
Lecture notes for Feb 13, 2023
2-SAT, greedy algorithms and matroids

Chun-Hung Liu

February 13, 2023

Recall that we proved the following theorem last time.

Theorem 1 Given the input digraph D, in linear time, we can find all
strongly connected components of D and order them into C1, C2, ..., Ck such
that for every 1 ≤ i ≤ k, there exists no edge of D from

⋃i
j=1 V (Cj) to

V (D)−
⋃i

j=1 V (Cj).

1 2-SAT

Knowing how to find strongly connected components also helps us to solve
2-SAT.

Corollary 2 2-SAT can be solved in linear time.

Proof. Let f be an instance of 2-SAT. Let x1, x2, ..., xn be the variables, and
let c1, c2, ..., cm be the clauses. Let D be the digraph with V (D) = {xi,¬xi :
i ∈ [n]} and E(D) = {(u, v) : some clause in f is logically equivalent to
¬u ∨ v}. Note that |V (D)| = 2n, |E(D)| = 2m, and constructing D takes
time O(n+m).

Use the previous algorithm to find all strongly connected components and
an ordering of them B1, B2, ..., Bk such that for every 1 ≤ i ≤ k, there exists
no edge of D from

⋃i
j=1 V (Bj) to V (D)−

⋃i
j=1 V (Bj). This step takes time

O(|V (D)|+ |E(D)|) = O(n+m).
Claim 1: If there exist i ∈ [n] and j ∈ [k] such that {xi,¬xi} ⊆ V (Bj), then
f is a negative instance.

1

Proof of Claim: Suppose to the contrary that f is satisfiable. Let g be a
truth assignment. By symmetry, we may assume that g(xi) is True. Equiv-
alently, g(¬xi) is False. Since xi and ¬xi are contained in Bj, there exists
a directed path P in D from xi to ¬xi. Denote P by xi-y1-y2-...-yt-¬xi for
some nonnegative integer t. Let y0 = xi and yt+1 = ¬xi. By the definition
of E(D), for every 0 ≤ j ≤ t, some clause of f is logically equivalent to
¬yj ∨ yj+1. Since y0 = xi is assigned to be True and f is satisfiable, y1 is
assigned to be True. By induction, we know yj is assigned to be True for all
0 ≤ j ≤ t+ 1. In particular, ¬xi is assigned to True, a contradiction. �

Note that we can test whether there exist i ∈ [n] and j ∈ [k] such that
{xi,¬xi} ⊆ V (Bj) in linear time. If it happens, then we conclude that f is
a negative instance, which is correct by Claim 1. So now we may assume
that for every i ∈ [n], xi and ¬xi are contained in different members of
{Bj : j ∈ [k]}.

For every i ∈ [n], let αi be the member of {xi,¬xi} such that αi ∈ V (Bj)
and the element in {xi,¬xi} − {αi} is contained in V (Bj′) for some j < j′.
For every i ∈ [n], let g(xi) be True if αi = xi, and let g(xi) be False if
αi = ¬xi. (Equivalently, g(αi) is True and g(¬αi) is False.) Note that g can
be constructed in linear time.
Claim 2: g is a truth assignment of f .
Proof of Claim: Suppose to the contrary that g is not a truth assignment of
f . So there exists a clause c = βi∨βj such that βi ∈ {xi,¬xi}, βj ∈ {xj,¬xj},
and g(βi) and g(βj) are False. By the definition of g, βi = ¬αi and βj = ¬αj.
By the definition of αi, we know that βi = ¬αi is contained in Bbi and αi

is contained in Bai for some bi > ai. Similarly, βj = ¬αj is contained in
Bbj and αj is contained in Baj for some bj > aj. Since c = βi ∨ βj, there
exist an edge from ¬βi = αi to βj and an edge from ¬βj = αj to βi. By the
ordering for B1, B2, ..., Bk, we know ai ≥ bj and aj ≥ bi. But bj > aj, so
ai ≥ bj > aj ≥ bi, contracting bi > ai. �

By Claim 2, we correctly find a truth assignment of f .

2 Greedy algorithms

A greedy algorithm is an algorithm that repeatedly chooses the “most fa-
vorite” element during the process. For example, BFS is a greedy algorithm
because we construct the tree by repeatedly adding new edges, and at each
time we add an edge, this edge is incident with the “oldest” vertices in the

2

tree, which is how we define “favorite” in this case. Similarly, DFS is a greedy
algorithm. We will see more examples of greedy algorithms.

2.1 Minimum weighted spanning tree

A weighted graph is a pair (G,w), where G is a graph and w : E(G) → R
is a function. For each edge e of G, we call w(e) the weight of e. Note that
in some context, the weights are on the vertices, and the weights can be a
non-real number. But we focus on real edge-weighted graphs here, unless
otherwise specified.

