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Here are some simple properties of matroids.

Proposition 1 Let (E, I) be a matroid. Then every base has the same size.

Proof. It immediately follows from (M3).

Proposition 2 Let (E, I) be a matroid. Let C1, C2 be distinct circuits. If
e ∈ C1 ∩ C2, then (C1 ∪ C2)− {e} is not in I and hence contains a circuit.

Proof. Suppose to the contrary that (C1 ∪ C2)− {e} ∈ I. Since C1, C2 are
distinct circuits, C1 6⊆ C2 and C2 6⊆ C1. So there exists f ∈ C1 − C2, and
|(C1 ∪ C2)− {e}| > |C1 − {e}| = |C1| − 1 = |C1 − {f}|. Let I0 = C1 − {f}.
Since C1 is a circuit, I0 ∈ I with |I0| < |(C1 ∪ C2) − {e}|. So by (M3), for
every i with 1 ≤ i ≤ |(C1 ∪ C2) − {e}| − |I0|, there exists ei ∈ ((C1 ∪ C2) −
{e}) − Ii−1 such that Ii−1 ∪ {ei} ∈ I, and we define Ii = Ii−1 ∪ {ei}. Note
that |(C1 ∪C2)−{e}|− |I0| = (|C1|+ |C2−C1| − 1)− (|C1| − 1) = |C2−C1|.
So C2 ⊆ (C1 − {f}) ∪ (C2 − C1) = I|(C1∪C2)−{e}|−|I0| ∈ I, a contradiction.

Proposition 3 Let (E, I) be a matroid. Let I ∈ I. Let e ∈ E with I∪{e} 6∈
I. Then there exists a unique circuit C contained in I ∪ {e}, and for every
f ∈ C, (I ∪ {e})− {f} ∈ I.

Proof. Since I ∪ {e} 6∈ I, I ∪ {e} contains circuits. Note that every such
circuit must contain e, for otherwise it is a subset of the independent set I.

1



If there exist distinct circuits C1, C2 contained in I ∪ {e}, then e ∈ C1 ∩ C2,
so Proposition 2 implies that (C1 ∪ C2) − {e} contains a circuit, but (C1 ∪
C2)−{e} ⊆ I ∈ I, a contradiction. Let C be the unique circuit contained in
I ∪{e}. For every f ∈ C, if (I ∪{e})−{f} 6∈ I, then there exists a circuit C ′

contained in (I ∪ {e})− {f}, so C ′ is a circuit contained in I ∪ {e} distinct
from C, a contradiction.

1 Minimum weighted base

Note that |I| can be exponential in |E|. So we cannot afford to list all
members of I when we work on algorithmic problems on matroids. Instead,
the input matroid (E, I) is given by listing all the elements of E, and we
assume that we are given an oracle to test whether a given subset of E is in
I or not.

==========================================
Finding a minimum weighted base of a matroid
Input: A matroid (E, I) and a weight function w : E → R.
Output: A base T of (E, I) with minimum

∑
x∈T w(x).

Procedure:

Step 1: Sort the elements of E to obtain an ordering of the elements e1, e2, ..., e|E|
of E so that w(e1) ≤ w(e2) ≤ ... ≤ w(e|E|). Set T = ∅.

Step 2: For i = 1, 2, ..., |E|, if T ∪ {ei} ∈ I, then add ei into T .

==========================================

Lemma 4 The set T output from the above algorithm is a base.

Proof. If the final output T is not a base, then there exists ei ∈ E − T such
that T ∪ {ei} ∈ I. But then ei must be added into T by the algorithm and
(M2).

Theorem 5 The above algorithm outputs a base with minimum weight in
time O(|E| log |E| + |E|θ), where θ is the running time of the oracle for
checking the membership of I.
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Proof. Let T be the set output from the algorithm. Note that T is a base by
Lemma 4. Let e1, e2, ..., e|E| be the ordering of E such that w(e1) ≤ w(e2) ≤
... ≤ w(e|E|). Suppose to the contrary that the weight of T is larger than
another base. Let T ∗ be a base with minimum weight, and subject to this,
min{i : ei ∈ (T − T ∗) ∪ (T ∗ − T )}, denoted by i∗, is maximum. Note that
min{i : ei ∈ (T −T ∗)∪ (T ∗−T )} exists since the weight of T is greater than
the weight of T ∗. So for every i ∈ [i∗ − 1], either ei ∈ T ∩ T ∗ or ei 6∈ T ∪ T ∗.

