
Lecture notes for Mar 6, 2023
Edmonds’ Blossom Algorithm and Linear

Programming

Chun-Hung Liu

March 6, 2023

Last time we proved an easy upper bound for the size of a maximum
matching.

Proposition 1 Let G be a graph. Then

max
M
|M | ≤ min

X⊆V (G)

|V (G)|+ |X| − oddcompG(X)

2
,

where the maximum is over all matchings M in G.

Recall that last time we stated Edmonds’ Blossom Algorithms for finding
a maximum matching and proved the following properties.

Lemma 2 During the entire process, the following properties are preserved.

1. T is a forest and V (T) equals the set of marked vertices.

2. M is a matching of G.

3. For every v ∈ S, s(v) =outer, and if v is M-saturated, then the vertex
matched to v by M is in V (T).

4. For every marked edge, its both ends are in T .

5. For every edge e in M , either e ∈ E(T), or its both ends are not in
V (T).

1

6.
⋃

(Z,z)∈F Z = V (G), and if (Z1, z1) and (Z2, z2) are distinct members

of F with Z1 ∩ Z2 6= ∅, then |Z1| ≥ 2 ≤ |Z2|, |Z1 ∩ Z2| = 1 and
Z1 ∩ Z2 ⊆ {z1, z2}.

7. For every member (Z, z) of F , if |Z| ≥ 2, then Z ⊆ V (T), T [Z] is a
connected subgraph in T rooted at z, and s(v) =outer for every v ∈ Z.

8. For every v ∈ V (T), the following hold.

(a) R(v) is the root of the component of T containing v.

(b) If R(v) 6= v, then v is M-saturated.

(c) If b(v) = v 6= R(v), then the edge between v and its parent is in
M .

(d) If a(v) 6= ∗, then va(v) ∈ E(G)−M , and s(a(v)) =outer.

(e) If s(v) is inner, then it has a parent in T , the edge between v and
its parent is not in M , it has a unique child in T , and the edge
between v and the child is an edge in M .

(f) If v = b(u) for some u ∈ V (G), then s(v) =outer.

(g) If b(v) 6= ∗, then there exists a unique path W of the form v1v2...v|V (W)|
satisfying v1 = v, v|V (W)| = b(v), and vi+1 = a(vi) for every odd i,
and vi+1 is the vertex matched to vi by M for every even i; more-
over, W is an M-alternating path in G from v to b(v), V (W) is
contained in Z for some (Z, b(v)) ∈ F , and all vertices of W are
outer.

(h) If b(v) 6= ∗, then there exists a unique path W of the form v1v2...v|V (W)|
satisfying v1 = v, v|V (W)| = b(v), and vi+1 = a(vi) for every even
i, and vi+1 is the vertex matched to vi by M for every odd i; more-
over, W is an M-alternating path in G from v to b(v), and V (W)
is contained in Z for some (Z, b(v)) ∈ F , and all vertices of W
are outer.

(i) If b(v) 6= v, then the path Pv defined in the algorithm is an M-
alternating path from v to R(v) such that the edge of Pv incident
with v is in M and the edge of Pv incident with R(v) is not in M .

9. For every member (Z, z) of F , Z is a blossom based at z.

Now we use them to prove the correctness of the algorithm.

2

1 Correctness of Edmonds’ Blossom Algorithm

Lemma 3 Let M be the matching of G when Edmonds’ Blossom algorithm
terminates. Let X be the set of inner vertices when Edmonds’ Blossom algo-
rithm terminates. Let Y be the set of outer vertices when Edmonds’ Blossom
algorithm terminates. Let W = V (G)− (X ∪ Y). Then the following hold.

1. The components of G[Y] are exactly the odd components of G−X.

2. M∩E(G[Y]) gives a near-perfect matching for each component of G[Y].

3. 2|M | = |V (G)|+ |X| − oddcompG(X).

4. M matches each vertex in X to a vertex in Y such that no two vertices
in X are matched to vertices in the same component of G[Y].

5. M ∩ E(G[W]) is a perfect matching of G[W].

Proof. First, notice that X ∪ Y is the set of marked vertices and W is the
set of unmarked vertices.

