Lecture notes for Mar 20, 2023 Weighted bipartite matching

Chun-Hung Liu

March 20, 2023

A weak fractional vertex-cover of a graph G is a function $f: V(G) \rightarrow \mathbb{R}$ such that for every $e=u v \in E(G), f(u)+f(v) \geq w(e)$.

Proposition 1 Let (G, w) be a weighted graph. If M is a perfect matching of G and f is a weak fractional vertex-cover of G, then $\sum_{e \in M} w(e) \leq$ $\sum_{v \in V(G)} f(v)$.

Proof. For each edge $e \in M$, let u_{e}, v_{e} be the ends of e. Since M is a perfect matching, $\left\{u_{e}, v_{e}: e \in M\right\}=V(G)$. Then $\sum_{e \in M} w(e) \leq \sum_{e \in M}\left(f\left(u_{e}\right)+\right.$ $\left.f\left(v_{e}\right)\right)=\sum_{v \in V(G)} f(v)$.

The Assignment Problem is: given a nonnegative weighted balanced complete bipartite graph $\left(K_{n, n}, w\right)$, find a maximum weighted matching. It is a special case for the Weighted Bipartite Matching Problem, but we will show that solving the Assignment Problem is equivalent to solving the Weighted Bipartite Matching Problem.

Hungarian method for the Assignment Problem

Input: A complete bipartite graph G with a bipartition $\{A, B\}$ with $|A|=$ $|B|$, and a function $w: E(G) \rightarrow \mathbb{R}_{\geq 0}$.
Output: A matching M in G and a weak fractional vertex-cover $f: V(G) \rightarrow$ \mathbb{R} for (G, w) such that $\sum_{e \in M} w(e)=\sum_{v \in V(G)} f(v)$.
Procedure:
Step 1: For every $v \in A$, define $f(v)=\max _{e \in \delta(v)} w(e)$. For every $v \in B$, define $f(v)=0$.

Step 2: Let G_{f} be the graph with $V\left(G_{f}\right)=V(G)$ and $E\left(G_{f}\right)=\{e=u v \in$ $E(G): f(u)+f(v)=w(e)\}$. Find a maximum (unweighted) matching M in G_{f} and a minimum vertex-cover S of G_{f}. If M is a perfect matching in G_{f}, then output M and f and stop. Otherwise, do Step 3.

Step 3: Let $\epsilon=\min _{e=u v \in \delta(A-S)-\left(E\left(G_{f}\right) \cup \delta(B \cap S)\right)}(f(u)+f(v)-w(e))$. Redefine f as follows: for every $v \in A-S$, define $f(v)=f(v)-\epsilon$; for every $v \in B \cap S$, define $f(v)=f(v)+\epsilon$. Repeat Step 2 .

Lemma 2 During the entire process, f is always a weak fractional vertexcover for (G, w). In particular, $\epsilon \geq 0$ during the process.

Proof. Let f_{1} be the function f at some moment. Assume that f_{1} is a weak fractional vertex-cover for (G, w). Let f_{2} be the new function f when it is updated. It suffices to show that $f_{2}(u)+f_{2}(v) \geq w(e)$, where $e=u v$ is an edge of G, and $u \in A$ and $v \in B$. Since f_{1} is a weak fractional vertex-cover for (G, w), the ϵ used for defining f_{2} is nonnegative. So $\left.f_{2}\right|_{B} \geq\left. f_{1}\right|_{B}$.

If $u \in A \cap S$, then $f_{2}(u)=f_{1}(u)$, so $f_{2}(u)+f_{2}(v) \geq f_{1}(u)+f_{1}(v) \geq w(e)$. So we may assume $u \in A-S$. If $v \in B \cap S$, then $f_{2}(u)+f_{2}(v)=\left(f_{1}(u)-\right.$ $\epsilon)+\left(f_{1}(v)+\epsilon\right)=f_{1}(u)+f_{1}(v) \geq w(e)$. So we may assume $v \in B-S$. Since S is a vertex-cover of G_{f}, and $u, v \notin S$, we know $e \notin E\left(G_{f}\right)$. So e is an edge in $\delta(A-S)-\left(E\left(G_{f}\right) \cup \delta(B \cap S)\right)$. Hence $\epsilon \leq f_{1}(u)+f_{1}(v)-w(e)$. So $f_{2}(u)+f_{2}(v) \geq f_{1}(u)-\epsilon+f_{1}(v) \geq f_{1}(u)-\left(f_{1}(u)+f_{1}(v)-w(e)\right)+f_{1}(v)=w(e)$.

