# Lecture notes for Feb 15, 2023 Minimum weighted bases and shortest paths in nonnegative weighted digraphs 

Chun-Hung Liu

February 15, 2023

Here are some simple properties of matroids.
Proposition 1 Let $(E, \mathcal{I})$ be a matroid. Then every base has the same size.
Proof. It immediately follows from (M3).
Proposition 2 Let $(E, \mathcal{I})$ be a matroid. Let $C_{1}, C_{2}$ be distinct circuits. If $e \in C_{1} \cap C_{2}$, then $\left(C_{1} \cup C_{2}\right)-\{e\}$ is not in $\mathcal{I}$ and hence contains a circuit.

Proof. Suppose to the contrary that $\left(C_{1} \cup C_{2}\right)-\{e\} \in \mathcal{I}$. Since $C_{1}, C_{2}$ are distinct circuits, $C_{1} \nsubseteq C_{2}$ and $C_{2} \nsubseteq C_{1}$. So there exists $f \in C_{1}-C_{2}$, and $\left|\left(C_{1} \cup C_{2}\right)-\{e\}\right|>\left|C_{1}-\{e\}\right|=\left|C_{1}\right|-1=\left|C_{1}-\{f\}\right|$. Let $I_{0}=C_{1}-\{f\}$. Since $C_{1}$ is a circuit, $I_{0} \in \mathcal{I}$ with $\left|I_{0}\right|<\left|\left(C_{1} \cup C_{2}\right)-\{e\}\right|$. So by (M3), for every $i$ with $1 \leq i \leq\left|\left(C_{1} \cup C_{2}\right)-\{e\}\right|-\left|I_{0}\right|$, there exists $e_{i} \in\left(\left(C_{1} \cup C_{2}\right)-\right.$ $\{e\})-I_{i-1}$ such that $I_{i-1} \cup\left\{e_{i}\right\} \in \mathcal{I}$, and we define $I_{i}=I_{i-1} \cup\left\{e_{i}\right\}$. Note that $\left|\left(C_{1} \cup C_{2}\right)-\{e\}\right|-\left|I_{0}\right|=\left(\left|C_{1}\right|+\left|C_{2}-C_{1}\right|-1\right)-\left(\left|C_{1}\right|-1\right)=\left|C_{2}-C_{1}\right|$. So $C_{2} \subseteq\left(C_{1}-\{f\}\right) \cup\left(C_{2}-C_{1}\right)=I_{\left|\left(C_{1} \cup C_{2}\right)-\{e\}\right|-\left|I_{0}\right|} \in \mathcal{I}$, a contradiction.

Proposition $3 \operatorname{Let}(E, \mathcal{I})$ be a matroid. Let $I \in \mathcal{I}$. Let $e \in E$ with $I \cup\{e\} \notin$ $\mathcal{I}$. Then there exists a unique circuit $C$ contained in $I \cup\{e\}$, and for every $f \in C,(I \cup\{e\})-\{f\} \in \mathcal{I}$.

Proof. Since $I \cup\{e\} \notin \mathcal{I}, I \cup\{e\}$ contains circuits. Note that every such circuit must contain $e$, for otherwise it is a subset of the independent set $I$.

If there exist distinct circuits $C_{1}, C_{2}$ contained in $I \cup\{e\}$, then $e \in C_{1} \cap C_{2}$, so Proposition 2 implies that $\left(C_{1} \cup C_{2}\right)-\{e\}$ contains a circuit, but $\left(C_{1} \cup\right.$ $\left.C_{2}\right)-\{e\} \subseteq I \in \mathcal{I}$, a contradiction. Let $C$ be the unique circuit contained in $I \cup\{e\}$. For every $f \in C$, if $(I \cup\{e\})-\{f\} \notin \mathcal{I}$, then there exists a circuit $C^{\prime}$ contained in $(I \cup\{e\})-\{f\}$, so $C^{\prime}$ is a circuit contained in $I \cup\{e\}$ distinct from $C$, a contradiction.

