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A weak fractional vertex-cover of a graph G is a function f : V (G) → R
such that for every e = uv ∈ E(G), f(u) + f(v) ≥ w(e).

Proposition 1 Let (G,w) be a weighted graph. If M is a perfect match-
ing of G and f is a weak fractional vertex-cover of G, then

∑
e∈M w(e) ≤∑

v∈V (G) f(v).

Proof. For each edge e ∈M , let ue, ve be the ends of e. Since M is a perfect
matching, {ue, ve : e ∈ M} = V (G). Then

∑
e∈M w(e) ≤

∑
e∈M(f(ue) +

f(ve)) =
∑

v∈V (G) f(v).

The Assignment Problem is: given a nonnegative weighted balanced com-
plete bipartite graph (Kn,n, w), find a maximum weighted matching. It is a
special case for the Weighted Bipartite Matching Problem, but we will show
that solving the Assignment Problem is equivalent to solving the Weighted
Bipartite Matching Problem.

==============================
Hungarian method for the Assignment Problem
Input: A complete bipartite graph G with a bipartition {A,B} with |A| =
|B|, and a function w : E(G)→ R≥0.
Output: A matching M in G and a weak fractional vertex-cover f : V (G)→
R for (G,w) such that

∑
e∈M w(e) =

∑
v∈V (G) f(v).

Procedure:

Step 1: For every v ∈ A, define f(v) = maxe∈δ(v)w(e). For every v ∈ B, define
f(v) = 0.
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Step 2: Let Gf be the graph with V (Gf ) = V (G) and E(Gf ) = {e = uv ∈
E(G) : f(u) + f(v) = w(e)}. Find a maximum (unweighted) matching
M in Gf and a minimum vertex-cover S of Gf . If M is a perfect
matching in Gf , then output M and f and stop. Otherwise, do Step 3.

Step 3: Let ε = mine=uv∈δ(A−S)−(E(Gf )∪δ(B∩S))(f(u) + f(v) − w(e)). Redefine
f as follows: for every v ∈ A − S, define f(v) = f(v) − ε; for every
v ∈ B ∩ S, define f(v) = f(v) + ε. Repeat Step 2.

==============================

Lemma 2 During the entire process, f is always a weak fractional vertex-
cover for (G,w). In particular, ε ≥ 0 during the process.

Proof. Let f1 be the function f at some moment. Assume that f1 is a weak
fractional vertex-cover for (G,w). Let f2 be the new function f when it is
updated. It suffices to show that f2(u) + f2(v) ≥ w(e), where e = uv is an
edge of G, and u ∈ A and v ∈ B. Since f1 is a weak fractional vertex-cover
for (G,w), the ε used for defining f2 is nonnegative. So f2|B ≥ f1|B.

If u ∈ A∩S, then f2(u) = f1(u), so f2(u) + f2(v) ≥ f1(u) + f1(v) ≥ w(e).
So we may assume u ∈ A − S. If v ∈ B ∩ S, then f2(u) + f2(v) = (f1(u) −
ε) + (f1(v) + ε) = f1(u) + f1(v) ≥ w(e). So we may assume v ∈ B−S. Since
S is a vertex-cover of Gf , and u, v 6∈ S, we know e 6∈ E(Gf ). So e is an
edge in δ(A− S)− (E(Gf ) ∪ δ(B ∩ S)). Hence ε ≤ f1(u) + f1(v)−w(e). So
f2(u)+f2(v) ≥ f1(u)−ε+f1(v) ≥ f1(u)−(f1(u)+f1(v)−w(e))+f1(v) = w(e).

Lemma 3 Let f1,M1, S1 be the functions f,M, S, respectively, in a round for
Step 2. Let f2,M2, S2 be the functions f,M, S, respectively, in the next round
for Step 2. If we use the augmenting path argument for the corresponding
network to find M and S, then either |M2| > |M1|, or |M2| = |M1| and
|S2 ∩B| > |S1 ∩B|.

Proof. Since ε ≥ 0 by Lemma 2, every edge in E(Gf1)−E(Gf2) is between
A ∩ S1 and B ∩ S1. Since M1 is a matching for Gf1 and S1 is a vertex-cover
for Gf1 with |M1| = |S1|, we know every edge in M1 is either between A∩S1

and B − S1 or between A− S1 and B ∩ S1. So M1 ⊆ E(Gf2) is a matching
in Gf2 . Since M2 is a maximum (unweighted) matching in Gf2 , |M2| ≥ |M1|.
So we may assume |M2| = |M1|, for otherwise we are done. As we use the
augmenting path argument and M1 is a matching in Gf1 ∩Gf2 , M1 = M2.
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Note that |M1| < |A|, for otherwise the algorithm stops and should not
produce M2. By König’s theorem, |S1| = |M1| < |A|. Since G is a complete
bipartite graph, there exists an edge e ∈ E(Gf2) − E(Gf1) between A − S1

and B − S1. Let u ∈ A− S1 and v ∈ B − S1 be the ends of e.
Recall the network (Df , s, t, 1) we construct is the one obtained from Gf

by directing the edges from A to B, adding new vertices s, t and adding edges
from s to A and edges from B to t. Note that the matching M comes from
deleting s and t from the internally disjoint path from s to t given from the
maximum (integral) flow, and S = (A − C) ∪ S ′ ∪ (B ∩ C), where C is a
minimum cut for (Df , s, t, 1) and S ′ is the subset of A ∩ C incident with an
edge in M . In the residue graph, C is the set of vertices reachable from s.
So every vertex in S ∩B are exactly the vertices in B reachable from s (i.e.
B ∩S = B ∩C). And every vertex in A−S is contained in A∩C and hence
is reachable from s. Moreover, every vertex in A ∩ S is matched by M to a
vertex in B − S, and every vertex in B ∩ S is matched by M to a vertex in
A− S ⊆ A ∩ C.

