
Lecture notes for Feb 22, 2023
Maximum flows and minimum cuts

Chun-Hung Liu

February 22, 2023

Recall:

� A network is a 4-tuple (D, s, t, c), where D is a digraph, s, t are distinct
vertices of D and c : E(D) → R≥0. (Here R≥0 denotes the set of all
nonnegative real numbers.) The vertex s is called the source and t is
called the sink.

� A flow in a network (D, s, t, c) is a function f : E(D)→ R≥0.

� A flow f is feasible if it satisfies

– (Capacity condition:) 0 ≤ f(e) ≤ c(e) for every e ∈ E(D), and

– (Conservation condition:)
∑

e∈δ+(v) f(e) =
∑

e∈δ−(v) f(e) for every

v ∈ V (D)− {s, t}.

� The value of a flow f is
∑

e∈δ+(s) f(e) −
∑

e∈δ−(s) f(e). That is, the
value is the “net amount” flowing out from the source. We denote the
value of f by val(f).

� If f is a feasible flow with maximum value, then f is called a maximum
flow.

The following lemma shows that for every subset S of V (D) containing
the source s but not the sink t, the “net amount” of a flow flowing out from
S is the same as the value. That is, the value of a flow equals the “net
amount” of any such set S. In particular, if we choose S = V (D)−{s}, then
we know δ+(S) = δ−(t) and δ−(S) = δ+(t) (except for loops incident with t),
so val(f) =

∑
e∈δ+(S) f(e)−

∑
e∈δ−(S) f(e) =

∑
e∈δ−(t) f(e)−

∑
e∈δ+(t) f(e).

1

Lemma 1 Let (D, s, t, c) be a network, and let f be a feasible flow. For every
S ⊆ V (D) with s ∈ S and t 6∈ S, we have

∑
e∈δ+(S) f(e) −

∑
e∈δ−(S) f(e) =∑

e∈δ+(s) f(e)−
∑

e∈δ−(s) f(e) = val(f).

Proof. Let W =
∑

v∈S(
∑

e∈δ+(v) f(e)−
∑

e∈δ−(v) f(e)). Since f satisfies the

conservation condition, W = (
∑

e∈δ+(s) f(e)−
∑

e∈δ−(s) f(e)) +
∑

v∈S−{s} 0 =∑
e∈δ+(s) f(e)−

∑
e∈δ−(s) f(e) = val(f).

Now we compute W in another way. For every edge e of D whose both
ends not in S, it contributes 0 in W . For each edge e of D whose both ends
in S, it also contributes 0 in W , since it contributes f(e) for its tail and
−f(e) for its head. For each edge e of D in δ+(S), it contributes f(e) in
W . For each edge e of D in δ−(S), it contributes −f(e) in W . Therefore,
W =

∑
e∈δ+(S) f(e)−

∑
e∈δ−(S) f(e).

Definition:

� A cut in a network (D, s, t, c) is an ordered partition (S, T) of V (D) of
two parts such that s ∈ S and t ∈ T .

� The capacity of a cut (S, T), denoted by cap(S), is
∑

e∈δ+(S) c(e). Note

that we do not care about δ−(S) when we define the capacity of a cut.

The following is called the “weak duality theorem” which shows one side
of the Max-Flow-Min-Cut Theorem.

Lemma 2 Let (D, s, t, c) be a network. Let (S, T) be a cut and let f be a
feasible flow. Then val(f) ≤ cap(S).

Proof. Recall that f(e) ≥ 0 for every e ∈ E(D) by the definition of a flow.
By Lemma 1, val(f) =

∑
e∈δ+(S) f(e) −

∑
e∈δ−(S) f(e) ≤

∑
e∈δ+(S) f(e) ≤∑

e∈δ+(S) c(e) = cap(S), where the last inequality follows from the capacity
condition.

To prove the other side of the Max-Flow-Min-Cut Theorem, we need the
following notions.

