Lecture notes for Mar 6, 2023
Edmonds’ Blossom Algorithm and Linear
Programming

Chun-Hung Liu
March 6, 2023

Last time we proved an easy upper bound for the size of a maximum
matching.

Proposition 1 Let G be a graph. Then

V(G X|—odd X
max 21| < min [V(G)+ 1X] — oddeompg(X),
M XCV(Q) 2

where the maximum is over all matchings M in G.

Recall that last time we stated Edmonds’ Blossom Algorithms for finding
a maximum matching and proved the following properties.

Lemma 2 During the entire process, the following properties are preserved.
1. T is a forest and V(T') equals the set of marked vertices.

2. M is a matching of G.

3. For every v € S, s(v) =outer, and if v is M-saturated, then the vertex
matched to v by M is in V(T).

4. For every marked edge, its both ends are in T

5. For every edge e in M, either e € E(T), or its both ends are not in
V(T).

6. Uzayer 2 = V(G), and if (Z1,21) and (Za,2) are distinct members
Of.F with Zl ﬁ22 7£ @, then |Zl| > 2 < ‘ZQ‘, ‘Zl N Zg| =1 and
Zl N ZQ Q {21,22}.

7. For every member (Z,z) of F, if |Z| > 2, then Z C V(T), T[Z] is a
connected subgraph in T rooted at z, and s(v) =outer for every v € Z.

8. For every v € V(T'), the following hold.

(a) R(v) is the root of the component of T containing v.

(b) If R(v) # v, then v is M -saturated.

(¢) If b(v) = v # R(v), then the edge between v and its parent is in
M

(d) If a(v) # %, then va(v) € E(G) — M, and s(a(v)) =outer.
(e) If s(v) is inner, then it has a parent in T, the edge between v and

its parent is not in M, it has a unique child in T, and the edge
between v and the child is an edge in M.

(f) If v =b(u) for some u € V(G), then s(v) =outer.

(9) Ifb(v) # *, then there exists a unique path W of the form viva...vjy),
satisfying vi = v, vyw) = b(v), and v = a(v;) for every odd i,
and v;11 s the vertex matched to v; by M for every even i; more-
over, W is an M -alternating path in G from v to b(v), V(W) is
contained in Z for some (Z,b(v)) € F, and all vertices of W are
outer.

(h) Ifb(v) # *, then there exists a unique path W of the form viva...vjy),
satisfying vi = v, vy = b(v), and vi1 = a(v;) for every even
1, and v;11 1s the vertex matched to v; by M for every odd i; more-
over, W is an M -alternating path in G from v to b(v), and V(W)
is contained in Z for some (Z,b(v)) € F, and all vertices of W
are outer.

(i) If b(v) # v, then the path P, defined in the algorithm is an M-
alternating path from v to R(v) such that the edge of P, incident
with v is in M and the edge of P, incident with R(v) is not in M.

9. For every member (Z,z) of F, Z is a blossom based at z.

Now we use them to prove the correctness of the algorithm.

2

1 Correctness of Edmonds’ Blossom Algorithm

Lemma 3 Let M be the matching of G when Edmonds’ Blossom algorithm
terminates. Let X be the set of inner vertices when Edmonds’ Blossom algo-
rithm terminates. Let'Y be the set of outer vertices when Edmonds’ Blossom
algorithm terminates. Let W =V (G) — (X UY'). Then the following hold.

1. The components of G[Y] are exactly the odd components of G — X.
MNE(G[Y]) gives a near-perfect matching for each component of G[Y].
2|M| = |V(G)| + | X| — oddcomp(X).

> Lo e

M matches each vertex in X to a vertex in'Y such that no two vertices
in X are matched to vertices in the same component of G[Y].

5. M N E(G[W]) is a perfect matching of G[W1.

Proof. First, notice that X UY is the set of marked vertices and W is the
set of unmarked vertices.

