Lecture notes for Mar 6, 2023 Edmonds' Blossom Algorithm and Linear Programming

Chun-Hung Liu

March 6, 2023

Last time we proved an easy upper bound for the size of a maximum matching.

Proposition 1 Let G be a graph. Then

$$\max_{M} |M| \le \min_{X \subseteq V(G)} \frac{|V(G)| + |X| - \operatorname{oddcomp}_{G}(X)}{2},$$

where the maximum is over all matchings M in G.

Recall that last time we stated Edmonds' Blossom Algorithms for finding a maximum matching and proved the following properties.

Lemma 2 During the entire process, the following properties are preserved.

- 1. T is a forest and V(T) equals the set of marked vertices.
- 2. M is a matching of G.
- 3. For every $v \in S$, s(v) = outer, and if v is M-saturated, then the vertex matched to v by M is in V(T).
- 4. For every marked edge, its both ends are in T.
- 5. For every edge e in M, either $e \in E(T)$, or its both ends are not in V(T).

- 6. $\bigcup_{(Z,z)\in\mathcal{F}} Z = V(G)$, and if (Z_1, z_1) and (Z_2, z_2) are distinct members of \mathcal{F} with $Z_1 \cap Z_2 \neq \emptyset$, then $|Z_1| \ge 2 \le |Z_2|$, $|Z_1 \cap Z_2| = 1$ and $Z_1 \cap Z_2 \subseteq \{z_1, z_2\}$.
- 7. For every member (Z, z) of \mathcal{F} , if $|Z| \ge 2$, then $Z \subseteq V(T)$, T[Z] is a connected subgraph in T rooted at z, and s(v) = outer for every $v \in Z$.
- 8. For every $v \in V(T)$, the following hold.
 - (a) R(v) is the root of the component of T containing v.
 - (b) If $R(v) \neq v$, then v is M-saturated.
 - (c) If $b(v) = v \neq R(v)$, then the edge between v and its parent is in M.
 - (d) If $a(v) \neq *$, then $va(v) \in E(G) M$, and s(a(v)) = outer.
 - (e) If s(v) is inner, then it has a parent in T, the edge between v and its parent is not in M, it has a unique child in T, and the edge between v and the child is an edge in M.
 - (f) If v = b(u) for some $u \in V(G)$, then s(v) = outer.
 - (g) If $b(v) \neq *$, then there exists a unique path W of the form $v_1v_2...v_{|V(W)|}$ satisfying $v_1 = v$, $v_{|V(W)|} = b(v)$, and $v_{i+1} = a(v_i)$ for every odd i, and v_{i+1} is the vertex matched to v_i by M for every even i; moreover, W is an M-alternating path in G from v to b(v), V(W) is contained in Z for some $(Z, b(v)) \in \mathcal{F}$, and all vertices of W are outer.
 - (h) If $b(v) \neq *$, then there exists a unique path W of the form $v_1v_2...v_{|V(W)|}$ satisfying $v_1 = v$, $v_{|V(W)|} = b(v)$, and $v_{i+1} = a(v_i)$ for every even *i*, and v_{i+1} is the vertex matched to v_i by M for every odd *i*; moreover, W is an M-alternating path in G from v to b(v), and V(W)is contained in Z for some $(Z, b(v)) \in \mathcal{F}$, and all vertices of W are outer.
 - (i) If $b(v) \neq v$, then the path P_v defined in the algorithm is an *M*-alternating path from v to R(v) such that the edge of P_v incident with v is in *M* and the edge of P_v incident with R(v) is not in *M*.
- 9. For every member (Z, z) of \mathcal{F} , Z is a blossom based at z.

Now we use them to prove the correctness of the algorithm.

1 Correctness of Edmonds' Blossom Algorithm

Lemma 3 Let M be the matching of G when Edmonds' Blossom algorithm terminates. Let X be the set of inner vertices when Edmonds' Blossom algorithm terminates. Let Y be the set of outer vertices when Edmonds' Blossom algorithm terminates. Let $W = V(G) - (X \cup Y)$. Then the following hold.

- 1. The components of G[Y] are exactly the odd components of G X.
- 2. $M \cap E(G[Y])$ gives a near-perfect matching for each component of G[Y].
- 3. $2|M| = |V(G)| + |X| \text{oddcomp}_G(X)$.
- 4. M matches each vertex in X to a vertex in Y such that no two vertices in X are matched to vertices in the same component of G[Y].
- 5. $M \cap E(G[W])$ is a perfect matching of G[W].

Proof. First, notice that $X \cup Y$ is the set of marked vertices and W is the set of unmarked vertices.