Lemma 3 Let f_{1}, M_{1}, S_{1} be the functions f, M, S, respectively, in a round for Step 2. Let f_{2}, M_{2}, S_{2} be the functions f, M, S, respectively, in the next round for Step 2. If we use the augmenting path argument for the corresponding network to find M and S, then either $\left|M_{2}\right|>\left|M_{1}\right|$, or $\left|M_{2}\right|=\left|M_{1}\right|$ and $\left|S_{2} \cap B\right|>\left|S_{1} \cap B\right|$.

Proof. Since $\epsilon \geq 0$ by Lemma 2, every edge in $E\left(G_{f_{1}}\right)-E\left(G_{f_{2}}\right)$ is between $A \cap S_{1}$ and $B \cap S_{1}$. Since M_{1} is a matching for $G_{f_{1}}$ and S_{1} is a vertex-cover for $G_{f_{1}}$ with $\left|M_{1}\right|=\left|S_{1}\right|$, we know every edge in M_{1} is either between $A \cap S_{1}$ and $B-S_{1}$ or between $A-S_{1}$ and $B \cap S_{1}$. So $M_{1} \subseteq E\left(G_{f_{2}}\right)$ is a matching in $G_{f_{2}}$. Since M_{2} is a maximum (unweighted) matching in $G_{f_{2}},\left|M_{2}\right| \geq\left|M_{1}\right|$. So we may assume $\left|M_{2}\right|=\left|M_{1}\right|$, for otherwise we are done. As we use the augmenting path argument and M_{1} is a matching in $G_{f_{1}} \cap G_{f_{2}}, M_{1}=M_{2}$.

Note that $\left|M_{1}\right|<|A|$, for otherwise the algorithm stops and should not produce M_{2}. By König's theorem, $\left|S_{1}\right|=\left|M_{1}\right|<|A|$. Since G is a complete bipartite graph, there exists an edge $e \in E\left(G_{f_{2}}\right)-E\left(G_{f_{1}}\right)$ between $A-S_{1}$ and $B-S_{1}$. Let $u \in A-S_{1}$ and $v \in B-S_{1}$ be the ends of e.

Recall the network ($D_{f}, s, t, 1$) we construct is the one obtained from G_{f} by directing the edges from A to B, adding new vertices s, t and adding edges from s to A and edges from B to t. Note that the matching M comes from deleting s and t from the internally disjoint path from s to t given from the maximum (integral) flow, and $S=(A-C) \cup S^{\prime} \cup(B \cap C)$, where C is a minimum cut for ($D_{f}, s, t, 1$) and S^{\prime} is the subset of $A \cap C$ incident with an edge in M. In the residue graph, C is the set of vertices reachable from s. So every vertex in $S \cap B$ are exactly the vertices in B reachable from s (i.e. $B \cap S=B \cap C)$. And every vertex in $A-S$ is contained in $A \cap C$ and hence is reachable from s. Moreover, every vertex in $A \cap S$ is matched by M to a vertex in $B-S$, and every vertex in $B \cap S$ is matched by M to a vertex in $A-S \subseteq A \cap C$.

Note that $D_{f_{2}}$ is obtained from $D_{f_{1}}$ by deleting edges in $E\left(G_{f_{1}}\right)-E\left(G_{f_{2}}\right)$ and adding edges in $E\left(G_{f_{2}}\right)-E\left(G_{f_{1}}\right)$, and $M_{1}=M_{2}$.

Now we consider the case $f=f_{1}$, and we call the cut in the network C_{1}. For every directed path P in the residue graph from s to a vertex of C_{1}, $P-\{s, t\}$ is an M_{1}-alternating path from an M_{1}-unsaturated vertex in A, and $V(P) \cap V(B)$ are reachable and hence contained in $S_{1} \cap B$, so P only uses edges between $A-S_{1}$ and $B \cap S_{1}$, and hence P is still in the residue graph for f_{2}. So every vertex in B reachable for f_{1} is also reachable for f_{2}. That is, $C_{1} \cap B \subseteq C_{2} \cap B$.

Recall that $e=u v \in E\left(G_{f_{2}}\right)$ is an edge with $u \in A-S_{1}$ and $v \in B-S_{1}$. So $u \in C_{1}$, but $v \notin C_{1}$. Since $M_{1}=M_{2}$, if u is saturated by $M_{1}=M_{2}$, say $u u^{\prime} \in M_{1}=M_{2}$, then $\left(u^{\prime}, u\right)$ is an edge in the residue graph for both f_{1} and f_{2} and $u^{\prime} \in C_{1} \cap B \subseteq C_{2} \cap B$, so $u \in C_{1} \cap C_{2}$; if u is unsaturated by $M_{1}=M_{2}$, then u is reachable from s in the residue graph for both f_{1} and f_{2} by an edge. So u is reachable for both f_{1} and f_{2} in either case. But $u v \in E\left(G_{f_{2}}\right)-M_{1}=E\left(G_{f_{2}}\right)-M_{2}, v$ is in the reachable set for f_{2}. Therefore, the reachable set C_{2} for f_{2} is strictly bigger than the one C_{1} for f_{1}. That is, $C_{2} \cap B \supset C_{1} \cap B$. Note that $S_{1} \cap B=C_{1} \cap B \subset C_{2} \cap B=S_{2} \cap B$.