## 1 Minimum weighted base

Note that $|\mathcal{I}|$ can be exponential in $|E|$. So we cannot afford to list all members of $\mathcal{I}$ when we work on algorithmic problems on matroids. Instead, the input matroid $(E, \mathcal{I})$ is given by listing all the elements of $E$, and we assume that we are given an oracle to test whether a given subset of $E$ is in $\mathcal{I}$ or not.

Finding a minimum weighted base of a matroid
Input: A matroid $(E, \mathcal{I})$ and a weight function $w: E \rightarrow \mathbb{R}$.
Output: A base $T$ of $(E, \mathcal{I})$ with minimum $\sum_{x \in T} w(x)$.
Procedure:
Step 1: Sort the elements of $E$ to obtain an ordering of the elements $e_{1}, e_{2}, \ldots, e_{|E|}$ of $E$ so that $w\left(e_{1}\right) \leq w\left(e_{2}\right) \leq \ldots \leq w\left(e_{|E|}\right)$. Set $T=\emptyset$.

Step 2: For $i=1,2, \ldots,|E|$, if $T \cup\left\{e_{i}\right\} \in \mathcal{I}$, then add $e_{i}$ into $T$.

Lemma 4 The set $T$ output from the above algorithm is a base.
Proof. If the final output $T$ is not a base, then there exists $e_{i} \in E-T$ such that $T \cup\left\{e_{i}\right\} \in \mathcal{I}$. But then $e_{i}$ must be added into $T$ by the algorithm and (M2).

Theorem 5 The above algorithm outputs a base with minimum weight in time $O(|E| \log |E|+|E| \theta)$, where $\theta$ is the running time of the oracle for checking the membership of $\mathcal{I}$.

Proof. Let $T$ be the set output from the algorithm. Note that $T$ is a base by Lemma 4. Let $e_{1}, e_{2}, \ldots, e_{|E|}$ be the ordering of $E$ such that $w\left(e_{1}\right) \leq w\left(e_{2}\right) \leq$ $\ldots \leq w\left(e_{|E|}\right)$. Suppose to the contrary that the weight of $T$ is larger than another base. Let $T^{*}$ be a base with minimum weight, and subject to this, $\min \left\{i: e_{i} \in\left(T-T^{*}\right) \cup\left(T^{*}-T\right)\right\}$, denoted by $i^{*}$, is maximum. Note that $\min \left\{i: e_{i} \in\left(T-T^{*}\right) \cup\left(T^{*}-T\right)\right\}$ exists since the weight of $T$ is greater than the weight of $T^{*}$. So for every $i \in\left[i^{*}-1\right]$, either $e_{i} \in T \cap T^{*}$ or $e_{i} \notin T \cup T^{*}$.

We first assume $e_{i^{*}} \in T^{*}-T$. By the algorithm, $\left(T \cap\left\{e_{i}: i \in\left[i^{*}-1\right]\right\}\right) \cup$ $\left\{e_{i^{*}}\right\} \notin \mathcal{I}$. So $T^{*} \cap\left\{e_{i}: i \in\left[i^{*}\right]\right\}=\left(T \cap\left\{e_{i}: i \in\left[i^{*}-1\right]\right\}\right) \cup\left\{e_{i^{*}}\right\} \notin \mathcal{I}$, a contradiction.

