Lecture notes for Mar 6, 2023 Edmonds' Blossom Algorithm and Linear Programming

Chun-Hung Liu

March 6, 2023

Last time we proved an easy upper bound for the size of a maximum matching.

Proposition 1 Let G be a graph. Then

$$
\max _{M}|M| \leq \min _{X \subseteq V(G)} \frac{|V(G)|+|X|-\operatorname{oddcomp}_{G}(X)}{2}
$$

where the maximum is over all matchings M in G.
Recall that last time we stated Edmonds' Blossom Algorithms for finding a maximum matching and proved the following properties.

Lemma 2 During the entire process, the following properties are preserved.

1. T is a forest and $V(T)$ equals the set of marked vertices.
2. M is a matching of G.
3. For every $v \in S, s(v)=$ outer, and if v is M-saturated, then the vertex matched to v by M is in $V(T)$.
4. For every marked edge, its both ends are in T.
5. For every edge e in M, either $e \in E(T)$, or its both ends are not in $V(T)$.
6. $\bigcup_{(Z, z) \in \mathcal{F}} Z=V(G)$, and if $\left(Z_{1}, z_{1}\right)$ and $\left(Z_{2}, z_{2}\right)$ are distinct members of \mathcal{F} with $Z_{1} \cap Z_{2} \neq \emptyset$, then $\left|Z_{1}\right| \geq 2 \leq\left|Z_{2}\right|,\left|Z_{1} \cap Z_{2}\right|=1$ and $Z_{1} \cap Z_{2} \subseteq\left\{z_{1}, z_{2}\right\}$.
7. For every member (Z, z) of \mathcal{F}, if $|Z| \geq 2$, then $Z \subseteq V(T), T[Z]$ is a connected subgraph in T rooted at z, and $s(v)=$ outer for every $v \in Z$.
8. For every $v \in V(T)$, the following hold.
(a) $R(v)$ is the root of the component of T containing v.
(b) If $R(v) \neq v$, then v is M-saturated.
(c) If $b(v)=v \neq R(v)$, then the edge between v and its parent is in M.
(d) If $a(v) \neq *$, then $v a(v) \in E(G)-M$, and $s(a(v))=$ outer.
(e) If $s(v)$ is inner, then it has a parent in T, the edge between v and its parent is not in M, it has a unique child in T, and the edge between v and the child is an edge in M.
(f) If $v=b(u)$ for some $u \in V(G)$, then $s(v)=$ outer.
(g) If $b(v) \neq *$, then there exists a unique path W of the form $v_{1} v_{2} \ldots v_{|V(W)|}$ satisfying $v_{1}=v, v_{|V(W)|}=b(v)$, and $v_{i+1}=a\left(v_{i}\right)$ for every odd i, and v_{i+1} is the vertex matched to v_{i} by M for every even i; moreover, W is an M-alternating path in G from v to $b(v), V(W)$ is contained in Z for some $(Z, b(v)) \in \mathcal{F}$, and all vertices of W are outer.
(h) If $b(v) \neq *$, then there exists a unique path W of the form $v_{1} v_{2} \ldots v_{|V(W)|}$ satisfying $v_{1}=v, v_{|V(W)|}=b(v)$, and $v_{i+1}=a\left(v_{i}\right)$ for every even i, and v_{i+1} is the vertex matched to v_{i} by M for every odd i; moreover, W is an M-alternating path in G from v to $b(v)$, and $V(W)$ is contained in Z for some $(Z, b(v)) \in \mathcal{F}$, and all vertices of W are outer.
(i) If $b(v) \neq v$, then the path P_{v} defined in the algorithm is an M alternating path from v to $R(v)$ such that the edge of P_{v} incident with v is in M and the edge of P_{v} incident with $R(v)$ is not in M.
9. For every member (Z, z) of \mathcal{F}, Z is a blossom based at z.

Now we use them to prove the correctness of the algorithm.

1 Correctness of Edmonds' Blossom Algorithm

Lemma 3 Let M be the matching of G when Edmonds' Blossom algorithm terminates. Let X be the set of inner vertices when Edmonds' Blossom algorithm terminates. Let Y be the set of outer vertices when Edmonds' Blossom algorithm terminates. Let $W=V(G)-(X \cup Y)$. Then the following hold.