Theorem 4 If we use the augmenting path argument in Step 2, then Hungarian method for Assignment Problem correctly outputs a matching M in G and a weak fractional vertex-cover $f: V(G) \rightarrow \mathbb{R}$ for (G, w) such that
$\sum_{e \in M} w(e)=\sum_{v \in V(G)} f(v)$ in time $O\left(|V(G)|^{4}\right)$. In particular, M is a matching in (G, w) with maximum weight.

Proof. By Lemma 3, the matching size must increase by executing Step 2 at most $|B|$ times, so the algorithm will stop by executing Step 2 at most $|B|^{2} \leq$ $|V(G)|^{2}$ times. Note that we only have to find augmenting path $O\left(|V(G)|^{2}\right)$ times in total for Step 2, each taking time $O(|E(G)|)=O\left(|V(G)|^{2}\right)$. And we can update the residue graph for the augmenting path argument in each Step 3 in time $O(|E(G)|)=O\left(|V(G)|^{2}\right)$, and we do Step 3 at most $O\left(|V(G)|^{2}\right)$ times. So the total running time is $O\left(|V(G)|^{4}\right)$.

Since M is a perfect matching in G_{f} by the definition of the algorithm and f is a weak fractional vertex-cover of (G, w) by Lemma 2 , we know $\sum_{e \in M} w(e)=\sum_{u, v \in V(M)}(f(u)+f(v))=\sum_{x \in V(G)} f(x)$. And by Proposition 1 , since $w \geq 0$, for every matching M^{*} of $(G, w), \sum_{e \in M^{*}} w(e) \leq$ $\sum_{x \in V(G)} f(x)=\sum_{e \in M} w(e)$. So M is a maximum weighted matching in (G, w).

Note that the time complexity can be improved, as we will see in the next section.

Now we can solve the maximum weighted matching problem for general bipartite graphs.

Algorithm for Maximum Weighted Bipartite Matching
Input: A simple bipartite graph G with a bipartition $\{A, B\}$, and a function $w: E(G) \rightarrow \mathbb{R}$.
Output: A matching M in G with maximum $\sum_{e \in M} w(e)$.
Procedure:
Step 0: Let G_{0} be the graph obtained from G by deleting all edges e of G with $w(e)<0$.

Step 1: By symmetry, we may assume $|A| \leq|B|$. Let G^{\prime} be the complete bipartite graph obtained from G_{0} by adding $|B|-|A|$ vertex into A to form a new set A^{\prime} and add edges such that $\left\{A^{\prime}, B^{\prime}\right\}$ is the bipartition of G^{\prime} with $A^{\prime} \supseteq A$ and $B^{\prime}=B$ with $\left|A^{\prime}\right|=\left|B^{\prime}\right|$. Assign $w(e)=0$ for every edge in $E\left(G^{\prime}\right)-E\left(G_{0}\right)$.

Step 2: Use an algorithm for the Assignment Problem to find a maximum weighted matching M^{\prime} of $\left(G^{\prime}, w^{\prime}\right)$.

Step 3: Let $M=M^{\prime} \cap E\left(G_{0}\right)$ and output M.

Theorem 5 Given a simple bipartite graph G and a weight function w : $E(G) \rightarrow \mathbb{R}$, a matching in (G, w) with maximum weight can be found in time $O\left(|V(G)|^{4}\right)$.

Proof. Since every matching with maximum weight in (G, w) does not use any edge with negative weight, we know maximum weighted matching in (G, w) are exactly the maximum weighted matching in $\left(G_{0}, w\right)$. Since every edge in $E\left(G^{\prime}\right)-E\left(G_{0}\right)$ has weigh 0 , the weight of a maximum weighted matching in $\left(G_{0}, w\right)$ equals the weight of a maximum weighted matching in $\left(G^{\prime}, w^{\prime}\right)$. And clearly the matching M^{\prime} mentioned in the algorithm is a maximum weighted matching in $\left(G^{\prime}, w^{\prime}\right)$. Since every edge in $E\left(G^{\prime}\right)-E(G)$ has weight $0, \sum_{e \in M} w(e)=\sum_{e \in M^{\prime}} w(e)$. Hence M is a maximum weighted matching (G, w).

The time complexity follows from the time complexity for the Assignment problem.