For a weighted graph (G,w), the weight of a subgraph H, denoted by
w(H), is defined to be

∑
e∈E(H)w(e). A natural question is to find a spanning

tree with minimum weight.

==
Kruskal’s algorithm for finding minimum weighted spanning tree
Input: A weighted connected graph (G,w).
Output: A spanning tree T of G with w(T) minimum.
Procedure:

Step 1: Sort the edges to obtain an ordering of the edges e1, e2, ..., e|E(G)| of G
so that w(e1) ≤ w(e2) ≤ ... ≤ w(e|E(G)|). Set T to be the spanning
subgraph of G with no edge.

Step 2: For i = 1, 2, ..., |E(G)|, if T + ei is a forest, then add ei into T .

==

Remark:

� Step 1 takes time O(|E(G)| log |E(G)| + |V (G)|). Step 2 can be im-
plemented in a sophisticated way so that it runs in time O(|E(G)| ·
α(|V (G)|)), where α is the inverse Achermann function. So the entire
algorithm runs in time O(|E(G)| log |E(G)|+ |V (G)|).

� The proof for the correctness is almost identical to a more general
algorithm for finding minimum weighted base of a matroid. We will
only prove the matroid version.

3

2.2 Matroids

A matroid M is the pair (E, I), where E is a set and I is a set of subsets of
E satisfying the following conditions:

(M1) ∅ ∈ I.

(M2) Every subset of a member of I is a member of I. (i.e. if X ⊆ Y and
Y ∈ I, then X ∈ I.)

(M3) If A,B ∈ I with |A| < |B|, then there exists x ∈ B − A such that
A ∪ {x} ∈ I.

The set E is called the ground set of M . Every member of I is called an
independent set of M . Every maximal independent set is called a base. For
every subset X of E, the rank of X is the maximum size of an independent
subset of X. The rank of M is the rank of E. Every subset of E that is not
a member of I is called a dependent set of M . Every minimal dependent set
is called a circuit.

Examples:

� Let F be a field. Let A be a matrix over F (with finitely many rows and
columns). Let E be the set of column vectors of A. Let I = {S ⊆ E :
the vectors in S are linearly independent}. Then it is easy to verify
(M1)-(M3) by using standard results in linear algebra, so (E, I) is a
matroid. Every matroid that is isomorphic to such a matroid is called
a representable matroid. Note that each base of (E, I) is a basis of the
column space of A, and the rank of (E, I) equals the rank of A.

� Let k be a nonnegative integer. Let E be a set with size at least k. Let
I = {S ⊆ E : |S| ≤ k}. It is easy to see that (E, I) is a matroid. Such
a matroid is called a uniform matroid. Note that the rank of (E, I)
equals k, and every circuit has size k + 1.

� Let G be a graph. Let E = E(G). Let I = {S ⊆ E : the graph
(V (G), S) is a forest}. Then (E, I) is a matroid.

(Proof: (M1) and (M2) obviously hold. So it suffices to prove (M3).
Let A,B ∈ I with |A| < |B|. If B contains an edge e between dif-
ferent components of the graph (V (G), A), then A ∪ {e} ∈ I and

4

we are done. So we may assume that every edge in B has both
ends in the same component of (V (G), A). Hence every component
of (V (G), B) is a contained in a component of (V (G), A). So the num-
ber of components cB of (V (G), B) is at least the number of com-
ponents cA of (V (G), A). Since (V (G), A) and (V (G), B) are forests,
|A| = |V (G)| − cA ≥ |V (G)| − cB = |B|, a contradiction. �)

Such a matroid is called the cycle matroid of G. Every matroid isomor-
phic to the cycle matroid of a graph is called a graphic matroid. Note
that if G is connected, then bases of (E, I) are exactly the edge-sets of
spanning trees of G, and the rank equals |V (G)| − 1. And circuits of
(E, I) are exactly the edge-sets of cycles. Note that not every circuit
has the same size.

� Let G be a connected graph. Let E = E(G). Let I = {S ⊆ E : G− S
is connected}. Then (E, I) is a matroid. (Exercise.) Such a matroid is
called a bond matroid. Note that every circuit is a minimal subset of
edges such that its removal makes G disconnected. Such a minimal set
is called a bond of G.

� Let D be a digraph. Let X, Y be distinct subsets of V (D). Let I =
{S ⊆ X : there exist |S| disjoint paths from Y to X}. Then (X, I) is a
matroid. (It can be deduced from some proof of Menger’s theorem. It
will be clear after we discuss the Max-Flow-Min-Cut Theorem.) Such
a matroid is called a gammoid.

� Let G be a bipartite graph with a bipartition {A,B}. Let I = {S ⊆ A :
there exists a matching in G saturating S}. Then (A, I) is a matroid
because it is isomorphic to a gammoid. (It is not hard to prove that it
is a matroid directly.) Such a matroid is called a transversal matroid.

5