Note that no inner vertex is contained in Z for any member (Z, z) of \mathcal{F} with $|Z| \geq 2$. By Properties 8(g) and 8(h) in Lemma 2, every member of G[Z] is connected for every $(Z,z) \in \mathcal{F}$. So every component of G-X is a union of members of \mathcal{F} . Moreover, all vertices in $G - (X \cup W)$ are outer, so there is no edge of G - X between two different vertices in different members of \mathcal{F} intersecting Y and there is no edge of G - X between a vertex in Y and a vertex in W, for otherwise the shrinking step should merge these two members or the growing step should include more marked vertices. So by property 6 in Lemma 2, for every component C of G - X intersecting Y, there exist members $(Z_{C,i}, z_{C,i})$ of \mathcal{F} for $i \in [k]$ and some integer k such that $V(C) = \bigcup_{i=1}^{k} Z_{C,i}, Z_{C,j} \cap \bigcup_{i=1}^{j-1} Z_{C,i} = \{z_{C,j}\}$ for every $2 \le j \le k$, and all vertices in C are descendants of $z_{C,1}$. For each component C of G - Xintersecting Y, by property 9 in Lemma 2, $z_{C,1}$ is the unique non-M-saturated vertex in C, so |V(C)| is odd, and $M \cap E(G[Y])$ gives a near-perfect matching for each component of G[Y]. This proves Statement 2 and proves that every component of G - X intersecting Y is odd. And notice that every vertex in W is saturated by M. Since every M-saturated marked vertices is matched to a marked vertex by $M, M \cap E(G[W])$ is a perfect matching of G[W], so every component of G - X intersecting W is a component of G[W] and is even. This proves Statements 1 and 5.

For every component C of G - X, if $z_{C,1}$ is not a root of a component of T, then let p_C be the parent of $z_{C,1}$. Since all vertices in C are descendants of $z_{C,1}$, $p_C \notin V(C)$, so $p_C \in X$. Since p_C is inner, Property 8(e) in Lemma 2 implies that it has the unique child, so the number of components of G - X intersecting Y equals |X| plus the number of components of T. Note that for each component of T, its root is the unique non-M-saturated vertex. So the number of components of T equals |V(G)| - 2|M|. Therefore, Statement 1 implies $\operatorname{oddcomp}_G(X) = |X| + (|V(G)| - 2|M|)$. This proves Statement 3.

By Property 8(e) in Lemma 2, every inner vertex is matched by M to its unique child. So M matches each vertex in X to a vertex in Y. Then Statement 4 follows from Statements 2.

Lemma 4 The matching M output by the algorithm is a maximum matching in G.

Proof. It immediately follows from Proposition 1 and Statement 3 of Lemma 3. ■

Theorem 5 Edmonds' Blossom Algorithm outputs a maximum matching in time $O(|V(G)|^3)$.

Proof. It outputs a maximum matching by Lemma 4. Since the maximum matching has size at most |V(G)|, augmenting cases can only happen at most |V(G)| times. And each growing case takes time O(1) and increases |V(T)|. And each shrinking case decreases $|\mathcal{F}|$ and takes time $O(|V(G)| + \sum_{v \in Y} \deg_G(v))$, where Y is the set of vertices that were inner and turns outer in this shrinking case. Since both |V(T)| and $|\mathcal{F}|$ are bounded by |V(G)|, and every vertex can turn outer at most once, we know that between any two consecutive augmenting cases, it takes time $O(|V(G)|^2 + |E(G)|) = O(|V(G)|^2)$. Since augmenting cases can only happen at most |V(G)| times, and each augmenting case takes time O(|V(G)|).

2 Applications of the blossom algorithm

Corollary 6 (Berge-Tutte formula) Let G be a graph. Then

$$\max_{M} |M| = \min_{X \subseteq V(G)} \frac{|V(G)| + |X| - \operatorname{oddcomp}_{G}(X)}{2},$$

where the maximum is over all matchings M in G.

Proof. It immediately follows from Proposition 1 and Statement 3 of Lemma 3. ■

Another corollary of Edmonds' blossom algorithm is to obtain the Gallai-Edmonds decomposition, which is a strengthening of Berge-Tutte formula. The *Gallai-Edmonds decomposition* of a graph G is a tuple (X, Y, W) such that

- Y is the set of vertices that are unsaturated by at least one maximum matching,
- X be the set of vertices not in Y but adjacent in G to some vertex in Y, and
- $W = V(G) (X \cup Y).$

We show that Edmonds' blossom algorithm also finds the Gallai-Edmonds decomposition.

Corollary 7 Let G be a graph. Let Y be the set of vertices that are unsaturated by at least one maximum matching. Let X be the set of vertices not in Y but adjacent in G to some vertex in Y. Let $W = V(G) - (X \cup Y)$. (That is, (X, Y, W) is the Gallai-Edmonds decomposition.) Then the following hold.

- 1. If M is the matching when Edmonds' Blossom Algorithm terminates, and X_M, Y_M, W_M are the corresponding sets X, Y, W described in Lemma 3, then $X = X_M$, $Y = Y_M$ and $W = W_M$.
- 2. Every maximum matching of G contains a perfect matching of G[W]and a near-perfect matching of each component of G[Y] and matches each vertex in X to a vertex in Y such that different vertices in X are matched to vertices in different components of G[Y].
- 3. Every connected component of G[Y] has a near-perfect matching.
- 4.

$$\max_{M} |M| = \frac{|V(G)| + |X| - \operatorname{oddcomp}_{G}(X)}{2},$$

where the maximum is over all matchings M in G.