1. The components of $G[Y]$ are exactly the odd components of $G-X$.
2. $M \cap E(G[Y])$ gives a near-perfect matching for each component of $G[Y]$.
3. $2|M|=|V(G)|+|X|-\operatorname{oddcomp}_{G}(X)$.
4. M matches each vertex in X to a vertex in Y such that no two vertices in X are matched to vertices in the same component of $G[Y]$.
5. $M \cap E(G[W])$ is a perfect matching of $G[W]$.

Proof. First, notice that $X \cup Y$ is the set of marked vertices and W is the set of unmarked vertices.

Note that no inner vertex is contained in Z for any member (Z, z) of \mathcal{F} with $|Z| \geq 2$. By Properties $8(\mathrm{~g})$ and $8(\mathrm{~h})$ in Lemma 2, every member of $G[Z]$ is connected for every $(Z, z) \in \mathcal{F}$. So every component of $G-X$ is a union of members of \mathcal{F}. Moreover, all vertices in $G-(X \cup W)$ are outer, so there is no edge of $G-X$ between two different vertices in different members of \mathcal{F} intersecting Y and there is no edge of $G-X$ between a vertex in Y and a vertex in W, for otherwise the shrinking step should merge these two members or the growing step should include more marked vertices. So by property 6 in Lemma 2, for every component C of $G-X$ intersecting Y, there exist members $\left(Z_{C, i}, z_{C, i}\right)$ of \mathcal{F} for $i \in[k]$ and some integer k such that $V(C)=\bigcup_{i=1}^{k} Z_{C, i}, Z_{C, j} \cap \bigcup_{i=1}^{j-1} Z_{C, i}=\left\{z_{C, j}\right\}$ for every $2 \leq j \leq k$, and all vertices in C are descendants of $z_{C, 1}$. For each component C of $G-X$ intersecting Y, by property 9 in Lemma $2, z_{C, 1}$ is the unique non- M-saturated vertex in C, so $|V(C)|$ is odd, and $M \cap E(G[Y])$ gives a near-perfect matching for each component of $G[Y]$. This proves Statement 2 and proves that every component of $G-X$ intersecting Y is odd. And notice that every vertex in W is saturated by M. Since every M-saturated marked vertices is matched to a marked vertex by $M, M \cap E(G[W])$ is a perfect matching of $G[W]$, so every component of $G-X$ intersecting W is a component of $G[W]$ and is even. This proves Statements 1 and 5 .

For every component C of $G-X$, if $z_{C, 1}$ is not a root of a component of T, then let p_{C} be the parent of $z_{C, 1}$. Since all vertices in C are descendants of $z_{C, 1}, p_{C} \notin V(C)$, so $p_{C} \in X$. Since p_{C} is inner, Property $8(\mathrm{e})$ in Lemma 2 implies that it has the unique child, so the number of components of $G-X$ intersecting Y equals $|X|$ plus the number of components of T. Note that for each component of T, its root is the unique non- M-saturated vertex. So the number of components of T equals $|V(G)|-2|M|$. Therefore, Statement $1 \mathrm{implies}^{\operatorname{oddcomp}}{ }_{G}(X)=|X|+(|V(G)|-2|M|)$. This proves Statement 3.

By Property 8(e) in Lemma 2, every inner vertex is matched by M to its unique child. So M matches each vertex in X to a vertex in Y. Then Statement 4 follows from Statements 2.

Lemma 4 The matching M output by the algorithm is a maximum matching in G.

Proof. It immediately follows from Proposition 1 and Statement 3 of Lemma 3.

Theorem 5 Edmonds' Blossom Algorithm outputs a maximum matching in time $O\left(|V(G)|^{3}\right)$.