Note that no inner vertex is contained in Z for any member (Z, z) of F
with |Z| ≥ 2. By Properties 8(g) and 8(h) in Lemma 2, every member of
G[Z] is connected for every (Z, z) ∈ F . So every component of G − X is a
union of members of F . Moreover, all vertices in G− (X ∪W) are outer, so
there is no edge of G−X between two different vertices in different members
of F intersecting Y and there is no edge of G − X between a vertex in Y
and a vertex in W , for otherwise the shrinking step should merge these two
members or the growing step should include more marked vertices. So by
property 6 in Lemma 2, for every component C of G − X intersecting Y ,
there exist members (ZC,i, zC,i) of F for i ∈ [k] and some integer k such

that V (C) =
⋃k

i=1 ZC,i, ZC,j ∩
⋃j−1

i=1 ZC,i = {zC,j} for every 2 ≤ j ≤ k, and
all vertices in C are descendants of zC,1. For each component C of G − X
intersecting Y , by property 9 in Lemma 2, zC,1 is the unique non-M -saturated
vertex in C, so |V (C)| is odd, and M∩E(G[Y]) gives a near-perfect matching
for each component of G[Y]. This proves Statement 2 and proves that every
component of G−X intersecting Y is odd. And notice that every vertex in
W is saturated by M . Since every M -saturated marked vertices is matched
to a marked vertex by M , M ∩ E(G[W]) is a perfect matching of G[W], so
every component of G − X intersecting W is a component of G[W] and is
even. This proves Statements 1 and 5.

3

For every component C of G−X, if zC,1 is not a root of a component of
T , then let pC be the parent of zC,1. Since all vertices in C are descendants
of zC,1, pC 6∈ V (C), so pC ∈ X. Since pC is inner, Property 8(e) in Lemma 2
implies that it has the unique child, so the number of components of G−X
intersecting Y equals |X| plus the number of components of T . Note that
for each component of T , its root is the unique non-M -saturated vertex. So
the number of components of T equals |V (G)| − 2|M |. Therefore, Statement
1 implies oddcompG(X) = |X|+ (|V (G)| − 2|M |). This proves Statement 3.

By Property 8(e) in Lemma 2, every inner vertex is matched by M to
its unique child. So M matches each vertex in X to a vertex in Y . Then
Statement 4 follows from Statements 2.

Lemma 4 The matching M output by the algorithm is a maximum matching
in G.

Proof. It immediately follows from Proposition 1 and Statement 3 of Lemma
3.

Theorem 5 Edmonds’ Blossom Algorithm outputs a maximum matching in
time O(|V (G)|3).

Proof. It outputs a maximum matching by Lemma 4. Since the maximum
matching has size at most |V (G)|, augmenting cases can only happen at
most |V (G)| times. And each growing case takes time O(1) and increases
|V (T)|. And each shrinking case decreases |F| and takes time O(|V (G)| +∑

v∈Y degG(v)), where Y is the set of vertices that were inner and turns
outer in this shrinking case. Since both |V (T)| and |F| are bounded by
|V (G)|, and every vertex can turn outer at most once, we know that between
any two consecutive augmenting cases, it takes time O(|V (G)|2 + |E(G)|) =
O(|V (G)|2). Since augmenting cases can only happen at most |V (G)| times,
and each augmenting case takes time O(|V (G)|), the total running time is
O(|V (G)|3).

2 Applications of the blossom algorithm

Corollary 6 (Berge-Tutte formula) Let G be a graph. Then

max
M
|M | = min

X⊆V (G)

|V (G)|+ |X| − oddcompG(X)

2
,

4

where the maximum is over all matchings M in G.

Proof. It immediately follows from Proposition 1 and Statement 3 of Lemma
3.

Another corollary of Edmonds’ blossom algorithm is to obtain the Gallai-
Edmonds decomposition, which is a strengthening of Berge-Tutte formula.
The Gallai-Edmonds decomposition of a graph G is a tuple (X, Y,W) such
that

� Y is the set of vertices that are unsaturated by at least one maximum
matching,

� X be the set of vertices not in Y but adjacent in G to some vertex in
Y , and

� W = V (G)− (X ∪ Y).

We show that Edmonds’ blossom algorithm also finds the Gallai-Edmonds
decomposition.

Corollary 7 Let G be a graph. Let Y be the set of vertices that are unsatu-
rated by at least one maximum matching. Let X be the set of vertices not in
Y but adjacent in G to some vertex in Y . Let W = V (G)−(X∪Y). (That is,
(X, Y,W) is the Gallai-Edmonds decomposition.) Then the following hold.

1. If M is the matching when Edmonds’ Blossom Algorithm terminates,
and XM , YM ,WM are the corresponding sets X, Y,W described in Lemma
3, then X = XM , Y = YM and W = WM .

2. Every maximum matching of G contains a perfect matching of G[W]
and a near-perfect matching of each component of G[Y] and matches
each vertex in X to a vertex in Y such that different vertices in X are
matched to vertices in different components of G[Y].

3. Every connected component of G[Y] has a near-perfect matching.

4.

max
M
|M | = |V (G)|+ |X| − oddcompG(X)

2
,

where the maximum is over all matchings M in G.

