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We first reduce the problem for finding maximum weighted matching to
the problem for finding minimum weighted perfect matching.

Proposition 1 If there exists an algorithm for finding the minimum weighted
perfect matching of any input simple graph (G′, w′) in time f(|V (G′)|), then
there exists an algorithm for finding the maximum weighted matching in an
input graph (G,w) in time f(2|V (G)|) +O(|V (G)|+ |E(G)|).

Proof. Let G be a graph. Let w : E(G) → R be a function. Note that
maximum weighted matching does not contain an edge with negative weight
(since, if so, then we can remove it from the matching to get another matching
with bigger weight). And removing edges with zero weight does not change
the weight of a matching. So we may assume that w > 0. Moreover, for every
pair of adjacent vertices u and v, if there are multiple edges between u and v,
then we can only keep an edge with the maximum weight and deleting other
edges between u and v without changing the maximum weight of a matching.
So we may assume G is simple.

Create two disjoint copies (G1, w1) and (G2, w2) of (G,w). Let H be
the graph obtained from G1 ∪ G2 by adding a perfect matching {v′v′′ : v′ ∈
V (G1), v

′′ ∈ V (G2), v
′ and v′′ are the copies of the same vertex v of G}. For

every e ∈ E(H), let wH(e) = −w1(e) if e ∈ E(G1), let wH(e) = −w2(e) if
e ∈ E(G2), and let wH(e) = 0 for every e ∈ E(H)− (E(G1) ∪ E(G2)).

LetM be a matching ofG with
∑

e∈M w(e) maximum. Let k =
∑

e∈M w(e).
Let MH be the matching of H by collecting the edges in G1 and G2 corre-
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sponding to M and the edges between the vertices of G1 and G2 correspond-
ing to non-M -saturated vertices of G. So MH is a perfect matching in H,
and

∑
e∈E(MH)wH(e) = −2

∑
e∈E(G)w(e) = −2k.

Let M∗ be a perfect matching of H with minimum weight. Let kH =∑
e∈M∗ w(e). So kH ≤ −2k by the minimality of M∗. On the other hand,

M∗ ∩ E(G1) and M∗ ∩ E(G2) are matachings in G, so their weight are
at most k. Since the edges in E(H) − (E(G1) ∪ E(G2)) has zero weight,∑

e∈M∗ wH(e) = −
∑

e∈M∗∩E(G1)
w(e) −

∑
e∈M∗∩E(G2)

w(e) ≥ −2k. So kH =∑
e∈M∗ wH(e) = −2k.
Note that kH can be found in time f(|V (H)|) = f(2|V (G)|), and H

can be constructed in time O(|V (G)| + |E(G)|). So k can be found in time
f(2|V (G)|) + O(|V (G)| + |E(G)|). Moreover, given a matching in H with
weight kH , we can find a matching in G with weight −k/2 in time O(|V (G)|+
|E(G)|) by simply taking the edges contained in G1.

The main idea to find a minimum weighted perfect matching is to combine
Edmonds’ blossom algorithm for finding unweighted maximum matching and
the Hungarian method for finding maximum weighted matching in bipartite
graphs.

We can formulate the minimum weighted perfect matching problem as
follows.

Proposition 2 Let G be a graph. Then a subset M of E(G) is a perfect
matching if and only if the corresponding vector x ∈ {0, 1}|E(G)| satisfies

� for every v ∈ V (G),
∑

e∈δ(v) xe = 1, and

� for every O ⊆ V (G) with |O| odd,
∑

e∈δ(O) xe ≥ 1.

Therefore, given w : E(G)→ R, the perfect matchings with minimum weight
are exactly the optimal solutions of the problem minxw

Tx subject to

� for every v ∈ V (G),
∑

e∈δ(v) xe = 1,

� for every O ⊆ V (G) with |O| odd,
∑

e∈δ(A) xe ≥ 1,

� for every e ∈ E(G), xe ∈ {0, 1}.

Proof. The first part of this proposition is obvious. The second part follows
from the first part.
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Let O = {O ⊆ V (G) : |O| is odd}.
The dual of the LP-relaxation of the maximization problem in Proposition

2 is maxy 1Ty, where y is indexed by O such that

� for every e ∈ E(G),
∑

O∈O,δ(O)3e yO ≤ w(e), and

� for every O ∈ O with |O| ≥ 3, yO ≥ 0.