So $e_{i^{*}} \in E(T)-E\left(T^{*}\right)$. Since $T^{*}$ is a base, $T^{*} \cup\left\{e_{i^{*}}\right\} \notin \mathcal{I}$. By Proposition 3 , there exists a unique circuit $C$ in $T^{*} \cup\left\{e_{i^{*}}\right\}$ such that $\left(T^{*} \cup\left\{e_{i^{*}}\right\}\right)-\{f\} \in \mathcal{I}$ for every $f \in C-\left\{e_{i^{*}}\right\}$. Since $\left(T^{*} \cap\left\{e_{i}: i \in\left[i^{*}-1\right]\right\}\right) \cup\left\{e_{i^{*}}\right\}=T \cap\left\{e_{i}\right.$ : $\left.i \in\left[i^{*}\right]\right\} \in \mathcal{I}, C-\left(\left(T^{*} \cap\left\{e_{i}: i \in\left[i^{*}-1\right]\right\}\right) \cup\left\{e_{i^{*}}\right\}\right) \neq \emptyset$, so there exists $e_{j} \in C-\left(\left(T^{*} \cap\left\{e_{i}: i \in\left[i^{*}-1\right]\right\}\right) \cup\left\{e_{i^{*}}\right\}\right)$ for some $j \geq i^{*}+1$. So $\left(T^{*} \cup\left\{e_{i^{*}}\right\}\right)-\{f\} \in \mathcal{I}$. Let $T^{\prime}=\left(T^{*} \cup\left\{e_{i^{*}}\right\}\right)-\{f\}$. Since $\left|T^{\prime}\right|=\left|T^{*}\right|$ and $T^{\prime} \in \mathcal{I}, T^{\prime}$ is a base. Since $\min \left\{i: e_{i} \in\left(T-T^{\prime}\right) \cup\left(T^{\prime}-T\right)\right\} \geq i^{*}+1$, $\sum_{e \in T^{\prime}} w(e)>\sum_{e \in T^{*}} w(e)$ by the choice of $T^{*}$. But it implies that $w\left(e_{i^{*}}\right)>$ $w\left(e_{j}\right)$, contradicting $i^{*}<j$.

Hence $T$ is a base of $(E, \mathcal{I})$ with minimum weight. And Step 1 of the algorithm takes time $O(|E| \log |E|)$, and Step 2 takes time $O(|E| \theta)$.

## 2 Shortest paths in weighted (di)graphs with nonnegative weights

Let $(D, w)$ be a weighted directed graphs. The length of a directed path $P$ in $D$ is defined to be $\sum_{e \in E(P)} w(e)$. For any two vertices $u, v$ of $D$, the distance in $(D, w)$ from $u$ to $v$, denoted by $d_{(D, w)}(u, v)$, is defined to be the length of a shortest path in $D$ from $u$ to $v$ (or defined to be $\infty$ if no path in $D$ is from $u$ to $v$ ).

Let $(G, w)$ be a weighted graph. The length of a path $P$ in $G$ is defined to be $\sum_{e \in E(P)} w(e)$. For any two vertices $u, v$ of $G$, the distance in $(D, w)$ between $u$ to $v$ is defined to be the length of a shortest path in $G$ between $u$ and $v$ (or defined to be $\infty$ if no path in $G$ is between $u$ and $v$ ). In fact, the distance between any two vertices in $(G, w)$ equals the distance from $u$ to $v$ in $\left(D_{G}, w_{G}\right)$, where $\left(D_{G}, w_{G}\right)$ is the digraph obtained from $G$ by
replacing each edge $e$ by two arc with different directions $e_{1}, e_{2}$ and assigning $w_{G}\left(e_{1}\right)=w_{G}\left(e_{2}\right)=w(e)$. So if we want to find the distance between two vertices in $(G, w)$, it suffices to find the distance in $\left(D_{G}, w\right)$.

## Dijkstra's algorithm

Input: A weighted digraph $(D, w)$, where $w$ is a nonnegative function, and a vertex $r \in V(D)$.
Output: A forest $T$ rooted at $r$ such that $T$ is a subgraph of $D$ with $V(T)=$ $V(D)$ and $d_{(D, w)}(r, v)=d_{\left(T,\left.w\right|_{E(T)}\right)}(r, v)$ for every $v \in V(D)$.
Procedure:
Step 1: Set $R=\emptyset$. Set $f(r)=0$ and $f(v)=\infty$ for every $v \in V(D)-\{r\}$. Set $p(r)=r$. Set $T=(V(D), \emptyset)$.

Step 2: For $i=1,2, \ldots,|V(D)|$, do the following:

- Find a vertex $v_{i}$ with $f\left(v_{i}\right)=\min _{x \in V(D)-R} f(x)$.
- If $f\left(v_{i}\right)=\infty$, then stop; otherwise, do the following:

Step 2-1: If $v_{i} \neq r$, then add an edge $\left(p\left(v_{i}\right), v_{i}\right)$ into $T$.
Step 2-2: Add $v_{i}$ into $R$, and for every edge $\left(v_{i}, x\right) \in E(D)$, if $f\left(v_{i}\right)+$ $w\left(\left(v_{i}, x\right)\right)<f(x)$, then define $p(x)=v_{i}$ and redefine $f(x)=$ $f\left(v_{i}\right)+w\left(\left(v_{i}, x\right)\right)$.

