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1 Linear programming

Linear Programming
Input: An m× n matrix A over real numbers, a column vector b ∈ Rm and
a column vector c ∈ Rn.
Output: Find maxx∈Rn,Ax≤b c

Tx, or conclude that the set {x ∈ Rn : Ax ≤ b}
is empty, or conclude that the maximum does not exist (i.e. for every α ∈ Rn,
there exists x0 ∈ Rn with Ax0 ≤ b such that cTx0 > α).

Every vector x in the set {x ∈ Rn : Ax ≤ b} is called a feasible solution;
any feasible solution that attains the maximum is called an optimal solution.

Example:

1. The maximum flow of a network (D, s, t, g) is the case that A is the
incidence matrix whose each row corresponds to an edge ofD and whose
column corresponds to a directed path from s to t, and the vector b is
the vector with |E(D)| entries such that for every e ∈ E(D), the e-th
entry of b equals the capacity of e, and c is the vector 1.

Unlike integer programming, linear programming can be solved in poly-
nomial time. But the proof is too complicated to be included here.
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Theorem 1 There exists a polynomial p such that if all entries of the matrix
A are rational, then Linear Programming can be solved in time p(|A|), where
|A| is the total number of bits to represent the entries of A.

Given the maximization problem maxx c
Tx subject to Ax ≤ b, it has a

“dual problem”: miny y
T b subject to yTA = cT , y ≥ 0. It is easy to see that

for every feasible solution x for the primal problem and for every feasible
solution for the dual problem, yT b ≤ yT (Ax) = (yTA)x = cTx. So the
optimal value for the dual is always at most the optimal value of the primal.
Hence we obtain the following proposition.

Proposition 2 Let A be an m× n matrix over R. Let b ∈ Rm and c ∈ Rn.
Then

sup
x∈Zn,Ax≤b

cTx ≤ sup
x∈Rn,Ax≤b

cTx ≤ inf
y∈Rm,yTA=cT ,y≥0

bTy ≤ inf
y∈Zm,yTA=cT ,y≥0

bTy.

In fact, the optimal values of the pair of primal and dual of linear pro-
gramming always equal, as long as feasible solutions exist.

Theorem 3 (Duality Theorem) Let A be an m × n matrix over R. Let
b ∈ Rm and c ∈ Rn. Let P = {x ∈ Rn : Ax ≤ b} and D = {y ∈ Rm : yTA =
cT , y ≥ 0}. If P 6= ∅ 6= D, then maxx∈P c

Tx = miny∈D b
Ty.

Proofs for the Duality Theorem can be found in most of linear optimiza-
tion courses, so we do not repeat it here.

We can also obtain a “more symmetric” version.

Corollary 4 (Duality Theorem) Let A be an m × n matrix over R. Let
b ∈ Rm and c ∈ Rn. Let P = {x ∈ Rn : Ax ≤ b, x ≥ 0} and D = {y ∈ Rm :
yTA ≥ cT , y ≥ 0}. If P 6= ∅ 6= D, then maxx∈P c

Tx = miny∈D b
Ty.

Proof. Let B =

[
A
−I

]
, where I is the identity matrix, and let d =

[
b
0

]
.

Then P = {x ∈ Rn : Bx ≤ d}. Let D′ = {y ∈ Rm+n : yTB = cT , y ≥ 0}.
Since P 6= ∅, by Theorem 3, if D′ 6= ∅, then maxx∈P c

Tx = miny∈D′ dTy.
For each y ∈ Rm+n, let y1 be the vector consisting of the first m entries

of y, and let y2 be the vector consisting of the last n entries of y. Then
for every y ∈ D′, cT = yTB = yT1 A − yT2 I ≤ yT1 A, so y1 ∈ D. Moreover,
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the last n entires of d are zero, so dTy = bTy1 for every y ∈ D′. Hence
miny∈D′ dTy = miny∈D′ bTy1 ≥ minz∈D b

T z.
Conversely, if z ∈ D, then z ∈ Rm with zTA ≥ cT , so there exists

w ∈ Rn such that w ≥ 0 and zTA − wT I = cT , and hence

[
z
w

]
∈ D′

and bT z = dT
[
z
w

]
≥ miny∈D′ dTy. So minz∈D b

T z ≥ miny∈D′ dTy. There-

fore, minz∈D b
T z = miny∈D′ dTy. Moreover, D 6= ∅ implies D′ 6= ∅, so

maxx∈P c
Tx = miny∈D′ dTy = minz∈D b

T z.

