
Lecture notes for Feb 20, 2023
Shortest paths in general weighted digraphs

and introduction of maximum flows

Chun-Hung Liu

February 20, 2023

1 Shortest paths in general weighted digraphs

The key requirement for Dijkstra’s algorithm is that every edge has nonneg-
ative weight. But we need negative weights for certain applications. For
example, considering that we want to go from a vertex s to a vertex t in a
digraph. When we traverse an edge e, we should pay a(e) but we can gain
b(e). So the net profit for traversing e is b(e) − a(e). Hence if we want to
find a path from s to t that makes the most profit, then we can define the
weight on e to be b(e)− a(e), and we want to find a longest path from s to
t. Equivalently, if we define w(e) = a(e)− b(e) for each edge e, then we want
to find a shortest path in (D,w) from s to t. Note that the weight can be
negative in this case.

However, finding a shortest path in weighted graph with possibly negative
weight is NP-hard, even for the special case for finding longest path in an
unweighted graph. Given a graph G, a Hamiltonian path in G is a path that
uses all vertices of G.

Theorem 1 The problem of determining whether the input graph has a
Hamiltonian path is NP-complete.

As a corollary, if we can find the longest path in an unweighted graph
G, then we can simply see whether its length equals |V (G)| − 1 to decide
whether G has a Hamiltonian path or not. So finding longest path in an

1

unweighted graph is NP-hard, and so does finding shortest path in weighted
graph with possibly negative weight.

But the problem for finding shortest path in weighted graph is tractable
if we assume that there is no cycle with negative weight.

==
Bellman-Ford algorithm
Input: A weighted digraph (D,w) and a vertex r ∈ V (D), where w is a
function such that there exists no directed cycle C with

∑
e∈E(C)w(e) < 0.

Output: d(D,w)(r, v) for each v ∈ V (D), and a shortest path in (D,w) from
r to each v ∈ V (D) with d(D,w)(r, v) 6=∞.
Procedure:

Step 1: Set f0(r) = 0 and f0(v) =∞ for every v ∈ V (D)− {r}. Set p(r) = r.

Step 2: For i = 1, 2, ..., |V (D)| − 1, do the following:

– For every v ∈ V (D), define fi(v) = min{fi−1(v), fi−1(u)+w((u, v)) :
(u, v) ∈ E(D)}, and if fi(v) < fi−1(v), then set p(v) to be a vertex
u with (u, v) ∈ E(D) and fi(v) = fi−1(u) + w((u, v)).

Step 3: For every v ∈ V (D), output d(D,w)(r, v) = f|V (D)|−1(v), and if f|V (D)|−1(v) <
∞, then output the reverse of the walk v-p(v)-p(p(v))-...-r.

==

Lemma 2 During the entire process, the following properties are preserved:
For any i with 0 ≤ i ≤ |V (D)| − 1 and v ∈ V (D) with fi(v) 6=∞,

1. p(v) is defined, fi(p(v)) 6=∞ and (p(v), v) ∈ E(D),

2. the maximal walk v-p(v)-p(p(v))-... is well-defined and is the reverse
of a directed path in D from r to v with length at most fi(v), and

3. fi(v) = minW w(W), where the minimum is over all directed walks from
r to v with at most i edges.

Proof. All properties clearly hold at the end of Step 1. Assume all properties
hold after we did Step 2 i− 1 times for some i ∈ [|V (D)| − 1. We shall prove
that they also hold after we did Step 2 i times.

2

Fix v ∈ V (D) with fi(v) 6=∞. If p(v) is defined at the end of the i−1-th
round of Step 2 and remains unchanged at the i-th round, then p(v) is defined
and fi(p(v)) ≤ fi−1(p(v)) < ∞ by induction. If p(v) was undefined at the
end of the i− 1-th round of Step 2 or p(v) is changed in the i-th round, then
fi(v) = fi−1(u) + w((u, v)) and p(v) is changed to u for some (u, v) ∈ E(D),
so p(v) is defined and fi(p(v)) = fi(u) ≤ fi−1(u) <∞. So Property 1 holds.