Definition: Let (D, s, t, c) be a network, and let f be a feasible flow.

� The residue graph (with respect to f), denoted by R(f), is the digraph
with vertex-set V (D) constructed by the following procedure:

2

– for each edge e = (x, y) of D, if f(e) > 0, then create an edge
(y, x) in R(f), and

– for each edge e = (x, y) of D, if f(e) < c(e), then create an edge
(x, y) in R(f).

(Note that if an edge e of D satisfies 0 < f(e) < c(e), then e creates 2
edges with different directions in R(f).)

� An f -augmenting path is a directed path in R(f) from s to t.

� For an f -augmenting path P and every edge e = (u, v) ∈ E(P),

– if (u, v) ∈ E(D), then we know f(e) < c(e), and we define ε(e) =
c(e)− f(e) and call e a forward edge, and

– if (v, u) ∈ E(D), then we know f(e) > 0, and we define ε(e) = f(e)
and call e a backward edge.

� We define the residue of an f -augmenting path P to be mine∈E(P) ε(e).
(Notice that the residue of any f -augmenting path is always positive.)

Intuitively, if we want to send more amount in a flow from s to t along P ,
then for every forward edge e, we can send more amount (up to ε(e)) on this
edge without exceeding the capacity on this edge; for every backward edge
e, we can pull back some amount (up to ε(e)) on this edge without making
the amount sending on this edge negative.

Lemma 3 Let (D, s, t, c) be a network, and let f be a feasible flow. If there
exists an f -augmenting path, then f is not a maximum flow.

Proof. Let ε be the residue of P . Define f ′ to be a function on E(D) such
that

� for every forward edge e on P , define f ′(e) = f(e) + ε,

� for every backward edge e on P , define f ′(e) = f(e)− ε, and

� for every edge e ∈ E(D)− E(P), define f ′(e) = f(e).

3

It is straight forward to verify that f ′ is a feasible flow in (D, s, t, c).
Since s is incident with exactly one edge in P , val(f ′) = val(f) + ε >

val(f). So f is not a maximum flow.

We call the flow f ′ in the proof of Lemma 3 the flow obtained from f by
augmenting on P .

==============================
Ford-Fulkerson Algorithm
Input: A network (D, s, t, c).
Output: A function f : E(D) → R≥0 and a subset S of V (D) with s ∈ S
such that f is a flow with val(f) = cap(S).
Procedure:

Step 0: Set f to be the 0-function.

Step 1: Construct R(f).

Step 2: Set S = {v ∈ V (D) : there exists a directed path in R(f) from s to
v}. If t ∈ S, then find such a directed path P , and set f to be the flow
obtained from f by augmenting on P and repeat Step 1; otherwise,
output the function f and the set S and stop.

==============================

Lemma 4 (Ford, Fulkerson) Let f and S be the output of the algorithm.
Then val(f) = cap(S).

Proof. Let B = V (D)− S. Note that s ∈ S, since s is a directed path from
s to s. And t 6∈ S, so t ∈ B. So (S,B) is a cut in (D, s, t, c).

Note that in R(f), there exists no edge whose tail in S and head in B, for
otherwise we should include the head of this edge into S. That is, for every
edge e of D with one end in S and one end in B, we know

� if the tail of e is in S (i.e. e ∈ δ+(S)), then f(e) = c(e), and

� if the head of e is in S (i.e. e ∈ δ−(S)), then f(e) = 0.

Therefore, the “net amount” flowing out from S is
∑

e∈δ+(S) f(e)−
∑

e∈δ−(S) f(e) =∑
e∈δ+(S) c(e)−0 = cap(S). By Lemma 1, val(f) =

∑
e∈δ+(S) f(e)−

∑
e∈δ−(S) f(e) =

cap(S).

