
Lecture notes for Feb 27, 2023
Decomposition of flows and Bipartite matching

Chun-Hung Liu

February 27, 2023

1 Decomposing a flow into paths

Flows can be view as a conic combination of directed paths:

Proposition 1 Let (D, s, t, c) be a network. Let f be a feasible flow in
(D, s, t, c). Then there exist a multiset F of directed paths in D from s
to t, and a function g : F → R≥0 such that

1.
∑

P∈F g(P) = val(f), and

2. for every e ∈ E(D), f(e) =
∑

P∈F ,e∈E(P) g(P).

Moreover, if f is integral, then |F| ≤ val(f) and the image of g is a subset of
N. Furthermore, F and g can be found in time O(|F| · (|V (D)|+ |E(D)|)).

Proof. Let Df be the digraph with V (Df) = V (D) and E(Df) = {e ∈
E(D) : f(e) > 0}. We do induction on |E(Df)|. If E(Df) = ∅, then
val(f) = 0, so we are done by choosing F = ∅. So we may assume E(Df) 6= ∅
and val(f) > 0.

Let A = {v ∈ V (D) : there exists a directed path in Df from s to v}. If
t 6∈ A, then val(f) =

∑
e∈δ+(A) f(e)−

∑
e∈δ−(A) f(e) = 0−

∑
e∈δ−(A) f(e) ≤ 0,

a contradiction. So t ∈ A. Hence there exists a directed path P in Df from
s to t. Let eP be an edge of P with f(eP) = mine∈E(P) f(e). Let f ′ be the
function such that f ′(e) = f(e)−f(eP) for every e ∈ E(P), and f ′(e) = f(e)
for every e ∈ E(D) − E(P). Then f ′ is clearly a flow in (D, s, t, c) with
val(f ′) = val(f) − f(eP), and E(Df ′) ⊆ E(Df) − {eP}. By the induction

1

hypothesis, we obtain a set F ′ of paths and a function g′ for the flow f ′

as desired. Let F = F ′ ∪ {P}, and let g(P) = f(eP) and g(P ′) for every
P ′ ∈ F ′. Then F and g are desired for the flow f .

Moreover, if f is integral, then val(f) and f(eP) are integral, so f ′ is also
integral and the image of g′ is contained in N, and hence |F| = |F ′| + 1 ≤
val(f ′) + 1 ≤ val(f ′) + f(eP) = val(f) and the image of g is contained in N.

Note that finding a path P mentioned above takes time O(|V (Df)| +
|E(Df)|) = O(|V (D)|+E(D)|). And we only needs to find |F| those paths.
So we can find F and g in time O(|F| · (|V (D)|+ |E(D)|)).

2 Matching

A matching in a graph G is a subset M of E(G) such that no two edges in
M share an end. A matching M is maximal if there exists no matching M ′

with M ′ ⊃ M . A matching M is maximum if there exists no matching M ′

with |M ′| > |M |. Clearly, every maximum matching is maximal, but some
maximal matching is not maximum. We can find a maximal matching by an
easy greedy algorithm in linear time. So finding a maximal matching is not
interesting. We will consider how to find a maximum matching.

2.1 Maximum matching in bipartite graphs

Finding a maximum matching in a bipartite graph is actually a special case
of the maximum flow problem.

Let’s recall an easy observation.

Proposition 2 Let G be a graph. Let M be a matching in G. Let S be a
vertex-cover of G. Then |S| ≥ |M |. In particular, the maximum size of a
matching in G is at most the minimum size of a vertex-cover in G.

Proof. Every edge in M is incident with at least one vertex in S. Since
edges in M do not share ends, no two edges in M are incident with the same
vertex in S. So |S| ≥ |M |.

