
Lecture notes for Mar 1, 2023
Edmonds’ Blossom Algorithm for matching

Chun-Hung Liu

March 1, 2023

Now we try to find a maximum matching in a general graph. We use
a similar strategy for finding M -augmenting paths like for bipartite graphs.
But now the analysis is more complicated. One reason is that we would
see edges between outer vertices to form odd cycles. However, such an odd
cycle has certain nice properties, so we can still make it work by revising the
algorithm. We will give more details in this section.

Let M be a matching in G. Let v ∈ V (G). An M-blossom based at v is
a subset B of V (G) with v ∈ B such that

� either v is not M -saturated, or v is matched by M to a vertex in
V (G)−B,

� for every u ∈ B − {v}, there exist M -alternating paths P1 and P2 in
G[B] from u to v such that the edge of P1 incident with u is in M , and
the edge of P2 incident with u is in E(G)−M .

Note that {v} is an M -blossom based at v.
Like the maximum flow problem and the algorithm for solving it, there

is a weak duality for matchings, and the algorithm will find a matching and
a witness showing that the weak duality is tight. To do so, we first show an
easy upper bound for the maximum size of the matching.

For a graph G and a subset X of V (G), we define oddcompG(X) to be
the number of components of G−X with an odd number of vertices.

Proposition 1 Let G be a graph. Then

max
M
|M | ≤ min

X⊆V (G)

|V (G)|+ |X| − oddcompG(X)

2
,

1

where the maximum is over all matchings M in G.

Proof. Let M be an arbitrarily matching in G. Let X be an arbitrary
subset of V (G). For each odd component C of G − X, at least one vertex
in C either is unsaturated by M or is matched to some vertex in X. So
at least oddcompG(X) − |X| vertices in G are not saturated by M . Hence
the number of saturated vertices is at most |V (G)| − (oddcompG(X)− |X|).
That is, 2|M | ≤ |V (G)|+ |X| − oddcompG(X).

==============================
Edmonds’ Blossom Algorithm
Input: A simple graph G.
Output: A matching M and a subset X of V (G) with 2|M | = |V (G)| +
|X| − oddcompG(X). (So M must be a maximum matching by Proposition
1.)
Procedure:

Step 0: Set M = ∅.

Step 1: Set F = {({v}, v) : v ∈ V (G)}. Set T be the empty graph. Set S to
be the empty sequence. For every v ∈ V (G), set b(v) = ∗, a(v) = ∗,
R(v) = ∗, s(v) = ∗, and unmark v. Unmark all edges of G.

Step 2: Do the following:

Step 2-1: If S = ∅ and every vertex of G is either marked or M -saturated,
then set X = {v ∈ V (G) : s(v) =inner}, output M and X, and
terminate the algorithm.

Step 2-2: Otherwise, if S = ∅, then pick an unmarked and non-M -saturated
vertex v of G, add v into S and T , mark v, set R(v) = v, b(v) = v,
and s(v) =outer, and then repeat Step 2.

Step 2-3: Otherwise, let v be the first entry of S, remove v from S, and do
the following:

Step 2-3-1: Pick an unmarked edge uv incident with v, do the following
based on the following cases:
(Before we mention those cases, we first define some notations.
For each x ∈ V (T) with s(v)=outer,

2

· let P+
x be the path P+

x = v1v2...v|V (P+
x)|, where v1 = x,

v|V (P+
x)| = b(x), and if i is odd, then vi+1 = a(vi), and if i

is even, then vi+1 is the vertex matched to vi by M ,

· let P−x be the path P−x = v1v2...v|V (P−x)|, where v1 = x,
v|V (P−x)| = b(x), and if i is odd, then vi+1 is the vertex
matched to vi by M , and if i is even, then vi+1 = a(vi),

· let Px be the path from x to R(x) defined by repeatedly
concatenating paths as follows: starting with the path
P−x , and if the end (say x′) of the current Px other than
x is not R(x), then concatenate x′px′P

◦
px′

, where px′ is
the parent of x′, and ◦ = + if x′px′ ∈ M , and ◦ = − if
x′px′ 6∈M .

We just define P+
x , P−x and Px here. We do not construct these

paths until we need them to define other paths mentioned
below.)

- When u is unmarked and u is not M-saturated
(Augmenting case):
Set M = M∆E(Pv + uv). Repeat Step 1.