We first assume ei∗ ∈ T ∗−T . By the algorithm, (T ∩{ei : i ∈ [i∗− 1]})∪
{ei∗} 6∈ I. So T ∗ ∩ {ei : i ∈ [i∗]} = (T ∩ {ei : i ∈ [i∗ − 1]}) ∪ {ei∗} 6∈ I, a
contradiction.

So ei∗ ∈ E(T )−E(T ∗). Since T ∗ is a base, T ∗∪{ei∗} 6∈ I. By Proposition
3, there exists a unique circuit C in T ∗∪{ei∗} such that (T ∗∪{ei∗})−{f} ∈ I
for every f ∈ C − {ei∗}. Since (T ∗ ∩ {ei : i ∈ [i∗ − 1]}) ∪ {ei∗} = T ∩ {ei :
i ∈ [i∗]} ∈ I, C − ((T ∗ ∩ {ei : i ∈ [i∗ − 1]}) ∪ {ei∗}) 6= ∅, so there exists
ej ∈ C − ((T ∗ ∩ {ei : i ∈ [i∗ − 1]}) ∪ {ei∗}) for some j ≥ i∗ + 1. So
(T ∗ ∪ {ei∗}) − {f} ∈ I. Let T ′ = (T ∗ ∪ {ei∗}) − {f}. Since |T ′| = |T ∗| and
T ′ ∈ I, T ′ is a base. Since min{i : ei ∈ (T − T ′) ∪ (T ′ − T )} ≥ i∗ + 1,∑

e∈T ′ w(e) >
∑

e∈T ∗ w(e) by the choice of T ∗. But it implies that w(ei∗) >
w(ej), contradicting i∗ < j.

Hence T is a base of (E, I) with minimum weight. And Step 1 of the
algorithm takes time O(|E| log |E|), and Step 2 takes time O(|E|θ).

2 Shortest paths in weighted (di)graphs with

nonnegative weights

Let (D,w) be a weighted directed graphs. The length of a directed path P in
D is defined to be

∑
e∈E(P )w(e). For any two vertices u, v of D, the distance

in (D,w) from u to v, denoted by d(D,w)(u, v), is defined to be the length of
a shortest path in D from u to v (or defined to be ∞ if no path in D is from
u to v).

Let (G,w) be a weighted graph. The length of a path P in G is defined
to be

∑
e∈E(P )w(e). For any two vertices u, v of G, the distance in (D,w)

between u to v is defined to be the length of a shortest path in G between
u and v (or defined to be ∞ if no path in G is between u and v). In fact,
the distance between any two vertices in (G,w) equals the distance from
u to v in (DG, wG), where (DG, wG) is the digraph obtained from G by
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replacing each edge e by two arc with different directions e1, e2 and assigning
wG(e1) = wG(e2) = w(e). So if we want to find the distance between two
vertices in (G,w), it suffices to find the distance in (DG, w).

==========================================
Dijkstra’s algorithm
Input: A weighted digraph (D,w), where w is a nonnegative function, and
a vertex r ∈ V (D).
Output: A forest T rooted at r such that T is a subgraph of D with V (T ) =
V (D) and d(D,w)(r, v) = d(T,w|E(T ))(r, v) for every v ∈ V (D).
Procedure:

Step 1: Set R = ∅. Set f(r) = 0 and f(v) =∞ for every v ∈ V (D)− {r}. Set
p(r) = r. Set T = (V (D), ∅).

Step 2: For i = 1, 2, ..., |V (D)|, do the following:

– Find a vertex vi with f(vi) = minx∈V (D)−R f(x).

– If f(vi) =∞, then stop; otherwise, do the following:

Step 2-1: If vi 6= r, then add an edge (p(vi), vi) into T .