The key idea to find the minimum weighted matching is to find a vector
x ∈ {0, 1}|E(G)| and a feasible solution y for the dual maximization problem
such that

� for every e ∈ E(G), if xe > 0, then
∑

O∈O,δ(O)3e yO = w(e), and

� for every O ∈ O, if yO > 0, then
∑

e∈δ(O) xe ≤ 1.

Note that we do not require x to be a feasible solution of the primal minimiza-
tion problem. But if we know such an x corresponds to a perfect matching
of G, then x is a feasible solution of the primal problem, and x and y is a
pair of solution satisfying the complementary slackness, so x is an optimal
solution for the primal problem and we obtain a minimum weighted perfect
matching of (G,w).

A remark is that |O| is exponential in |V (G)|, so we are not affordable
to record yO for every O ∈ O. We will only specify yO for those O ∈ O with
yO > 0, and it is good enough for obtaining the complementary slackness
mentioned above. And we will make sure that {O ∈ O : yO > 0} is a laminar
family and hence has size at most 2|V (G)|. (A collection F of subsets of a
set U is laminar if for any two members A,B of F , either A ∩ B = ∅, or
A ⊆ B, or B ⊆ A. It is not hard to show that if F is a laminar set of subsets
of U , then |F| ≤ 2|U |.)

Recall that in the Hungarian method, we consider the graph Gf , which is
the subgraph of G consisting of the edges whose corresponding inequalities
in the dual problem are tight, and look for a perfect matching in Gf . We
consider similar things here as well, but we also contract some subsets of
V (G). Given a feasible solution y of the dual problem,

� an edge e of G is tight (with respect to y) if
∑

O∈O,δ(O)3e yO = w(e), and

� the tight graph (with respect to y), denoted by Gy, is the graph obtained
from G by deleting all non-tight edges and identifying each (inclusion-
)maximal set in {O ∈ O : yO > 0} into a vertex.
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Note that {O ∈ O : yO > 0} is laminar, so its inclusion-maximal sets are pair-
wise disjoint, and hence the identification mentioned above is well-defined.

Moreover, during the algorithm, we will make sure that for every O ∈ O
with yO > 0, the graph obtained from G[O] by deleting all edges e with∑

O∈O,δ(O)3e yO < w(e) is factor-critical. That is, for every v ∈ O, G[O] − v
has a perfect matching Mv such that every edge e in the matching Mv satisfies∑

O∈O,δ(O)3e yO = w(e). It implies that if we have a matching M in Gy, then
we can extend M to a matching in G such that every edge e in the matching
M satisfies

∑
O∈O,δ(O)3e yO = w(e), and for every maximal O with yO > 0

whose corresponding vertex in Gy is saturated by M , every vertex in O is
saturated by M .

==============================
Algorithm for minimum weighted perfect matching in general graphs
Input: A simple graph G and a function w : E(G)→ R.
Output: A perfect matching M in G such that

∑
e∈M w(e) is minimum.

Procedure:

Step 1: Set M = ∅. For every O ∈ O with |O| = 1, set yO = 1
2

mine∈δ(O)w(e).

(We will make sure that {O ∈ O : yO > 0} is laminar during the entire
process, and for every O ∈ O with yO > 0, the graph obtained from
G[O] by only keeping tight edges is factor-critical.)

Step 2: Construct the tight graph Gy. Set M0
y to be the edges in M between

different vertices of Gy.

(We will make sure that every edge in M is tight, so M0
y is a matching

in Gy.)

Step 3: Use Edmonds’ Blossom Algorithm starting from M0
y to find a maxi-

mum (unweighted) matching My in Gy and the corresponding Gallai-
Edmonds decomposition (Xy, Yy,Wy).

Step 4: Extend My to a matching M in G such that

– every edge in M is tight,

– for every O ∈ O with yO > 0 corresponding to a vertex of Gy

saturated by My, every vertex in O is saturated by M , and

– for every O ∈ O with yO > 0, |M ∩ δ(O)| ≤ 1.
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Step 5: If My is a perfect matching in Gy, then output M and stop. Otherwise,
do the following:

– Let ε1 = min{yO : O ∈ O, yO > 0, |O| ≥ 3, the vertex of Gy

corresponding to O is a vertex in Xy}.
– Let ε2 = min{w(e)−

∑
O∈O,yO>0 yO : e ∈ E(G) is between a vertex

of G contained in a member of O corresponding to a vertex in Yy
and a vertex of G contained in a member of O corresponding to
a vertex in Wy}.