Note that no inner vertex is contained in Z for any member (Z, z) of F
with |Z| > 2. By Properties 8(g) and 8(h) in Lemma 2, every member of
G[Z] is connected for every (Z,z) € F. So every component of G — X is a
union of members of F. Moreover, all vertices in G — (X U W) are outer, so
there is no edge of G — X between two different vertices in different members
of F intersecting Y and there is no edge of G — X between a vertex in Y
and a vertex in W, for otherwise the shrinking step should merge these two
members or the growing step should include more marked vertices. So by
property 6 in Lemma 2, for every component C' of G — X intersecting Y,
there exist members (Z¢,, 2¢,;) of F for ¢ € [k] and some integer k such
that V(C) = UL, Zeu, Ze; NUZL Zoy = {20} for every 2 < j < k, and
all vertices in C' are descendants of z¢;. For each component C of G — X
intersecting Y, by property 9 in Lemma 2, z¢; is the unique non-M-saturated
vertex in C, so |V (C)| is odd, and M NE(G[Y]) gives a near-perfect matching
for each component of G[Y|. This proves Statement 2 and proves that every
component of G — X intersecting Y is odd. And notice that every vertex in
W is saturated by M. Since every M-saturated marked vertices is matched
to a marked vertex by M, M N E(G[W]) is a perfect matching of G[W], so
every component of G — X intersecting W is a component of G[W] and is
even. This proves Statements 1 and 5.

3

For every component C' of G — X, if z¢; is not a root of a component of
T, then let pc be the parent of z¢ ;. Since all vertices in C' are descendants
of zc1, pc € V(C), so pc € X. Since p¢ is inner, Property 8(e) in Lemma 2
implies that it has the unique child, so the number of components of G — X
intersecting Y equals | X| plus the number of components of T. Note that
for each component of 7', its root is the unique non-M-saturated vertex. So
the number of components of T" equals |V (G)| — 2| M|. Therefore, Statement
1 implies oddcomp,(X) = | X |+ (|V(G)| — 2|M]). This proves Statement 3.

By Property 8(e) in Lemma 2, every inner vertex is matched by M to
its unique child. So M matches each vertex in X to a vertex in Y. Then
Statement 4 follows from Statements 2. m

Lemma 4 The matching M output by the algorithm is a maximum matching

mn G.

Proof. It immediately follows from Proposition 1 and Statement 3 of Lemma
3. m

Theorem 5 FEdmonds’ Blossom Algorithm outputs a maximum matching in

time O(|V(G)]?).

Proof. It outputs a maximum matching by Lemma 4. Since the maximum
matching has size at most |V(G)|, augmenting cases can only happen at
most |V(G)| times. And each growing case takes time O(1) and increases
|V(T)|. And each shrinking case decreases |F| and takes time O(|V(G)| +
Y vey degg(v)), where Y is the set of vertices that were inner and turns
outer in this shrinking case. Since both |V(7T)| and |F| are bounded by
|V (G)], and every vertex can turn outer at most once, we know that between
any two consecutive augmenting cases, it takes time O(|V(G)|? + |E(G)]) =
O(]V(G)]?). Since augmenting cases can only happen at most |V (G)]| times,
and each augmenting case takes time O(|V(G)|), the total running time is

O(IV(G)F). m

2 Applications of the blossom algorithm

Corollary 6 (Berge-Tutte formula) Let G be a graph. Then

max [M| = min V(G| + |X| - oddcompG(X)7
M XCV(G) 2

where the maximum is over all matchings M in G.

Proof. It immediately follows from Proposition 1 and Statement 3 of Lemma
3. m

Another corollary of Edmonds’ blossom algorithm is to obtain the Gallai-
Edmonds decomposition, which is a strengthening of Berge-Tutte formula.
The Gallai-Edmonds decomposition of a graph G is a tuple (X,Y, W) such
that

e Y is the set of vertices that are unsaturated by at least one maximum
matching,

e X be the set of vertices not in Y but adjacent in GG to some vertex in
Y, and

o W =V(G)- (XUY).

We show that Edmonds’ blossom algorithm also finds the Gallai-Edmonds
decomposition.

Corollary 7 Let G be a graph. LetY be the set of vertices that are unsatu-
rated by at least one mazximum matching. Let X be the set of vertices not in
Y but adjacent in G to some vertex inY. Let W = V(G)—(XUY). (That is,
(X, Y, W) is the Gallai-Edmonds decomposition.) Then the following hold.

1. If M is the matching when Edmonds’ Blossom Algorithm terminates,
and Xy, Yr, W are the corresponding sets X, Y, W described in Lemma
3, then X = Xy, Y =Yy and W = W),.

2. Every mazimum matching of G contains a perfect matching of G[W]
and a near-perfect matching of each component of G|Y| and matches
each vertex in X to a vertex in'Y such that different vertices in X are
matched to vertices in different components of G[Y].

