let Z={SCE:G-S
is connected}. Then (E,Z) is a matroid. (Exercise.) Such a matroid is
called a bond matroid. Note that every circuit is a minimal subset of

edges such that its removal makes G disconnected. Such a minimal set
is called a bond of G.

Let D be a digraph. Let X,Y be distinct subsets of V(D). Let Z =
{S C X : there exist |S| disjoint paths from Y to X'}. Then (X,7) is a
matroid. (It can be deduced from some proof of Menger’s theorem. It
will be clear after we discuss the Max-Flow-Min-Cut Theorem.) Such
a matroid is called a gammoid.

Let G be a bipartite graph with a bipartition {A, B}. Let Z ={S C A :
there exists a matching in G saturating S}. Then (A,7) is a matroid
because it is isomorphic to a gammoid. (It is not hard to prove that it
is a matroid directly.) Such a matroid is called a transversal matroid.