Step 2-2: Add vi into R, and for every edge (vi, x) ∈ E(D), if f(vi) +
w((vi, x)) < f(x), then define p(x) = vi and redefine f(x) =
f(vi) + w((vi, x)).

==========================================

Lemma 6 During the entire process, the following properties are preserved:

1. For every vertex v ∈ R, d(D,w)(r, v) = d(T,w)(r, v) = d(D[R],w)(r, v).

2. For every vertex v ∈ V (D)−{r}, if p(v) is defined, then p(v) ∈ R and
(p(v), v) ∈ E(D).

3. T is a forest and a subgraph of D with V (T ) = V (D), and R ∪ {r} is
the vertex-set of the component of T containing r, and the direction of
every edge of T [R ∪ {r}] is from the side having r.

4. For every vertex v ∈ V (D)−R, if there exists an edge of D from R to v,
then p(v) is defined, and f(v) = d(D[R]+(p(v),v),w)(r, v) = d(D[R∪{v}],w)(r, v).
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Proof. All properties are clearly preserved at the end of Step 1. Assume
we just find a new vi for some i, and all the properties are preserved at this
moment. If f(vi) = ∞, then the algorithm stops and we are done. So we
may assume f(vi) 6=∞.

Since Properties 2 and 3 are preserved until this moment, Property 3 is
preserved at the end of Step 2-1. And Properties 1, 2 and 4 are preserved at
the end of Step 2-1 since R and p were not changed.

Now we do Step 2-2 by adding vi into R and updating f . If vi = r, then
all properties are clearly preserved. So we may assume vi 6= r. Properties 2
and 3 are clearly preserved at the end of Step 2-2 by our definition of p and T .
For clarity, let R0 be the set R at the end of Step 2-1, and let R1 = R0∪{vi}.

Now we show that Property 1 is preserved at the end of Step 2-2. Since
Property 4 is preserved at the end of Step 2-1, f(vi) = d(D[R0]+(p(vi),vi),w)(r, vi) =
d(D[R0∪{vi}],w)(r, vi). Since (p(vi), vi) is the unique edge in D[R0] + (p(vi), vi)
between R0 and vi by Properties 2 and 3 preserved so far, d(D[R0],w)(r, p(vi))+
w((p(vi), vi)) = d(D[R0]+(p(vi),vi),w)(r, vi) = d(D[R0∪{vi}],w)(r, vi). Since Property
1 is preserved at the end of Step 2-1, d(D,w)(r, p(vi)) = d(T,w)(r, p(vi)) =
d(D[R0],w)(r, p(vi)). So d(T,w)(r, vi) = d(T,w)(r, p(v))+w((p(vi), vi)) = d(D[R0],w)(r, p(vi))+
w((p(vi), vi)) = d(D[R0∪{vi},w)(r, vi) = d(D[R1],w)(r, vi). Since D[R1] is a sub-
graph of D, d(D[R1],w)(r, vi) ≥ d(D,w)(r, vi).

Suppose to the contrary that d(D[R1],w)(r, vi) > d(D,w)(r, vi). Then there
exists a path P in D from r to vi with length d(D,w)(r, vi). Let P ′ be the
maximal subpath from r contained in D[R0]. Let y be the sink of P ′. So
(y, z) ∈ E(P ) for some z ∈ V (D) − R. Since P ′ + (y, z) is contained in
D[R0∪{z}], d(D[R0∪{z}],w)(r, z) equals the length of P ′+(y, z), which is at most
the length of P and hence is strict smaller than d(D[R1],w)(r, vi) = f(vi). Then
at the beginning of Step 2, f(z) = d(D[R0∪{z}],w)(r, v) < f(vi), contradicting
the choice of vi. So d(D[R1],w)(r, vi) ≤ d(D,w)(r, vi)

Hence d(D[R1],w)(r, vi) = d(D,w)(r, vi). So Property 1 is preserved at the
end of Step 2-2.

Now show that Property 4 is preserved at the end of Step 2-2. Let f0 be
the f at the end of Step 2-1. Let f1 be the f at the end of Step 2-2. Let
v ∈ V (D)−R1 such that there exists an edge of D from R1 to v. Let Q be a
shortest path in (D[R1∪{v}], w) from r to v such that vi 6∈ V (Q) if possible.