Proof. It outputs a maximum matching by Lemma 4. Since the maximum matching has size at most $|V(G)|$, augmenting cases can only happen at most $|V(G)|$ times. And each growing case takes time $O(1)$ and increases $|V(T)|$. And each shrinking case decreases $|\mathcal{F}|$ and takes time $O(|V(G)|+$ $\left.\sum_{v \in Y} \operatorname{deg}_{G}(v)\right)$, where Y is the set of vertices that were inner and turns outer in this shrinking case. Since both $|V(T)|$ and $|\mathcal{F}|$ are bounded by $|V(G)|$, and every vertex can turn outer at most once, we know that between any two consecutive augmenting cases, it takes time $O\left(|V(G)|^{2}+|E(G)|\right)=$ $O\left(|V(G)|^{2}\right)$. Since augmenting cases can only happen at most $|V(G)|$ times, and each augmenting case takes time $O(|V(G)|)$, the total running time is $O\left(|V(G)|^{3}\right)$.

2 Applications of the blossom algorithm

Corollary 6 (Berge-Tutte formula) Let G be a graph. Then

$$
\max _{M}|M|=\min _{X \subseteq V(G)} \frac{|V(G)|+|X|-\operatorname{oddcomp}_{G}(X)}{2}
$$

where the maximum is over all matchings M in G.
Proof. It immediately follows from Proposition 1 and Statement 3 of Lemma 3.

Another corollary of Edmonds' blossom algorithm is to obtain the GallaiEdmonds decomposition, which is a strengthening of Berge-Tutte formula. The Gallai-Edmonds decomposition of a graph G is a tuple (X, Y, W) such that

- Y is the set of vertices that are unsaturated by at least one maximum matching,
- X be the set of vertices not in Y but adjacent in G to some vertex in Y, and
- $W=V(G)-(X \cup Y)$.

We show that Edmonds' blossom algorithm also finds the Gallai-Edmonds decomposition.

Corollary 7 Let G be a graph. Let Y be the set of vertices that are unsaturated by at least one maximum matching. Let X be the set of vertices not in Y but adjacent in G to some vertex in Y. Let $W=V(G)-(X \cup Y)$. (That is, (X, Y, W) is the Gallai-Edmonds decomposition.) Then the following hold.

1. If M is the matching when Edmonds' Blossom Algorithm terminates, and X_{M}, Y_{M}, W_{M} are the corresponding sets X, Y, W described in Lemma 3, then $X=X_{M}, Y=Y_{M}$ and $W=W_{M}$.
2. Every maximum matching of G contains a perfect matching of $G[W]$ and a near-perfect matching of each component of $G[Y]$ and matches each vertex in X to a vertex in Y such that different vertices in X are matched to vertices in different components of $G[Y]$.
3. Every connected component of $G[Y]$ has a near-perfect matching.
4.

$$
\max _{M}|M|=\frac{|V(G)|+|X|-\operatorname{oddcomp}_{G}(X)}{2},
$$

where the maximum is over all matchings M in G.

Proof. Let M be the matching of G when Edmonds' Blossom algorithm terminates. Let X_{M} be the set of inner vertices when Edmonds' Blossom algorithm terminates. Let Y_{M} be the set of outer vertices when Edmonds' Blossom algorithm terminates. Let $W_{M}=V(G)-\left(X_{M} \cup Y_{M}\right)$.

By Lemma $4, M$ is a maximum matching. So every maximum matching has size $|M|$. Hence by Statements 1 and 3 of Lemma 3, every maximum matching of G has size $\frac{|V(G)|+\left|X_{M}\right| \text {-oddcomp }{ }_{G}\left(X_{M}\right)}{2}$ and the components of $G\left[Y_{M}\right]$ are exactly the odd components of $G-X_{M}$, so every maximum matching contains a perfect matching of the union of the even component of $G-X_{M}$ (i.e. $G\left[W_{M}\right]$) and a near perfect matching of each odd component of $G-X_{M}$ (i.e. each component of $G\left[Y_{M}\right]$) and matches each vertex in X_{M} to a vertex in an odd component (i.e. in Y_{M}) such that different vertices in X_{M} are matched to different odd components of $G-X_{M}$ (i.e. different components of $G\left[Y_{M}\right]$).