The maximal walk v-p(v)-p(p(v))-... is well-defined by Property 1. Call
this walk X. Suppose to the contrary that X is not a directed path. Since
X traverses each edge backwards but is not a directed path, X contains a (di-
rected) cycle C. So there exists x ∈ V (C) such that C = xp(x)p(p(x))...p(|C|)(x)
with p(|C|)(x) = x, where p(j)(x) = p(p(j−1))(x) for every j ≥ 1 with p(0)(x) =
x. By the definition of p, for every j ∈ [|C|−1], there exists ij ≤ i−1 such that
fi(p

(j)(x)) < fij(p
(j)(x)) and fi(p

(j)(x)) = fij+1(p
(j)(x)) = fij(p

(j+1)(x)) +

w((p(j)(x), p(j+1)(x))) ≥ fi(p
(j+1)(x)) + w((p(j)(x), p(j+1)(x))). By summing

both sides of this inequality for all j ∈ [|C|−1], we obtain
∑|C|−1

j=0 fi(p
(j)(x)) ≥∑|C|−1

j=0 (fi(p
(j+1)(x))+w((p(j)(x), p(j+1)(x)))) = (

∑|C|−1
j=0 (fi(p

(j+1)(x)))+w(C) =

(
∑|C|

j=1 fi(p
(j)(x)))+w(C) = (

∑|C|−1
j=0 fi(p

(j)(x)))+w(C), where the last equal-

ity follows from p(|C|)(x) = x = p(0)(x). So w(C) ≤ 0. Since we assume that
there is no cycle with negative weight, w(C) = 0. This implies that for every
j ∈ [|C| − 1], fij(p

(j+1)(x)) = fi(p
(j+1)(x)). Since ij ≥ i − 1 for each j, we

know p(j+1)(x) at the i-th round of Step 2 is the same as p(j+1)(x) at the
i− 1-th round. But it is impossible by the induction hypothesis with taking
v = x at the i− 1-th round.

So X is a directed path. Hence the end o of X other than v sat-
isfies p(o) = o. So o = r. Hence X is a directed path from r to v.
Denote X by r1r2...r|V (X)|, where r1 = r. We prove that the subpath
of X from r1 to rj, denoted by Pj, has length at most fi(rj) for every
j ∈ [|V (X)|] by induction on j. It clearly holds when j = 1. When
j ≥ 2, let ij be the integer such that p(v) was defined or redefined at
the ij-th round and remains unchanged since then, so by the induction
hypothesis, w(Pj) = w(Pj−1) + w((rj−1, rj)) ≤ fi(rj−1) + w((rj−1, rj)) ≤
fij−1(rj−1) + w((rj−1, rj)) = fij(p(rj)) + w((p(rj), rj)) = fi(rj). Therefore,
w(X) = w(P|V (X)|) ≤ fi(r|V (X)|) = fi(v). This proves Property 2.

Finally, we prove Property 3. Let ` = minW w(W), where the minimum
is over all directed walks from r to v with at most i edges. Since fi(v) 6=
∞, either fi−1(v) = fi(v) 6= ∞ or fi(v) = fi−1(u) + w((u, v)) for some
(u, v) ∈ E(D) with fi−1(u) 6= ∞, so there exists a walk from r to v with at