Corollary 3 Given a bipartite graph G, we can find a matching M in G and
a vertex-cover S of G with |M | = |S| in time θ(|V (G)|+ 2, |E(G)|+ |V (G)|),
where θ(x, y) is the running time for finding a maximum flow in a network
with digraph on x vertices with y edges. In particular, M is a maximum

2

matching and S is a minimum vertex-cover, and they can be found in time
O(|V (G)||E(G)|2).

Proof. Using BFS, we can find a bipartition {A,B} of G in linear time.
Let D be the digraph with V (D) = V (G) ∪ {s, t} and E(D) = {(a, b) : ab ∈
E(G)} ∪ {(s, a) : a ∈ A} ∪ {(b, t) : b ∈ B}. That is, we add two new vertices
s, t to G, where s points to all vertices in A, and t is pointed by all vertices
in B, and direct edges of G from A to B. Note that D can be constructed
in linear time.

Let c(e) = 1 for every e ∈ E(D). Use Edmond-Karp’s algorithm (or any
other applicable algorithm) to find a maximum flow and a minimum cut in
(D, s, t, c) in timeO(|V (D)||E(D)|2) = O(|V (G)||E(G)|2). Since c is integral,
it outputs an integral maximum flow f in (D, s, t, c). By Proposition 1, there
exist a multiset F of directed s-t paths in D, and a function g : F → N
such that

∑
P∈F g(P) = val(f) and f(e) =

∑
P∈F ,e∈E(P) g(P). Since c is

integral, f(e) ∈ {0, 1} for every e ∈ E(D). So the image of g is {1} and
F is a set (instead of a multiset). Moreover, since c = 1 is a constant
function, |F| = val(f) ≤ |A| ≤ |V (G)|, so the proof of Proposition 1 gives a
O(|V (G)| · (|V (G)|+ |E(G))) time algorithm for finding F .

Since g(e) = 1 for every e ∈ E(D), every vertex in A ∪B is contained in
at most one path in F . Hence paths in F are internally disjoint. Note that
every path in F contains at least one edge between A and B. So by deleting
s and t, the paths in F gives a matching M∗ in G with size |F| = val(f).

Let C be the minimum cut in (D, s, t, c) output from the algorithm. That
is, C ⊆ V (D) with s ∈ C and t 6∈ C, and the number of edges of D from C to
V (D)−C equals val(f) = |F| = |M∗|. Let E1 be the set of edges of D from
s to A−C. Let E2 be the set of edges of D from A∩C to B−C. Let E3 be
the set of edges of D from B ∩ C to t. Note that {E1, E2, E3} is a partition
of the set of edges of D from C to V (D)− C. So |E1|+ |E2|+ |E3| = |M∗|.

Note that |E1| = |A − C| and |E3| = |B ∩ C|. Let S ′ be the set of
the ends in A of the edges from A ∩ C to B − C. So |S ′| ≤ |E2|. Let
S = (A − C) ∪ S ′ ∪ (B ∩ C). Then |S| = |A − C| + |S ′| + |B ∩ C| ≤
|E1|+ |E2|+ |E3| ≤ |M∗|.

Note that every edge of G incident with A−C or B ∩C is incident with
S. And every edge between A ∩C and B −C is incident with S ′ ⊆ S. So S
is a vertex-cover of G.

By Proposition 2, |S| ≥ |M∗|. Since |S| ≤ |M∗|, |S| = |M∗|.

3

The time complexity in Corollary 3 can be improved, and we will see it
later. Corollary 3 also gives the following immediate corollaries.

Corollary 4 (König) Let G be a bipartite graph. Then maxM |M | = minS |S|,
where the maximum is over all matchings M in G and the minimum is over
all vertex-cover S in G.

Corollary 5 Given a bipartite graph G, a vertex-cover of G with minimum
size can be found in polynomial time.

Recall that finding a minimum vertex-cover of a general graph is NP-hard.
But it becomes polynomial if we restrict the input graph to be bipartite, as
shown in Corollary 5.