5

Proof. Let M be the matching of G when Edmonds’ Blossom algorithm
terminates. Let XM be the set of inner vertices when Edmonds’ Blossom
algorithm terminates. Let YM be the set of outer vertices when Edmonds’
Blossom algorithm terminates. Let WM = V (G)− (XM ∪ YM).

By Lemma 4, M is a maximum matching. So every maximum matching
has size |M |. Hence by Statements 1 and 3 of Lemma 3, every maximum

matching of G has size |V (G)|+|XM |−oddcompG(XM)
2

and the components of G[YM]
are exactly the odd components of G − XM , so every maximum matching
contains a perfect matching of the union of the even component of G−XM

(i.e. G[WM]) and a near perfect matching of each odd component of G−XM

(i.e. each component of G[YM]) and matches each vertex in XM to a vertex in
an odd component (i.e. in YM) such that different vertices in XM are matched
to different odd components of G−XM (i.e. different components of G[YM]).

Hence if y ∈ Y , the maximum matching of G that does not saturate y
shows that y must be in an odd component of G − XM (i.e. in YM). So
Y ⊆ YM . And for every y ∈ YM , the path Py mentioned in Edmonds’
Blossom Algorithm is defined, and M∆E(Py) is a matching with size equal
to |M | that does not saturate y, so M∆E(Py) is a maximum matching that
does not saturate y, and hence y ∈ YM . So YM ⊆ Y . Therefore, YM = Y .

Since Y = YM are exactly the vertices contained in the odd components
of G − XM , X = NG(Y) = NG(YM) = XM . So W = V (G) − (X ∪ Y) =
V (G)− (XM ∪ YM) = WM . Therefore, Statement 1 of this corollary holds.

Recall that every maximum matching contains a perfect matching of
G[WM] = G[W] and a near perfect matching of each component of G[YM] =
G[Y] and matches each vertex in XM = X to a vertex in YM = Y such
that different vertices in XM = X are matched to different components of
G[YM] = G[Y]. So Statement 2 of this corollary holds. And Statements 3 and
4 of this corollary follows from Statements 2 and 3 of Lemma 3, respectively.

Corollary 8 Given a graph G, the Gallai-Edmonds decomposition of G can
be found in O(|V (G)|3) time.

Proof. It immediately follows from Theorem 5 and Corollary 7.

6

3 Linear programming

Many problems we have considered can be formulated as optimization prob-
lems involving matrices and vectors.

For example, given a subset S of V (G), we can define a 0-1 vector x whose
each entry corresponds to a vertex of G such that a vertex v is in S if and
only if the v-th entry of x (denoted by xv) is 1. So a subset S is a stable
set in G if and only if the corresponding vector x satisfies xu + xv ≤ 1 for
every edge uv ∈ E(G). Equivalently, S is a stable set in G if and only if the
corresponding vector x satisfies Ax ≤ 1, where A is the edge-vertex incident
matrix of G. Hence the independence number of G is the maximum 1Tx
over all 0-1 vectors x satisfying Ax ≤ 1, where A is the edge-vertex incident
matrix of G.

Therefore, finding the independence number of a graph is a special case
of the optimization problem of the form maxx c

Tx subject to Ax ≤ b and x
is a 0-1 vector, for some matrix A and vectors b and c. Such an optimization
problem is called an integer programming problem.

Example: Examples of combinatorial problems that can be formulated as
maxx c

Tx subject to Ax ≤ b and x is a 0-1 vector include:

1. As we have seen, the independence number of a graph is the case that
A is the edge-vertex incident matrix of G and b and c are equal to 1.

2. The maximum size of a matching is the case that A is the vertex-edge
incidence matrix of A, and b and c are equal to 1. (Note that b has
|V (G)| entries and c has |E(G)| entries.)

As we have shown that it is NP-hard to find the independence number,
integer programming is NP-hard in general. However, some special case of
integer programming problems can be solved in polynomial time, such as the
one that formulates the maximum size of a matching.

If we do not restrict x to be a 0-1 vector, then we obtain the problem
maxx c

Tx subject to Ax ≤ b. This kind of problem is called a linear program-
ming problem.

7

Linear Programming
Input: An m× n matrix A over real numbers, a column vector b ∈ Rm and
a column vector c ∈ Rn.
Output: Find maxx∈Rn,Ax≤b c

Tx, or conclude that the set {x ∈ Rn : Ax ≤ b}
is empty, or conclude that the maximum does not exist (i.e. for every α ∈ Rn,
there exists x0 ∈ Rn with Ax0 ≤ b such that cTx0 > α).

8