4

Theorem 5 (Max-Flow-Min-Cut-Theorem) Let (D, s, t, c) be a network.
Then

max
f

val(f) = min
(S,T)

cap(S),

where the first maximum is over all feasible flows and the second minimum
is over all cuts (S, T).

Proof. By Lemma 2, maxf val(f) ≤ min(S,T) cap(S). By Lemma 4, maxf val(f) ≥
min(S,T) cap(S). This proves the theorem.

Notice that if the capacity of each edge is an integer, then the residue of
each augmenting path is integral and is at least 1. Since δ+(s) is finite, if the
capacity of each edge is an integer, then Ford-Fulkerson algorithm must stop
by repeating Step 1 a finite number of times and output an integral function
f . Hence we get the following important theorem.

Theorem 6 Let (D, s, t, c) be a network such that c(e) ∈ Z for every e ∈
E(D). Then there exists a maximum flow f such that val(f) = min(S,T) cap(S)
and f(e) ∈ Z for every e ∈ E(D).

However, it is unclear whether Step 1 in the above procedure will be
repeated only a finite number of times when the capacity is not an integral
function. So the Ford-Fulkerson algorithm might not stop. Indeed, Ford and
Fulkerson provided an example showing that the above procedure will run
forever, if we do not choose the augmenting paths carefully. Edmonds and
Karp showed that if we always do augmenting on the shortest augmenting
path, then the above procedure will stop in finitely number of steps.

==============================
Edmonds-Karp Algorithm
Input: A network (D, s, t, c).
Output: A function f : E(D) → R≥0 and a subset S of V (D) with s ∈ S
such that f is a flow with val(f) = cap(S).
Procedure:

Step 0: Set f to be the 0-function.

Step 1: Construct R(f).

5

Step 2: Do BFS on R(f) starting from s to find the set S = {v ∈ V (D) : there
exists a directed path in R(f) from s to v}. If t ∈ S, then the BFS
finds a shortest path P (in terms of the number of edges) in R(f) from
s to t, set f to be the flow obtained from f by augmenting on P , and
repeat Step 1; otherwise, output f and S and terminate the algorithm.

==============================

Lemma 7 Let P1, P2, ... be the paths found in in Step 2, where they are found
in the order listed. Then for every i ≥ 1,

1. |E(Pi)| ≤ |E(Pi+1)|, and

2. for any k with 1 ≤ k < i, if Pi and Pk traverse some edge of D in
different direction, then |E(Pi)| ≥ |E(Pk)|+ 2.

Proof. For each j, let fj be the flow such that Pj is found in R(fj).
We first prove Statement 1. Let G1 be the graph obtained from Pi ∪Pi+1

by duplicating each edge appearing in both Pi and Pi+1 and deleting each
edge reversed in different directions in Pi and Pi+1. It is easy to see that in
G1, s has in-degree 0 and out-degree 2, t has in-degree 2 and out-degree 0,
and every other vertex in G1 has in-degree equal to out-degree. By adding
two edges from t to s to G1, we obtain an Eulerian circuit. By deleting the
two added edges from t to s, we obtain two edge-disjoint paths Q1, Q2 from
s to t in G1 such that Q1 ∪ Q2 = G1. Since the edges traversed in different
directions in Pi and Pi+1 are deleted in G1, all edges of G1 contained in
R(fi). So both Q1 and Q2 are candidates of Pi. Since Pi is chosen to
be shortest, |E(Q1)| ≥ |E(Pi)| and |E(Q2)| ≥ |E(Pi)|. Then |E(Pi+1)| ≥
|E(G1)| − |E(Pi)| = |E(Q1)|+ |E(Q2)| − |E(Pi)| ≥ |E(Pi)|.