Proof. Let M be the matching of G when Edmonds' Blossom algorithm terminates. Let X_M be the set of inner vertices when Edmonds' Blossom algorithm terminates. Let Y_M be the set of outer vertices when Edmonds' Blossom algorithm terminates. Let $W_M = V(G) - (X_M \cup Y_M)$.

By Lemma 4, M is a maximum matching. So every maximum matching has size |M|. Hence by Statements 1 and 3 of Lemma 3, every maximum matching of G has size $\frac{|V(G)|+|X_M|-\text{oddcomp}_G(X_M)}{2}$ and the components of $G[Y_M]$ are exactly the odd components of $G - X_M$, so every maximum matching contains a perfect matching of the union of the even component of $G - X_M$ (i.e. $G[W_M]$) and a near perfect matching of each odd component of $G - X_M$ (i.e. each component of $G[Y_M]$) and matches each vertex in X_M to a vertex in an odd component (i.e. in Y_M) such that different vertices in X_M are matched to different odd components of $G - X_M$ (i.e. different components of $G[Y_M]$).

Hence if $y \in Y$, the maximum matching of G that does not saturate yshows that y must be in an odd component of $G - X_M$ (i.e. in Y_M). So $Y \subseteq Y_M$. And for every $y \in Y_M$, the path P_y mentioned in Edmonds' Blossom Algorithm is defined, and $M\Delta E(P_y)$ is a matching with size equal to |M| that does not saturate y, so $M\Delta E(P_y)$ is a maximum matching that does not saturate y, and hence $y \in Y_M$. So $Y_M \subseteq Y$. Therefore, $Y_M = Y$.

Since $Y = Y_M$ are exactly the vertices contained in the odd components of $G - X_M$, $X = N_G(Y) = N_G(Y_M) = X_M$. So $W = V(G) - (X \cup Y) = V(G) - (X_M \cup Y_M) = W_M$. Therefore, Statement 1 of this corollary holds.

Recall that every maximum matching contains a perfect matching of $G[W_M] = G[W]$ and a near perfect matching of each component of $G[Y_M] = G[Y]$ and matches each vertex in $X_M = X$ to a vertex in $Y_M = Y$ such that different vertices in $X_M = X$ are matched to different components of $G[Y_M] = G[Y]$. So Statement 2 of this corollary holds. And Statements 3 and 4 of this corollary follows from Statements 2 and 3 of Lemma 3, respectively.

Corollary 8 Given a graph G, the Gallai-Edmonds decomposition of G can be found in $O(|V(G)|^3)$ time.

Proof. It immediately follows from Theorem 5 and Corollary 7.

3 Linear programming

Many problems we have considered can be formulated as optimization problems involving matrices and vectors.

For example, given a subset S of V(G), we can define a 0-1 vector x whose each entry corresponds to a vertex of G such that a vertex v is in S if and only if the v-th entry of x (denoted by x_v) is 1. So a subset S is a stable set in G if and only if the corresponding vector x satisfies $x_u + x_v \leq 1$ for every edge $uv \in E(G)$. Equivalently, S is a stable set in G if and only if the corresponding vector x satisfies $Ax \leq 1$, where A is the edge-vertex incident matrix of G. Hence the independence number of G is the maximum $1^T x$ over all 0-1 vectors x satisfying $Ax \leq 1$, where A is the edge-vertex incident matrix of G.

Therefore, finding the independence number of a graph is a special case of the optimization problem of the form $\max_x c^T x$ subject to $Ax \leq b$ and xis a 0-1 vector, for some matrix A and vectors b and c. Such an optimization problem is called an *integer programming problem*.

Example: Examples of combinatorial problems that can be formulated as $\max_x c^T x$ subject to $Ax \leq b$ and x is a 0-1 vector include:

- 1. As we have seen, the independence number of a graph is the case that A is the edge-vertex incident matrix of G and b and c are equal to 1.
- 2. The maximum size of a matching is the case that A is the vertex-edge incidence matrix of A, and b and c are equal to 1. (Note that b has |V(G)| entries and c has |E(G)| entries.)

As we have shown that it is NP-hard to find the independence number, integer programming is NP-hard in general. However, some special case of integer programming problems can be solved in polynomial time, such as the one that formulates the maximum size of a matching.

If we do not restrict x to be a 0-1 vector, then we obtain the problem $\max_x c^T x$ subject to $Ax \leq b$. This kind of problem is called a *linear programming problem*.

Linear Programming

Input: An $m \times n$ matrix A over real numbers, a column vector $b \in \mathbb{R}^m$ and a column vector $c \in \mathbb{R}^n$.

Output: Find $\max_{x \in \mathbb{R}^n, Ax \leq b} c^T x$, or conclude that the set $\{x \in \mathbb{R}^n : Ax \leq b\}$ is empty, or conclude that the maximum does not exist (i.e. for every $\alpha \in \mathbb{R}^n$, there exists $x_0 \in \mathbb{R}^n$ with $Ax_0 \leq b$ such that $c^T x_0 > \alpha$).