We first assume vi 6∈ V (Q). Then d(D[R1∪{v}],w)(r, v) = d(D[R0∪{v}],w)(r, v) =
f0(v). If (vi, v) 6∈ E(D), then f1(v) = f0(v) and we are done. If (vi, v) ∈
E(D), then since f0(vi) + w((vi, v)) = d(D[R0∪{vi}],w)(r, vi) + w((vi, v)) =
d(D[R1],w)(r, vi) + w((vi, v)) ≥ d(D[R1∪{v}],w)(r, v) = f0(v), we know f1(v) =
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f0(v), so we are done.
Hence we may assume vi ∈ V (Q). By the choice of Q,

∑
e∈E(Q)w(e) =

d(D[R1∪{v}],w)(r, v) < d(D[R0∪{v}],w)(r, v) = f0(v). Let q be the neighbor of v
in Q. If q 6= vi, then q ∈ R0, so by Property 1, there exists a path Q′ in
D[R0] with length at most the length of Q− v, and hence Q′ + (q, v) is not
longer than Q but Q′+ (q, v) does not contain vi, contradicting the choice of
Q. So q = vi. Hence f0(vi) + w((vi, v)) = d(D[R0∪{vi}],w)(r, vi) + w((vi, v)) =
d(D[R1],w)(r, vi) + w((vi, v)) =

∑
e∈E(Q)w(e) < f0(v). So p(v) is redefined to

be vi, and f1(v) = f0(vi) + w((vi, v)) =
∑

e∈E(Q)w(e) = d(D[R1∪{v}],w)(r, v) =

d(D[R1]+(vi,v)),w)(r, v). Therefore Property 4 is preserved.

Theorem 7 Dijkstra’s algorithm works correctly and runs in time O(|V (D)|2+
|E(D)|).

Proof. By Property 1 in Lemma 6, d(D,w)(r, v) = d(T,w)(r, v) for all v ∈ V (R).
By Property 3 in Lemma 6, d(T,w)(r, v) = ∞ for all v ∈ V (D) − V (R), so
it suffices to show that d(D,w)(r, v) = ∞ for all v ∈ V (D) − V (R). And it
suffices to show that there exists no edge of D from V (R) to V (D)− V (R).
Suppose to the contrary that there exists an edge of D from R to a vertex
v ∈ V (D) − V (R). In particular, |R| < |V (D)|. By Properties 1 and 3,
d(D[R∪{v}],w)(r, v) < ∞. By Property 4, f(v) = d(D[R∪{v}],w)(r, v) < ∞. So
when i = |R|+ 1 at Step 2, the vertex vi satisfies f(vi) <∞, so vi should be
added into R. It implies that |R| should be bigger, a contradiction.

Note that Step 1 takes time O(|V (D)|). In for each round in Step 2, it
takes time O(|V (D)|) to find vi, and it takes time O(1+deg+

D(vi)) to do Steps
2-1 and 2-2, where deg+

D(vi) is the out-degree of vi in D. So the total running
time for Step 2 is

∑
v∈V (D)O(|V (D)| + deg+

D(v)) = O(|V (D)|2 + |E(D)|).
Hence the algorithm takes time O(|V (D)|2 + |E(D)|).

Note that Dijkstra’s algorithm is best possible when |E(D)| = Ω(|V (D)|2).
Note that ifD is simple, then |E(D)| = O(|V (D)|2), soO(|V (D)|2+|E(D)|) =
O(|V (D)|2).

On the other hand, if we implement the algorithm by using heaps, then it
only takes O(log |V (D)|) time to find each vi in Step 2, so the total running
time can be improved to O(|E(D)|+ |V (D)| log |V (D)|).

Corollary 8 Given a weighted digraph (D,w), where w is nonnegative, and
a vertex r ∈ V (D), in time O(|V (D)|2+ |E(D)|), we can compute d(D,w)(r, v)
and a shortest path in D from r to v (if it exists) for all v ∈ V (D).
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Proof. Apply Dijkstra’s algorithm to get the forest T . Then the distance
and path can be found in T .
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