Lemma 6 During the entire process, the following properties are preserved:

1. For every vertex $v \in R, d_{(D, w)}(r, v)=d_{(T, w)}(r, v)=d_{(D[R], w)}(r, v)$.
2. For every vertex $v \in V(D)-\{r\}$, if $p(v)$ is defined, then $p(v) \in R$ and $(p(v), v) \in E(D)$.
3. $T$ is a forest and a subgraph of $D$ with $V(T)=V(D)$, and $R \cup\{r\}$ is the vertex-set of the component of $T$ containing $r$, and the direction of every edge of $T[R \cup\{r\}]$ is from the side having $r$.
4. For every vertex $v \in V(D)-R$, if there exists an edge of $D$ from $R$ to $v$, then $p(v)$ is defined, and $f(v)=d_{(D[R]+(p(v), v), w)}(r, v)=d_{(D[R \cup\{v\}], w)}(r, v)$.

Proof. All properties are clearly preserved at the end of Step 1. Assume we just find a new $v_{i}$ for some $i$, and all the properties are preserved at this moment. If $f\left(v_{i}\right)=\infty$, then the algorithm stops and we are done. So we may assume $f\left(v_{i}\right) \neq \infty$.

Since Properties 2 and 3 are preserved until this moment, Property 3 is preserved at the end of Step 2-1. And Properties 1, 2 and 4 are preserved at the end of Step 2-1 since $R$ and $p$ were not changed.

Now we do Step 2-2 by adding $v_{i}$ into $R$ and updating $f$. If $v_{i}=r$, then all properties are clearly preserved. So we may assume $v_{i} \neq r$. Properties 2 and 3 are clearly preserved at the end of Step 2-2 by our definition of $p$ and $T$. For clarity, let $R_{0}$ be the set $R$ at the end of Step 2-1, and let $R_{1}=R_{0} \cup\left\{v_{i}\right\}$.

Now we show that Property 1 is preserved at the end of Step 2-2. Since Property 4 is preserved at the end of Step 2-1, $f\left(v_{i}\right)=d_{\left(D\left[R_{0}\right]+\left(p\left(v_{i}\right), v_{i}\right), w\right)}\left(r, v_{i}\right)=$ $d_{\left(D\left[R_{0} \cup\left\{v_{i}\right\}\right], w\right)}\left(r, v_{i}\right)$. Since $\left(p\left(v_{i}\right), v_{i}\right)$ is the unique edge in $D\left[R_{0}\right]+\left(p\left(v_{i}\right), v_{i}\right)$ between $R_{0}$ and $v_{i}$ by Properties 2 and 3 preserved so far, $d_{\left(D\left[R_{0}\right], w\right)}\left(r, p\left(v_{i}\right)\right)+$ $w\left(\left(p\left(v_{i}\right), v_{i}\right)\right)=d_{\left(D\left[R_{0}\right]+\left(p\left(v_{i}\right), v_{i}\right), w\right)}\left(r, v_{i}\right)=d_{\left(D\left[R_{0} \cup\left\{v_{i}\right\}\right], w\right)}\left(r, v_{i}\right)$. Since Property 1 is preserved at the end of Step 2-1, $d_{(D, w)}\left(r, p\left(v_{i}\right)\right)=d_{(T, w)}\left(r, p\left(v_{i}\right)\right)=$ $d_{\left(D\left[R_{0}\right], w\right)}\left(r, p\left(v_{i}\right)\right)$. So $d_{(T, w)}\left(r, v_{i}\right)=d_{(T, w)}(r, p(v))+w\left(\left(p\left(v_{i}\right), v_{i}\right)\right)=d_{\left(D\left[R_{0}\right], w\right)}\left(r, p\left(v_{i}\right)\right)+$ $w\left(\left(p\left(v_{i}\right), v_{i}\right)\right)=d_{\left(D\left[R_{0} \cup\left\{v_{i}\right\}, w\right)\right.}\left(r, v_{i}\right)=d_{\left(D\left[R_{1}\right], w\right)}\left(r, v_{i}\right)$. Since $D\left[R_{1}\right]$ is a subgraph of $D, d_{\left(D\left[R_{1}\right], w\right)}\left(r, v_{i}\right) \geq d_{(D, w)}\left(r, v_{i}\right)$.