- When u is unmarked and u is M-saturated (Grow-
ing case):
Add uv into T and mark uv. SetR(u) = R(v), s(u) =inner,
and a(u) = v. Let w be the vertex matched to u by M .
Add uw into T , mark uw, set R(w) = R(u), b(w) = w,
s(w) =outer, and add w to be the last entry of S. Repeat
Step 2-3-1.

- When u is marked, R(u) 6= R(v), and s(u)=outer
(Augmenting case):
Construct the path Pu, Pv, and let P = (Pu ∪ Pv) + uv.
Set M to be M∆E(P). Repeat Step 1.

- When u is marked, R(u) = R(v), and s(u)=outer
(Shrinking case):
Let w be the common ancestor of b(u) and b(v) furthest
from R(u) = R(v).
For each x ∈ {u, v} and each vertex y in the subpath of
Px between x and b(w) with b(y) 6= b(w) such that the
distance in Px between x and y is even, redefine a(y) to
be the neighbor of y in the subpath of Px between x and

3

y.
For each x ∈ {u, v}, if x 6= b(w), then define a(x) to be
the vertex in {u, v} − {x}.
For each x ∈ {u, v}, let P ′x be the path in T from b(w)
to x. Let F ′ = {(Z, z) ∈ F : |Z| = 1, Z ∩ V (P ′u ∪ P ′v) 6=
∅}∪{(Z, z) ∈ F : |Z| ≥ 2, (Z−{z})∩V (P ′u∪P ′v) 6= ∅}. Let
B =

⋃
(Z,z)∈F ′ Z. Redefine F to be (F−F ′)∪{(B, b(w))}.

For every x ∈ B, redefine b(x) = b(w), and if s(x) =inner,
then redefine s(x) =outer, put x into the last entry of S,
redefine a(x) to be its parent, and unmark all edges of
E(G)−E(T) incident with x. Mark uv, and then repeat
Step 2-3-1.

- Other cases: Mark uv and then repeat Step 2-3-1.

==============================

Lemma 2 During the entire process, the following properties are preserved.

1. T is a forest and V (T) equals the set of marked vertices.

2. M is a matching of G.

3. For every v ∈ S, s(v) =outer, and if v is M-saturated, then the vertex
matched to v by M is in V (T).

4. For every marked edge, its both ends are in T .

5. For every edge e in M , either e ∈ E(T), or its both ends are not in
V (T).

6.
⋃

(Z,z)∈F Z = V (G), and if (Z1, z1) and (Z2, z2) are distinct members

of F with Z1 ∩ Z2 6= ∅, then |Z1| ≥ 2 ≤ |Z2|, |Z1 ∩ Z2| = 1 and
Z1 ∩ Z2 ⊆ {z1, z2}.

7. For every member (Z, z) of F , if |Z| ≥ 2, then Z ⊆ V (T), T [Z] is a
connected subgraph in T rooted at z, and s(v) =outer for every v ∈ Z.

8. For every v ∈ V (T), the following hold.

(a) R(v) is the root of the component of T containing v.

(b) If R(v) 6= v, then v is M-saturated.

4

(c) If b(v) = v 6= R(v), then the edge between v and its parent is in
M .

(d) If a(v) 6= ∗, then va(v) ∈ E(G)−M , and s(a(v)) =outer.

(e) If s(v) is inner, then it has a parent in T , the edge between v and
its parent is not in M , it has a unique child in T , and the edge
between v and the child is an edge in M .

(f) If v = b(u) for some u ∈ V (G), then s(v) =outer.

(g) If b(v) 6= ∗, then there exists a unique path W of the form v1v2...v|V (W)|
satisfying v1 = v, v|V (W)| = b(v), and vi+1 = a(vi) for every odd i,
and vi+1 is the vertex matched to vi by M for every even i; more-
over, W is an M-alternating path in G from v to b(v), V (W) is
contained in Z for some (Z, b(v)) ∈ F , and all vertices of W are
outer.

(h) If b(v) 6= ∗, then there exists a unique path W of the form v1v2...v|V (W)|
satisfying v1 = v, v|V (W)| = b(v), and vi+1 = a(vi) for every even
i, and vi+1 is the vertex matched to vi by M for every odd i; more-
over, W is an M-alternating path in G from v to b(v), and V (W)
is contained in Z for some (Z, b(v)) ∈ F , and all vertices of W
are outer.

(i) If b(v) 6= v, then the path Pv defined in the algorithm is an M-
alternating path from v to R(v) such that the edge of Pv incident
with v is in M and the edge of Pv incident with R(v) is not in M .