Note that Df2 is obtained from Df1 by deleting edges in E(Gf1)−E(Gf2)
and adding edges in E(Gf2)− E(Gf1), and M1 = M2.

Now we consider the case f = f1, and we call the cut in the network
C1. For every directed path P in the residue graph from s to a vertex of C1,
P − {s, t} is an M1-alternating path from an M1-unsaturated vertex in A,
and V (P ) ∩ V (B) are reachable and hence contained in S1 ∩ B, so P only
uses edges between A − S1 and B ∩ S1, and hence P is still in the residue
graph for f2. So every vertex in B reachable for f1 is also reachable for f2.
That is, C1 ∩B ⊆ C2 ∩B.

Recall that e = uv ∈ E(Gf2) is an edge with u ∈ A− S1 and v ∈ B − S1.
So u ∈ C1, but v 6∈ C1. Since M1 = M2, if u is saturated by M1 = M2,
say uu′ ∈ M1 = M2, then (u′, u) is an edge in the residue graph for both
f1 and f2 and u′ ∈ C1 ∩ B ⊆ C2 ∩ B, so u ∈ C1 ∩ C2; if u is unsaturated
by M1 = M2, then u is reachable from s in the residue graph for both f1
and f2 by an edge. So u is reachable for both f1 and f2 in either case. But
uv ∈ E(Gf2)−M1 = E(Gf2)−M2, v is in the reachable set for f2. Therefore,
the reachable set C2 for f2 is strictly bigger than the one C1 for f1. That is,
C2 ∩B ⊃ C1 ∩B. Note that S1 ∩B = C1 ∩B ⊂ C2 ∩B = S2 ∩B.

Theorem 4 If we use the augmenting path argument in Step 2, then Hun-
garian method for Assignment Problem correctly outputs a matching M in
G and a weak fractional vertex-cover f : V (G) → R for (G,w) such that
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∑
e∈M w(e) =

∑
v∈V (G) f(v) in time O(|V (G)|4). In particular, M is a

matching in (G,w) with maximum weight.

Proof. By Lemma 3, the matching size must increase by executing Step 2 at
most |B| times, so the algorithm will stop by executing Step 2 at most |B|2 ≤
|V (G)|2 times. Note that we only have to find augmenting path O(|V (G)|2)
times in total for Step 2, each taking time O(|E(G)|) = O(|V (G)|2). And we
can update the residue graph for the augmenting path argument in each Step
3 in time O(|E(G)|) = O(|V (G)|2), and we do Step 3 at most O(|V (G)|2)
times. So the total running time is O(|V (G)|4).

Since M is a perfect matching in Gf by the definition of the algorithm
and f is a weak fractional vertex-cover of (G,w) by Lemma 2, we know∑

e∈M w(e) =
∑

u,v∈V (M)(f(u) + f(v)) =
∑

x∈V (G) f(x). And by Propo-

sition 1, since w ≥ 0, for every matching M∗ of (G,w),
∑

e∈M∗ w(e) ≤∑
x∈V (G) f(x) =

∑
e∈M w(e). So M is a maximum weighted matching in

(G,w).

Note that the time complexity can be improved, as we will see in the next
section.

Now we can solve the maximum weighted matching problem for general
bipartite graphs.

==============================
Algorithm for Maximum Weighted Bipartite Matching
Input: A simple bipartite graph G with a bipartition {A,B}, and a function
w : E(G)→ R.
Output: A matching M in G with maximum

∑
e∈M w(e).

Procedure:

Step 0: Let G0 be the graph obtained from G by deleting all edges e of G with
w(e) < 0.

Step 1: By symmetry, we may assume |A| ≤ |B|. Let G′ be the complete
bipartite graph obtained from G0 by adding |B| − |A| vertex into A to
form a new set A′ and add edges such that {A′, B′} is the bipartition
of G′ with A′ ⊇ A and B′ = B with |A′| = |B′|. Assign w(e) = 0 for
every edge in E(G′)− E(G0).

Step 2: Use an algorithm for the Assignment Problem to find a maximum
weighted matching M ′ of (G′, w′).
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Step 3: Let M = M ′ ∩ E(G0) and output M .

==============================

Theorem 5 Given a simple bipartite graph G and a weight function w :
E(G)→ R, a matching in (G,w) with maximum weight can be found in time
O(|V (G)|4).

Proof. Since every matching with maximum weight in (G,w) does not use
any edge with negative weight, we know maximum weighted matching in
(G,w) are exactly the maximum weighted matching in (G0, w). Since every
edge in E(G′) − E(G0) has weigh 0, the weight of a maximum weighted
matching in (G0, w) equals the weight of a maximum weighted matching
in (G′, w′). And clearly the matching M ′ mentioned in the algorithm is a
maximum weighted matching in (G′, w′). Since every edge in E(G′)−E(G)
has weight 0,

∑
e∈M w(e) =

∑
e∈M ′ w(e). Hence M is a maximum weighted

matching (G,w).
The time complexity follows from the time complexity for the Assignment

problem.
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