Hence if $y \in Y$, the maximum matching of G that does not saturate y shows that y must be in an odd component of $G-X_{M}$ (i.e. in Y_{M}). So $Y \subseteq Y_{M}$. And for every $y \in Y_{M}$, the path P_{y} mentioned in Edmonds' Blossom Algorithm is defined, and $M \Delta E\left(P_{y}\right)$ is a matching with size equal to $|M|$ that does not saturate y, so $M \Delta E\left(P_{y}\right)$ is a maximum matching that does not saturate y, and hence $y \in Y_{M}$. So $Y_{M} \subseteq Y$. Therefore, $Y_{M}=Y$.

Since $Y=Y_{M}$ are exactly the vertices contained in the odd components of $G-X_{M}, X=N_{G}(Y)=N_{G}\left(Y_{M}\right)=X_{M}$. So $W=V(G)-(X \cup Y)=$ $V(G)-\left(X_{M} \cup Y_{M}\right)=W_{M}$. Therefore, Statement 1 of this corollary holds.

Recall that every maximum matching contains a perfect matching of $G\left[W_{M}\right]=G[W]$ and a near perfect matching of each component of $G\left[Y_{M}\right]=$ $G[Y]$ and matches each vertex in $X_{M}=X$ to a vertex in $Y_{M}=Y$ such that different vertices in $X_{M}=X$ are matched to different components of $G\left[Y_{M}\right]=G[Y]$. So Statement 2 of this corollary holds. And Statements 3 and 4 of this corollary follows from Statements 2 and 3 of Lemma 3, respectively.

Corollary 8 Given a graph G, the Gallai-Edmonds decomposition of G can be found in $O\left(|V(G)|^{3}\right)$ time.

Proof. It immediately follows from Theorem 5 and Corollary 7.

3 Linear programming

Many problems we have considered can be formulated as optimization problems involving matrices and vectors.

For example, given a subset S of $V(G)$, we can define a $0-1$ vector x whose each entry corresponds to a vertex of G such that a vertex v is in S if and only if the v-th entry of x (denoted by x_{v}) is 1 . So a subset S is a stable set in G if and only if the corresponding vector x satisfies $x_{u}+x_{v} \leq 1$ for every edge $u v \in E(G)$. Equivalently, S is a stable set in G if and only if the corresponding vector x satisfies $A x \leq 1$, where A is the edge-vertex incident matrix of G. Hence the independence number of G is the maximum $1^{T} x$ over all 0-1 vectors x satisfying $A x \leq 1$, where A is the edge-vertex incident matrix of G.

Therefore, finding the independence number of a graph is a special case of the optimization problem of the form $\max _{x} c^{T} x$ subject to $A x \leq b$ and x is a $0-1$ vector, for some matrix A and vectors b and c. Such an optimization problem is called an integer programming problem.

Example: Examples of combinatorial problems that can be formulated as $\max _{x} c^{T} x$ subject to $A x \leq b$ and x is a $0-1$ vector include:

1. As we have seen, the independence number of a graph is the case that A is the edge-vertex incident matrix of G and b and c are equal to 1 .
2. The maximum size of a matching is the case that A is the vertex-edge incidence matrix of A, and b and c are equal to 1 . (Note that b has $|V(G)|$ entries and c has $|E(G)|$ entries.)

As we have shown that it is NP-hard to find the independence number, integer programming is NP-hard in general. However, some special case of integer programming problems can be solved in polynomial time, such as the one that formulates the maximum size of a matching.

If we do not restrict x to be a $0-1$ vector, then we obtain the problem $\max _{x} c^{T} x$ subject to $A x \leq b$. This kind of problem is called a linear programming problem.

Linear Programming

Input: An $m \times n$ matrix A over real numbers, a column vector $b \in \mathbb{R}^{m}$ and a column vector $c \in \mathbb{R}^{n}$.
Output: Find $\max _{x \in \mathbb{R}^{n}, A x \leq b} c^{T} x$, or conclude that the set $\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ is empty, or conclude that the maximum does not exist (i.e. for every $\alpha \in \mathbb{R}^{n}$, there exists $x_{0} \in \mathbb{R}^{n}$ with $A x_{0} \leq b$ such that $\left.c^{T} x_{0}>\alpha\right)$.