9. For every member (Z, z) of F , Z is a blossom based at z.

Proof. Clearly all properties hold at the beginning of the algorithm. Assume
all properties are preserved at some point at the algorithm. We shall prove
that they remain preserved when the algorithm keeps going. Properties 1, 3,
4, 5, 6, 7 and 8(a)-8(e) are clearly preserved. Since Properties 2 and 8(g) are
preserved at this point, we know Property 2 is also preserved.

Now we show that Property 8(f) holds. It holds if s(v) was outer when v
was added into T . So we may assume that s(v) was inner when v was added
into T . Assume that we are at the moment that we change s(v) to be outer.
So we are at the Shrinking case. Let w be the vertex mentioned in that case,
and denote the vertices u, v in the shrinking case in the algorithm by α, β,
respectively. Note that b(w) = w = v, for otherwise b(v) was assigned to a

5

proper ancestor of v and cannot become v in the future. Since s(v) was inner
at that moment, the edge in M incident with v is the tree edge between v
and its unique child c. By the definition of w, c is not a common ancestor
of b(α) and b(β). So w = b(α) or w = b(β). But s(b(α)) =outer= s(b(β)) by
8(e). Hence w 6∈ {b(α), b(β)}, a contradiction. This proves Property 8(f).

Now we prove that 8(g) and 8(h) are preserved. We may assume v 6= b(v),
for otherwise we are done. And we may assume that we are executing the
shrinking case, for otherwise, the existence of W does not change. Let α, β, w
be the vertices u, v, w mentioned in the shrinking case, respectively.

We first assume that b(v) 6= ∗ before executing this shrinking case. So we
have the desired path W at the moment, call W0. If W0 does not intersect
Pα ∪ Pβ, then a(u) does not change for every u ∈ V (W0), so W0 remains the
desired path after executing this shrinking case. (Note that the existence of
Pα and Pβ follow from the assumption that 8(i) is preserved at this point.)
So we may assume that there exists a vertex in x ∈ V (W0) ∩ V (Pα ∪ Pβ)
such that the subpath W ′

0 of W0 between v and x is internally disjoint from
Pα ∪ Pβ. Say x ∈ V (Pα) by symmetry. Note that Pα and Pβ passes through
b(w) as Properties 6 and 7 are preserved. If x = v, then the concatenation of
the subpath of Pα from x to α, the edge αβ, and the subpath of Pβ between
β and b(w) is the desired path W . So we may assume x 6= v. By 8(b), the
edge of W ′

0 incident with x is not in M , so the concatenation of W ′
0 and the

subpath of Pα between x and b(w) is the desired path W .
So we may assume that b(v) = ∗ before executing this shrinking case.

That is, s(v) was inner and turns outer in this shrinking case. So a(v) is
defined to be the parent p of v. Note that s(p) is not inner during the
algorithm. So the desired path W for 8(h) starting from p to b(w) exists,
called it W−

p . By the construction of W−
p , all vertices of W−

p are either outer
before this shrinking case or in Pα ∪ Pβ. Note that every vertex in Pα ∪ Pβ
is also outer before this shrinking case. So v 6∈ V (W−

p). Hence vp+W−
p is a

desired path for 8(g) from v to b(w). Similarly, let u be the vertex matched
with v, then s(u) =outer before this shrinking case. So the desired path W
for 8(g) starting from u to b(w) exists, called it W+

u . By the construction of
W+
u , all its vertices are either outer before this shrinking case or in Pα ∪ Pβ.

Note that every vertex in Pα ∪Pβ is also outer before this shrinking case. So
v 6∈ V (W+

u). Hence vu+W+
u is a desired path for 8(h) from v to b(w). This

proves that property 8(g) and 8(h) are preserved.
Now we show 8(i). Note that 8(g) and 8(h) imply that the paths P+

x and
P−x mentioned in the algorithm is well-defined. So the path Px is well-defined

6

path from v to R(v) such that the edge incident with v is in M . Since R(v)
is not M -saturated, the edge of Px incident with v is not in M . So it suffices
to show that Px is M -alternating. And it follows from 8(c), 8(g) and 8(h).

Finally we show property 9. If z = R(z), then z is not M -saturated. If
z 6= R(z), then by 8(g), z is matched to its parent by M , but its parent is
not in Z by Property 7. So Z is an M -blossom based at z by Properties 8(g)
and 8(h). This proves the lemma.

7