– Let ε3 = 1
2

min{w(e) −
∑

O∈O,yO>0 yO : e ∈ E(G) is between a
vertex of G contained in a member of O corresponding to a ver-
tex in Yy and a vertex of G contained in another member of O
corresponding to a vertex in Yy}.

– Let ε = min{ε1, ε2, ε3}.
– For every O corresponding to a vertex of Gy belonging to Xy,

redefine yO to be yO − ε.
– For every component C of Gy[Yy], recall that |V (C)| is odd by

the Gallai-Edmonds decomposition, so the union of set O ∈ O
corresponding to a vertex of Gy belonging to C is a subset of
V (G) with odd size, and we denote this set by OC .

– For every component C of Gy[Yy], if yOC
is undefined, then define

yOC
= ε, otherwise, redefine yOC

to be yOC
+ ε.

– Do Step 2.

==============================

Lemma 3 During the entire process, the following properties are preserved:

1. {O ∈ O : yO > 0} is laminar.

2. y is a feasible solution of the dual maximization problem.

3. If an edge e of G is tight before an update of y and turns non-tight
because of this update, then there exist O1 ∈ O corresponding to a vertex
of Gy belonging to Xy (before update) and O2 ∈ O corresponding to a
vertex of Gy belonging to Xy∪Wy (before update) such that e is between
O1 and O2.
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4. For every O ∈ O with yO > 0, and for every v ∈ O, there exists a
perfect matching MO,v of G[O]−v using tight edges only, and for every
O′ ∈ O with O′ ⊆ O, |MO,v ∩ δ(O′)| ≤ 1.

5. For every O ∈ O with yO > 0, the graph obtained from G[O] by only
keeping tight edges is factor-critical.

6. The extension from My to M in Step 4 is always possible.

Proof. We first show property 1. It holds at the end of Step 1. During the
process, the set {O ∈ O : yO > 0} loses members or getting new members
only during Step 5. Note that removing members from this set keeps it
laminar. And at each Step 5, the new sets added into the collection are
pairwise disjoint because each of them corresponds to a component of Gy[Yy],
and each of those new sets added into the collection has the property that if
it intersects some existing set, then it contains it. So property 1 is preserved.

Property 2 is preserved by the choice of ε.
Property 3 is clear from the algorithm.
Now we show property 4 is preserved. Property 4 clearly holds before

the first time that Step 5 is executed. Note that whenever we run Step 5 to
update y, we merge each component of G[Yy] into a vertex and possibly split
some vertices in Xy into more than one vertices, and there is no other change
for the vertex-set of Gy. Gallai-Edmonds decomposition ensures that each
of the new vertex of Gy corresponds to a member O of O satisfying G[O]
is factor-critical with using tight edges only. And every removed tight edge
because of the update of y is between maximal elements of O disjoint from
Yy by Property 3. So Property 4 is preserved at the end of this round of Step
5 as long as it is preserved at the beginning of this round of Step 5. As Steps
1-4 does not change O, property 4 is preserved for the entire process.

Then properties 5 and 6 follow from property 4.

Lemma 4 (Edmonds) If the algorithm stops, then the output M is a min-
imum weighted perfect matching in (G,w).

Proof. By Step 4, since My is a perfect matching of Gy, M is a perfect
matching of G. Let x be the 0-1 vector corresponding to M . Since every
edge in M is tight, we know that for every e ∈ E(G), if xe > 0, then∑

O∈O,δ(O)3e yO = w(e). And M has the property that for every O ∈ O with

yO > 0, |M ∩ δ(O)| ≤ 1, so
∑

e∈δ(O) xe ≤ 1. Since M is a perfect matching,
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for every O ∈ O with yO > 0,
∑

e∈δ(O) xe = 1. Hence x is a feasible solution
for the primal problem and y is a feasible solution of the dual problem such
that x and z satisfy the complementary slackness. So x is an optimal solution
of the primal problem. In other words, M is a minimum weighted perfect
matching in (G,w).

So the only remaining concern is whether the algorithm stops (in finite
time). It can be proved, but the proof is more complicated so we do not
include it here.

Theorem 5 (Gabow) The above algorithm can be implemented so that it
runs in time O(|V (G)|3). Therefore, a minimum weighted perfect matching
of a weighted simple graph (G,w) can be found in time O(|V (G)|3).

Corollary 6 Given a weighted graph (G,w), a matching in (G,w) with max-
imum weight can be found in time O(|V (G)|3 + |E(G)|).

Proof. It immediately follows from Proposition 1 and Theorem 5.
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