3. FEvery connected component of G[Y| has a near-perfect matching.
4.
V(G)| + | X| — oddcomp(X)
2 7
where the maximum is over all matchings M in G.

max |[M| =
M

5

Proof. Let M be the matching of G when Edmonds’ Blossom algorithm
terminates. Let X,; be the set of inner vertices when Edmonds’ Blossom
algorithm terminates. Let Y); be the set of outer vertices when Edmonds’
Blossom algorithm terminates. Let Wy, = V(G) — (X U Yar).

By Lemma 4, M is a maximum matching. So every maximum matching

has size |M|. Hence by Statements 1 and 3 of Lemma 3, every maximum
V() |+ Xnm|— oddcompG(XM

matching of G has size and the components of G[Y)]
are exactly the odd components of G — Xy, so every maximum matching
contains a perfect matching of the union of the even component of G — X,
(i.e. G[Wyy]) and a near perfect matching of each odd component of G — X,
(i.e. each component of G[Y)/]) and matches each vertex in X, to a vertex in
an odd component (i.e. in Ys) such that different vertices in X, are matched
to different odd components of G — X}, (i.e. different components of G[Y)]).

Hence if y € Y, the maximum matching of G that does not saturate y
shows that y must be in an odd component of G — X, (i.e. in Yas). So
Y C Yy. And for every y € Yy, the path P, mentioned in Edmonds’
Blossom Algorithm is defined, and MAE(P,) is a matching with size equal
to | M| that does not saturate y, so MAE(P,) is a maximum matching that
does not saturate y, and hence y € Y. So Yy, C Y. Therefore, Yy, =Y.

Since Y = Y}, are exactly the vertices contained in the odd components
of G — Xy, X = Ng(Y) = Ne(Yir) = Xpp. SoW =V(G)—(XUY) =
V(G) — (Xp UYy) = Wy Therefore, Statement 1 of this corollary holds.

Recall that every maximum matching contains a perfect matching of
G[Wy] = G[W] and a near perfect matching of each component of G[Y)/] =
G[Y] and matches each vertex in Xy = X to a vertex in Yy, = Y such
that different vertices in X,; = X are matched to different components of
G[Yu] = G[Y]. So Statement 2 of this corollary holds. And Statements 3 and
4 of this corollary follows from Statements 2 and 3 of Lemma 3, respectively.
|

Corollary 8 Given a graph G, the Gallai-Edmonds decomposition of G can
be found in O(|V(G)|?) time.

Proof. It immediately follows from Theorem 5 and Corollary 7. m

3 Linear programming

Many problems we have considered can be formulated as optimization prob-
lems involving matrices and vectors.

For example, given a subset S of V(G), we can define a 0-1 vector z whose
each entry corresponds to a vertex of GG such that a vertex v is in S if and
only if the v-th entry of x (denoted by z,) is 1. So a subset S is a stable
set in G if and only if the corresponding vector x satisfies =, + x, < 1 for
every edge uv € E(G). Equivalently, S is a stable set in G if and only if the
corresponding vector x satisfies Az < 1, where A is the edge-vertex incident
matrix of G. Hence the independence number of G is the maximum 17z
over all 0-1 vectors x satisfying Ax < 1, where A is the edge-vertex incident
matrix of G.

Therefore, finding the independence number of a graph is a special case
of the optimization problem of the form max, ¢’z subject to Az < b and x
is a 0-1 vector, for some matrix A and vectors b and ¢. Such an optimization
problem is called an integer programming problem.

Example: Examples of combinatorial problems that can be formulated as
max, ¢!z subject to Az < b and z is a 0-1 vector include:

1. As we have seen, the independence number of a graph is the case that
A is the edge-vertex incident matrix of G and b and ¢ are equal to 1.

2. The maximum size of a matching is the case that A is the vertex-edge
incidence matrix of A, and b and ¢ are equal to 1. (Note that b has
|V (G)| entries and ¢ has |E(G)| entries.)

As we have shown that it is NP-hard to find the independence number,
integer programming is NP-hard in general. However, some special case of
integer programming problems can be solved in polynomial time, such as the
one that formulates the maximum size of a matching.

If we do not restrict x to be a 0-1 vector, then we obtain the problem
max, ¢’ = subject to Az < b. This kind of problem is called a linear program-
ming problem.

Linear Programming

Input: An m x n matrix A over real numbers, a column vector b € R™ and
a column vector c € R™.

Output: Find max,cgn as<p ¢’ x, or conclude that the set {x € R" : Az < b}
is empty, or conclude that the maximum does not exist (i.e. for every a € R”,
there exists o € R™ with Azy < b such that ¢’ zy > a).