3

most i edges by the induction hypothesis. Hence ` 6= ∞ and the length is
attained by some directed walk Q from r to v with at most i edges. Since
there is no cycle with negative weight, Q can be chosen to be a directed
path from r to v with at most i edges. And since there is no cycle with
negative weight, if v = r, then ` = 0 = fi(v) and we are done. So we
may assume Q has at least one edge. Note that for every x ∈ V (Q) − {v},
the subpath of Q from r to x has at most i − 1 edges and has minimum
length over all such walks. Let u be the neighbor of v in Q, so ` = w(Q) =
w(Q− v) + w((u, v)) = fi−1(u) + w((u, v)) ≥ fi(v) by the previous sentence
and the induction hypothesis. So fi(v) ≤ w(Q) = `. Suppose to the contrary
that fi(v) < `. If fi(v) = fi−1(v), then by the induction hypothesis, there
exists a walk in D from r to v with at most i − 1 < i edges with length
fi−1(v) = fi(v) < `, contradicting to the definition of `. So there exists
z ∈ V (D) with (z, v) ∈ E(D) and fi(v) = fi−1(z) + w((z, v)). By the
induction hypothesis, there exists a walk Q′ from r to z with at most i − 1
edges with length fi−1(z), so Q′ + (z, v) is a walk from r to v with at most
i edges with length fi−1(z) + w((z, v)) = fi(v) < `, contradicting to the
definition of `. Hence Property 3 is preserved.

Lemma 3 At the end of the Bellman-Fold algorithm, for every v ∈ V (D),
d(D,w)(r, v) = f|V (D)|−1(v), and if d(D,w)(r, v) 6= ∞, then the reverse of the
maximal path v-p(v)-p(p(v))-... is a shortest path in D from r to v.

Proof. Note that no path in D has more than |V (D)| − 1 edges. And
the length of a shortest walk in D from r to v is attained by a path in D
from r to v since there exists no cycle with negative weight. So Property
3 in Lemma 2, d(D,w)(r, v) = f|V (D)|−1(v). And if d(D,w)(r, v) 6= ∞, then
f|V (D)|−1(v) 6= ∅, so the maximal path v-p(v)-p(p(v))-... is well-defined, and
its reverse is a directed path from r to v and has length at most (and hence
equal to) f|V (D)|−1(v) = d(D,w)(r, v) by Property 2 in Lemma 2.

Theorem 4 Bellman-Ford algorithm works correctly and runs in time O(|V (D)|2+
|V (D)||E(D)|).

Proof. The correctness follows from Lemma 3. And each round of Step 2
takes time O(

∑
v∈V (D)(1+deg−D(v)) = O(|V (D)|+ |E(D)|). So the algorithm

takes time O(|V (D)|(|V (D)|+ |E(D)|)).

4

2 Maximum flow and minimum cut

Definition:

� In a digraph D, for every S ⊆ V (D),

– we define δ+(S) to be the set of edges of D whose tails are in S
but whose heads are not in S, and

– we define δ−(S) to be the set of edges of D whose heads are in S
but whose tails are not in S.

� For every vertex v,

– we define δ+(v) to be the set of edges of D whose tails are v, and

– we define δ−(v) to be the set of edges of D whose heads are v.

Note that when D is loopless, δ+(v) = δ+({v}) and δ−(v) = δ−({v}). When
we work on network flows, the existence of loops does not affect our argument.
So you can consider loopless digraph only if you think the notations are too
complicated.

Definition:

� A network is a 4-tuple (D, s, t, c), where D is a digraph, s, t are distinct
vertices of D and c : E(D) → R≥0. (Here R≥0 denotes the set of all
nonnegative real numbers.) The vertex s is called the source and t is
called the sink.

� A flow in a network (D, s, t, c) is a function f : E(D)→ R≥0.

� A flow f is feasible if it satisfies

– (Capacity condition:) 0 ≤ f(e) ≤ c(e) for every e ∈ E(D), and

– (Conservation condition:)
∑

e∈δ+(v) f(e) =
∑

e∈δ−(v) f(e) for every

v ∈ V (D)− {s, t}.

� The value of a flow f is
∑

e∈δ+(s) f(e) −
∑

e∈δ−(s) f(e). That is, the
value is the “net amount” flowing out from the source. We denote the
value of f by val(f).

� If f is a feasible flow with maximum value, then f is called a maximum
flow.

5