Suppose to the contrary that $d_{\left(D\left[R_{1}\right], w\right)}\left(r, v_{i}\right)>d_{(D, w)}\left(r, v_{i}\right)$. Then there exists a path $P$ in $D$ from $r$ to $v_{i}$ with length $d_{(D, w)}\left(r, v_{i}\right)$. Let $P^{\prime}$ be the maximal subpath from $r$ contained in $D\left[R_{0}\right]$. Let $y$ be the sink of $P^{\prime}$. So $(y, z) \in E(P)$ for some $z \in V(D)-R$. Since $P^{\prime}+(y, z)$ is contained in $D\left[R_{0} \cup\{z\}\right], d_{\left(D\left[R_{0} \cup\{z\}\right], w\right)}(r, z)$ equals the length of $P^{\prime}+(y, z)$, which is at most the length of $P$ and hence is strict smaller than $d_{\left(D\left[R_{1}\right], w\right)}\left(r, v_{i}\right)=f\left(v_{i}\right)$. Then at the beginning of Step 2, $f(z)=d_{\left(D\left[R_{0} \cup\{z\}\right], w\right)}(r, v)<f\left(v_{i}\right)$, contradicting the choice of $v_{i}$. So $d_{\left(D\left[R_{1}\right], w\right)}\left(r, v_{i}\right) \leq d_{(D, w)}\left(r, v_{i}\right)$

Hence $d_{\left(D\left[R_{1}\right], w\right)}\left(r, v_{i}\right)=d_{(D, w)}\left(r, v_{i}\right)$. So Property 1 is preserved at the end of Step 2-2.

Now show that Property 4 is preserved at the end of Step 2-2. Let $f_{0}$ be the $f$ at the end of Step 2-1. Let $f_{1}$ be the $f$ at the end of Step 2-2. Let $v \in V(D)-R_{1}$ such that there exists an edge of $D$ from $R_{1}$ to $v$. Let $Q$ be a shortest path in $\left(D\left[R_{1} \cup\{v\}\right], w\right)$ from $r$ to $v$ such that $v_{i} \notin V(Q)$ if possible.

We first assume $v_{i} \notin V(Q)$. Then $d_{\left(D\left[R_{1} \cup\{v\}\right], w\right)}(r, v)=d_{\left(D\left[R_{0} \cup\{v\}\right], w\right)}(r, v)=$ $f_{0}(v)$. If $\left(v_{i}, v\right) \notin E(D)$, then $f_{1}(v)=f_{0}(v)$ and we are done. If $\left(v_{i}, v\right) \in$ $E(D)$, then since $f_{0}\left(v_{i}\right)+w\left(\left(v_{i}, v\right)\right)=d_{\left(D\left[R_{0} \cup\left\{v_{i}\right\}\right], w\right)}\left(r, v_{i}\right)+w\left(\left(v_{i}, v\right)\right)=$ $d_{\left(D\left[R_{1}\right], w\right)}\left(r, v_{i}\right)+w\left(\left(v_{i}, v\right)\right) \geq d_{\left(D\left[R_{1} \cup\{v\}\right], w\right)}(r, v)=f_{0}(v)$, we know $f_{1}(v)=$
$f_{0}(v)$, so we are done.
Hence we may assume $v_{i} \in V(Q)$. By the choice of $Q, \sum_{e \in E(Q)} w(e)=$ $d_{\left(D\left[R_{1} \cup\{v\}\right], w\right)}(r, v)<d_{\left(D\left[R_{0} \cup\{v\}\right], w\right)}(r, v)=f_{0}(v)$. Let $q$ be the neighbor of $v$ in $Q$. If $q \neq v_{i}$, then $q \in R_{0}$, so by Property 1 , there exists a path $Q^{\prime}$ in $D\left[R_{0}\right]$ with length at most the length of $Q-v$, and hence $Q^{\prime}+(q, v)$ is not longer than $Q$ but $Q^{\prime}+(q, v)$ does not contain $v_{i}$, contradicting the choice of $Q$. So $q=v_{i}$. Hence $f_{0}\left(v_{i}\right)+w\left(\left(v_{i}, v\right)\right)=d_{\left(D\left[R_{0} \cup\left\{v_{i}\right\}\right], w\right)}\left(r, v_{i}\right)+w\left(\left(v_{i}, v\right)\right)=$ $d_{\left(D\left[R_{1}\right], w\right)}\left(r, v_{i}\right)+w\left(\left(v_{i}, v\right)\right)=\sum_{e \in E(Q)} w(e)<f_{0}(v)$. So $p(v)$ is redefined to be $v_{i}$, and $f_{1}(v)=f_{0}\left(v_{i}\right)+w\left(\left(v_{i}, v\right)\right)=\sum_{e \in E(Q)} w(e)=d_{\left(D\left[R_{1} \cup\{v\}\right], w\right)}(r, v)=$ $d_{\left.\left(D\left[R_{1}\right]+\left(v_{i}, v\right)\right), w\right)}(r, v)$. Therefore Property 4 is preserved.
Theorem 7 Dijkstra's algorithm works correctly and runs in time $O\left(|V(D)|^{2}+\right.$ $|E(D)|)$.