Remark:

1. Theorem 3 shows that the middle inequality in Proposition 2 is an
equality, assuming the feasibility. But the other two inequalities usually
are unequal, as we will see below.

2. Consider the matrix A and vectors b and c for matching. That is, A
is the vertex-edge incidence matrix of a graph G, and b and c equal 1.
Now assume that G is the cycle of length k for some integer k. Then
the integral version for maximization has optimal value bk

2
c, because it

is equals the maximum size of a matching. And the vector that assigns
each entry 1

2
is a feasible solution for Ax ≤ b, so the optimal value

for the fractional maximization problem is at least k
2
, which is strictly

greater than the integral maximum when k is odd.

3. Again consider the matrix A and vectors b and c for matching. That
is, A is the vertex-edge incidence matrix of a graph G, and b and c
equal 1. Now we consider the “symmetric” version. Note that having
the condition x ≥ 0 or not does not affect the optimal value because
c > 0. Each feasible solution y of the integral version of the dual (i.e.
yTA ≥ cT and y ≥ 0 is integral) is equivalent to assigning each vertex
0 or 1 such that each edge has at least one end assigned by 1, and
hence it is equivalent to a vertex-cover of G. Now assume that G is
the cycle of length k for some integer k. Then the integral version for
minimization has optimal value dk

2
e, because it is equals the minimum

size of a vertex-cover. And the vector that assigns each entry 1
2

is a
feasible solution for yTA ≥ cT , so the optimal value for the fractional
minimization problem is at most k

2
, which is strictly smaller than the

integral minimum when k is odd.
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4. König’s theorem states that if G is bipartite, then the maximum size
of a matching in G equals the minimum size of a vertex-cover in G.
Therefore, if G is bipartite, then the four optima in Proposition 2 are
equal.

5. Consider the matrix A and vectors b and c used to formulate the maxi-
mum value of a flow of a network (D, s, t, g) as a maximization problem
of a linear programming.

� Every feasible solution y of the dual is equivalent to assigning
each row of A (i.e. each edge of D) a nonnegative real number ye
such that for each column of A (i.e. a directed path from s to
t), the sum of the numbers on the edges of this path is at least
1. If y is integral, then it is equivalent to a subset Y of E(D)
such that there exists no directed path in D − Y from s to t, so
Y contains an edge-cut separating s and t, and we can repeatedly
remove edges from Y until Y equals an edge-cut without increas-
ing bTy (since the capacity is nonnegative). Conversely, if Y is an
edge-cut separating s and t, then the corresponding vector y is
an integral feasible solution for the dual. Hence the integral min-
imization problem is equivalent to finding the minimum capacity
of a cut in the network. By the maximum-flow-minimum-cut the-
orem, the minimum capacity of a cut equals the maximum value
of a flow. So the second and the third inequalities in Proposition
2 are equalities.

� When the capacity is not integral, it is possible that every maxi-
mum flow is not an integral flow, so the first inequality in Propo-
sition 2 can be strict.

� Assume that the capacity is integral. We have seen from the Ford-
Fulkerson algorithm that there exists an integral optimal solution
for the maximization problem. So the first inequality in Proposi-
tion 2 is an equality.

Here is a useful corollary of the Duality Theorem.

Corollary 5 Let A be an m×n matrix over R. Let b ∈ Rm and c ∈ Rn. Let
P = {x ∈ Rn : Ax ≤ b} and D = {y ∈ Rm : yTA = cT , y ≥ 0}. Let x∗ ∈ P
and y∗ ∈ D. Then the following are equivalent:

4



1. cTx∗ = maxx∈P c
Tx and bTy∗ = miny∈D b

Ty.

2. cTx∗ = bTy∗.

3. y∗T (b− Ax∗) = 0.

Proof. The equivalence between the first two statements follow from Theo-
rem 3. And cTx∗ − bTy∗ = (y∗TA)x∗ − y∗T b = y∗T (Ax∗ − b). So Statements
2 and 3 are equivalent.

Statement 3 in Corollary 5 is called the complementary slackness condi-
tion. We can obtain a similar result for the symmetric version.

Corollary 6 Let A be an m × n matrix over R. Let b ∈ Rm and c ∈ Rn.
Let P = {x ∈ Rn : Ax ≤ b, x ≥ 0} and D = {y ∈ Rm : yTA ≥ cT , y ≥ 0}.
Let x∗ ∈ P and y∗ ∈ D. Then the following are equivalent:

1. cTx∗ = maxx∈P c
Tx and bTy∗ = miny∈D b

Ty.