Let’s review our proof via the algorithm for maximum flows. During
the algorithm, we have an integral flow in the network (D, s, t, c), which is
equivalent to having a matching in G, and we try to find an integral flow with
larger value (equivalently, finding a matching with larger size) by finding a
flow-augmenting path. Since c(e) = 1 for every e ∈ E(D), for each flow-
augmenting path, after deleting s and t, it uses edges of D with value-zero
and edges with value-one alternatedly, and the first edge and the last edge
must have value-zero. That is, each flow-augmenting path (after deleting s
and t) uses edges of G such that edges in M and edges in G −M appear
alternatedly, and the first vertex and the last vertex are not saturated by M .
And we obtain a maximum flow (equivalently, a maximum matching) if we
cannot find such a flow-augmenting path (equivalently, a path in G described
above). It leads to the following notions.

Let G be a graph. Let M be a matching. A path P in G is an M-
alternating path if P uses edges in M and G−M alternatedly. A path P in
G is an M-augmenting path if it is an M -alternating path, and the ends of
P are not saturated by M .

Let ∆ be the operator that denotes the symmetric difference. That is, if
A and B are sets, then A∆B is the set (A−B)∪ (B −A). Note that if P is
an M -augmenting path in a graph G for some matching M , then M∆E(P)
is a matching with size |M |+ 1.

Proposition 6 Let G be a graph (not necessarily bipartite). Let M be a
matching. Then M is a maximum matching if and only if there exists no
M-augmenting path in G.

4

Proof. (⇒) If there exists an M -augmenting path P , then M∆E(P) is a
matching with size |M |+ 1, so M cannot be a maximum matching.

(⇐) Let M∗ be a maximum matching. Let H be the graph with V (H) =
V (G) and E(H) = M∆M∗. So every vertex of H has degree at most 2.
Hence H is a disjoint union of paths and cycles. It is easy to see that for
every component Q of H, |E(Q ∩M∗)| > |E(Q ∩M)| if and only if Q is
an M -augmenting path. Since we assume that there is no M -augmenting
path, |E(Q ∩ M∗)| ≤ |E(Q ∩ M)| for every component Q of H. Hence
|M∗| =

∑
Q |E(Q ∩M∗)| ≤

∑
Q |E(Q ∩M)| = |M |, where both sums are

over all components Q of H. Therefore, M is also a maximum matching.

Hence to find a maximum matching, we can start with an arbitrary match-
ing M , and then use BFS to either find an M -augmenting path and get a
matching of larger size by taking symmetric difference, or conclude that there
is no M -augmenting path and M is maximum.

Formally, we start with a matching M and try to find M -augmenting path
by using a variant of BFS. We construct a tree T rooted at an unsaturated
vertex r. We see all the neighbors of r and adding the edges incident with r
into the tree T . Since r is unsaturated, all those edges are not in M . If some
neighbor of r is unsaturated, then we get an augmenting path, so we can
enlarge the matching. So we may assume every neighbor of r is saturated.
Then we add the edges in M incident with those vertices into T . Now the
newly added vertices of T have all other incident edges not in M , so they
behave like r in the sense that all neighbors not in T are adjacent to them
by using edges not in M , and then we add them into the tree T and repeat
until we cannot new vertices into T . Then we pick a unsaturated vertex not
contained in T , and construct another tree rooted at it as we did before.
Repeat this until we have grow the forest for all unsaturated vertices. The
vertices in the forest behaved like r are called outer vertices (i.e. they are
able to add new vertices by using non-M -edges), and other vertices in the
forest are called inner vertices (i.e. they add other vertices by using edges in
M). It can be shown that if we do not find an M -augmenting path during
this process, then there is indeed no M -augmenting path, so M is maximum.
The analysis of this algorithm is simple because of the bipartiteness.

This algorithm does not explicitly use flows, but it is essentially the same
as the one by using flows. And it can be shown that this algorithm runs in
time O(|V (G)||E(G)|).

5