Proof. By Property 1 in Lemma $6, d_{(D, w)}(r, v)=d_{(T, w)}(r, v)$ for all $v \in V(R)$. By Property 3 in Lemma $6, d_{(T, w)}(r, v)=\infty$ for all $v \in V(D)-V(R)$, so it suffices to show that $d_{(D, w)}(r, v)=\infty$ for all $v \in V(D)-V(R)$. And it suffices to show that there exists no edge of $D$ from $V(R)$ to $V(D)-V(R)$. Suppose to the contrary that there exists an edge of $D$ from $R$ to a vertex $v \in V(D)-V(R)$. In particular, $|R|<|V(D)|$. By Properties 1 and 3, $d_{(D[R \cup\{v\}], w)}(r, v)<\infty$. By Property $4, f(v)=d_{(D[R \cup\{v\}], w)}(r, v)<\infty$. So when $i=|R|+1$ at Step 2, the vertex $v_{i}$ satisfies $f\left(v_{i}\right)<\infty$, so $v_{i}$ should be added into $R$. It implies that $|R|$ should be bigger, a contradiction.

Note that Step 1 takes time $O(|V(D)|)$. In for each round in Step 2, it takes time $O(|V(D)|)$ to find $v_{i}$, and it takes time $O\left(1+\operatorname{deg}_{D}^{+}\left(v_{i}\right)\right)$ to do Steps 2-1 and 2-2, where $\operatorname{deg}_{D}^{+}\left(v_{i}\right)$ is the out-degree of $v_{i}$ in $D$. So the total running time for Step 2 is $\sum_{v \in V(D)} O\left(|V(D)|+\operatorname{deg}_{D}^{+}(v)\right)=O\left(|V(D)|^{2}+|E(D)|\right)$. Hence the algorithm takes time $O\left(|V(D)|^{2}+|E(D)|\right)$.

Note that Dijkstra's algorithm is best possible when $|E(D)|=\Omega\left(|V(D)|^{2}\right)$. Note that if $D$ is simple, then $|E(D)|=O\left(|V(D)|^{2}\right)$, so $O\left(|V(D)|^{2}+|E(D)|\right)=$ $O\left(|V(D)|^{2}\right)$.

On the other hand, if we implement the algorithm by using heaps, then it only takes $O(\log |V(D)|)$ time to find each $v_{i}$ in Step 2, so the total running time can be improved to $O(|E(D)|+|V(D)| \log |V(D)|)$.

Corollary 8 Given a weighted digraph $(D, w)$, where $w$ is nonnegative, and a vertex $r \in V(D)$, in time $O\left(|V(D)|^{2}+|E(D)|\right)$, we can compute $d_{(D, w)}(r, v)$ and a shortest path in $D$ from $r$ to $v$ (if it exists) for all $v \in V(D)$.

Proof. Apply Dijkstra's algorithm to get the forest $T$. Then the distance and path can be found in $T$. ■