2. cTx∗ = bTy∗.

3. y∗T (b− Ax∗) = 0 and (cT − y∗TA)x∗ = 0.

Proof. The equivalence between the first two statements follow from Theo-
rem 3.

Note that y∗T (b−Ax∗) ≥ 0 ≥ (cT−y∗TA)x∗, and Statement 2 is equivalent
to y∗T (b − Ax∗) = (cT − y∗TA)x∗. So Statement 2 is equivalent to y∗T (b −
Ax∗) = 0 = (cT − y∗TA)x∗ which is Statement 3.

Statement 3 in Corollary 6 is also called the complementary slackness
condition.

2 Weighted matching

In this section we consider the maximum weighted matching in a weighted
graph. That is, given an (edge-)weighted graph (G,w), we want to find
a matching M in G maximizing

∑
e∈M w(e). Note that every edge with

negative weight cannot be in any matching with maximum weight. So we can
delete all edges with negative weight from G without changing the answer.
Hence we may assume that w is nonnegative without changing the maximum
weight of a matching.
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2.1 Bipartite graphs

We first consider the case when G is bipartite. Even though we will consider
the case for general G and provide a more efficient algorithm than the bipar-
tite case stated in this section, this bipartite case is simpler and the general
case uses some ideas from it. So we still state the bipartite case here.

Recall the integer/linear programming formulation for the matching and
vertex-cover problem. They are easily generalized to weighted graphs, as
described below.

Let (G,w) be a nonnegative weighted graph, and let A be the vertex-
edge incidence matrix of G. The goal is to find a matching M in G such that∑

e∈M w(e) is as large as possible. Note that we can treat w as a vector in
R|E(G)| indexed by E(G).

� Every matching in (G,w) corresponds to a vector x ∈ {0, 1}|E(G)| sat-
isfying Ax ≤ 1. And weight of a maximum weighted matching is
maxx∈{0,1}|E(G)|,Ax≤1w

Tx. Note that it is also equal to

max
x∈{0,1}|E(G)|,Ax≤1,x≥0

wTx

since w is a nonnegative function.

� The LP-relaxation of the above problem is

max
x∈R|E(G)|,Ax≤1,x≥0

wTx.

� The dual of the LP-relaxation of the above problem is

min
y∈R|V (G)|,yTA≥wT ,y≥0

1Ty.

Note that it is the minimum of “weighted vertex-cover” of G. In par-
ticular, if w = 1, then it is exactly the minimum vertex-cover. We call
every vector y ∈ R|V (G)| satisfying yTA ≥ wT and y ≥ 0 a fractional
vertex-cover for (G,w).

� By the weak duality,

max
x∈{0,1}|E(G)|,Ax≤1,x≥0

wTx ≤ max
x∈R|E(G)|,Ax≤1,x≥0

wTx ≤ min
y∈R|V (G)|,yTA≥wT ,y≥0

1Ty.
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� The key idea of the algorithm is to find a 0-1 solution x∗ for the maxi-
mization problem (for matching) and a (possibly non-integral) solution
y∗ of the minimization problem (for fractional vertex-cover) such that
wTx∗ = 1Ty∗. This implies that all inequalities are equalities, and
hence x∗ is a maximum weighted matching.

� When x∗ corresponds to a perfect matching, we can relax the condition
y ≥ 0 as stated in fractional vertex-cover, as we will see in Proposition
7.

A weak fractional vertex-cover of a graph G is a function f : V (G) → R
such that for every e = uv ∈ E(G), f(u) + f(v) ≥ w(e).

Proposition 7 Let (G,w) be a weighted graph. If M is a perfect match-
ing of G and f is a weak fractional vertex-cover of G, then

∑
e∈M w(e) ≤∑

v∈V (G) f(v).

Proof. For each edge e ∈M , let ue, ve be the ends of e. Since M is a perfect
matching, {ue, ve : e ∈ M} = V (G). Then

∑
e∈M w(e) ≤

∑
e∈M(f(ue) +

f(ve)) =
∑

v∈V (G) f(v).

We first consider the case that G is a complete bipartite graph whose
two parts have the same size. Note that such G has a perfect matching,
so Proposition 7 can apply. The problem for finding a maximum weighted
matching in such G is called the Assignment Problem.
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