Now we prove Statement 2. By Statement 1, we may assume that for
every k + 1 ≤ j ≤ i − 1, Pi and Pj do not traverse edges of D in different
direction. Let G2 be the graph obtained from Pk ∪ Pi by duplicating each
edge appearing in both Pk and Pi and deleting each edge reversed in different
directions in Pk and Pi. It is easy to see that in G2, s has in-degree 0 and
out-degree 2, t has in-degree 2 and out-degree 0, and every other vertex in
G2 has in-degree equal to out-degree. By adding two edges from t to s to
G2, we obtain an Eulerian circuit. By deleting the two added edges from t
to s, we obtain two edge-disjoint paths Q′1, Q

′
2 from s to t in G2 such that

Q′1∪Q′2 = G2. Since the edges traversed in different directions in Pk and Pi are

6

deleted in G2, and Pi and Pj do not traverse edges in different directions for
all k+1 ≤ j ≤ i−1, we know that all edges of G2 contained in R(fk). So both
Q′1 and Q′2 are candidates of Pk. Since Pk is chosen to be shortest, |E(Q′1)| ≥
|E(Pk)| and |E(Q′2)| ≥ |E(Pk)|. So |E(G2)| = |E(Q′1)|+ |E(Q′2)| ≥ 2|E(Pk)|.
On the other hand, since Pk and Pi traverse some edge in different direction,
at least one edge in Pi ∪ Pk is deleted when constructing G2. It implies that
|E(G2)| = |E(Q′1)| + |E(Q′2)| ≤ |E(Pk)| + |E(Pi)| − 2 since the at least one
edge in each Pk and Pi is deleted. So 2|E(Pk)| ≤ |E(Pk)|+ |E(Pi)|− 2. That
is, |E(Pi)| ≥ |E(Pk)|+ 2.

Theorem 8 (Edmonds, Karp) A maximum flow and a minimum cut can
be found in time O(|V (D)||E(D)|2).

Proof. The correctness of the algorithm follows the same one as for Ford-
Fulkerson algorithm. So it suffices to prove the time complexity.

Let f1, f2, ..., fk (some k) be the flow constructed in the algorithm, ap-
pearing in the order listed. For each i, let Pi be the fi-augmenting path
found in R(fi) in the algorithm, and let ei be the edge in Pi that defines the
number ε so that val(fi+1) = val(fi) + ε.

Let W = {i ≥ 1 : |E(Pi+1)| ≥ |E(Pi)|+ 1}. Note that |W | ≤ |V (D)| − 1.
If there exist i1 < i2 such that |E(Pj)| = |E(Pi1)| for every i1 ≤ j ≤ i2,

then by Statement 2 in Lemma 7, for any j1, j2 with i1 ≤ j1 < j2 ≤ i2, Pj1
and Pj2 do not traverse some edge in different directions, so ej1 6= ej2 . Hence
i2 − i1 ≤ |E(D)| for any i1, i2 ∈ W satisfying j 6∈ W for every i1 < j < i2.
So k ≤ |V (D)||E(D)|.

Note that each Pi can be found in time O(|V (D)|+ |E(D)|) by BFS and
each R(fi) can be constructed in time O(|V (D)|+|E(D)|). So the entire algo-
rithm runs in time O(|V (D)||E(D)|(|V (D)|+ |E(D)|)) = O(|E(D)|2|V (D)|)
(we may assume |V (D)| ≤ |E(D)| since we may assume the underlying di-
graph is connected).

The maximum flow problem is one of the central research problems in
graph algorithms. The currently most efficient deterministic exact algorithm
for finding a maximum flow was provided by King, Rao and Tarjan (1994)
with time complexity O(nm log2+ m

n logn
n) and provided by Goldberg and Rao

(1998) with time complexity O(min{
√
m,n2/3}·m log(n

2

m
) log cM), where n =

|V (D)|, m = |E(D)|, and cM = maxe∈E(D) c(e). Recently, Chen, Kyng, Liu,
Peng, Gutenberg and Sachdeva (2022) proved that a maximum flow of a

7

network with integral capacity can be found in time O(m1+o(1) log cM) with
high probability.

8

