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1 Eulerian circuits

Let G be a graph. A trail in G is a walk in G that does not have repeated
edges. An Eulerian trail of G is a trail in G that uses all edges of G. An
Eulerian circuit is a closed Eulerian trail.

Lemma 1 Let G be a graph whose every vertex has even degree. Let v ∈
V (G). Then every maximal trail in G starting at v is closed and contains all
edges of G incident with v, and for every vertex x of G, W contains an even
number of edges incident with x.

Proof. Let W be a maximal trail in G starting at v. Let u be the end of
W . If u 6= v, then W contains an odd number of edges incident with u, so
some edge of u is not in W , and hence we can extend W by adding this edge,
a contradiction. So u = v and W is closed. And if W does not contain all
edges of G incident with v = u, then we can extend W by adding this edge,
a contradiction. It is clear that for every vertex x of G, W contains an even
number of edges incident with x.

==============================
Finding Eulerian circuits
Input: A connected graph G whose every vertex has even degree.
Output: A Eulerian circuit W .
Procedure:

1



Step 1: Pick a vertex v of G. Set W be the walk with single vertex v and with
no edge. Put a token at v.

Step 2: Greedily find a maximal trail W0 starting at v. Delete all edges in W0

from G. Replace W by the walk by inserting W0 (without the first
entry) into W between the entry having the token and the entry right
next to it.

Step 3: Repeatedly move the token to the next entry of W until the token is
at a vertex u with non-zero degree in the current G. If such a vertex
u can be found, then redefine v to be u, and do Step 2. Otherwise,
output W and stop.

==============================

Lemma 2 The walk W output from the above algorithm is an Eulerian cir-
cuit.

Proof. Clearly the walk W is a trail since once we include an edge into W ,
we delete this edge from G, so it cannot be added into W again in the future.

And by Lemma 1, every W0 found in the process is a closed walk. Since
W is a closed walk at the beginning, W is a closed walk during the entire
process.

And once a vertex v of G is the entry that holds the token in W , if v
has degree nonzero at that time, then Step 2 is executed at that moment,
and after that, W include all edges of G incident with v by Lemma 1; if v
has degree 0 at that time, then W already includes all edges of G incident
with v. In particular, during the entire process, every vertex x that is an
entry of W in front of the entry having the token, all edges of (the original)
G incident with x are in W .

So W is an Eulerian circuit as long as W contains all vertices of G. When
the algorithm stops, W contains all edges incident with a vertex in W , so W
contains all edges of a connected component of G. Since G is connected, W
contains all vertices of G. So W is an Eulerian circuit.

Theorem 3 Given a connected graph G whose every vertex has even degree,
one can find an Eulerian circuit of G in linear time.
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Proof. The correctness follows from Lemma 2. The time complexity is
obvious.

Corollary 4 (Euler) A connected graph G has an Eulerian circuit if and
only if every vertex of G has even degree.

Proof. (⇒) Walking along an Eulerian circuit W , whenever we must go into
an internal vertex v, we may leave this vertex, so v has even degree. As we
can shift W by using the second vertex of W as the first vertex, each vertex
of G is an internal vertex of some Eulerian circuit and hence has even degree.

(⇐) It immediately follows from Theorem 3.

A graph is Eulerian if all vertices have even degree.

2 Chinese Postman Problem

Let G be a graph. A Chinese postman tour is a closed walk in G that contains
every edge of G at least once. The Chinese Postman Problem is to find a
Chinese postman tour with minimum number of edges.

We can consider a more general version for weighted graphs: given a
weighted graph (G,w), find a Chinese postman tour W with

∑
e∈E(W )w(e)

minimum. (Note that E(W ) is the multiset of edges in W such that for every
e ∈ E(G), the number of times that e appears in W equals the number of
times that e appears in E(W ).)

Note that if there exists an edge with negative weight, then we can use this
edge arbitrarily many times to obtain a tour with arbitrarily small weight.
So we should assume the weight is nonnegative.

Lemma 5 Let G be a connected graph. Let w be a nonnegative function on
E(G). Then there exists a minimum weighted Chinese postman tour W for
(G,w) such that W uses every edge of G at most twice.

Proof. Let W be a Chinese postman tour with minimum weight, and subject
to this, |E(W )| is minimum.

Suppose to the contrary that there exists an edge e of G used at least
three times in W . Note that every loop is used exactly once in W . So e is
not a loop. Let u, v be the ends of e.
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We first assume that there exists a subwalk of W of the form uevW ′uev,
where W ′ is a subwalk of W from v to u without using e. Let W ′′ be the
reverse of W ′. Note that W ′′ is from u to v with E(W ′′) = E(W ′). Then
replacing evW ′ue by W ′′ results in another closed walk that uses every edge
of G−e the same number of times as in W , and uses e two times less than in
W . Since e is used at least three times in W , the resulting walk is a Chinese
postman walk better than W , a contradiction.

So there exists a subwalk of W of the form uevW1veuW2uev, where W1 is
a subwalk of W from v to v without using e, and W2 is a subwalk of W from
u to u without using e. Then replacing evW1veuW2ue by W2uevW1 results
in another closed walk that uses every edge of G − e the same number of
times as in W , and uses e two times less than in W . Since e is used at least
three times in W , the resulting walk is a Chinese postman walk better than
W , a contradiction.

2.1 Reducing to T -joins

Let G be a graph and T ⊆ V (G). A T -join of G is a subset J of E(G) such
that for every v ∈ V (G), |δ(v) ∩ J | is odd if and only if v ∈ T .

Lemma 6 Let G be a connected graph. Let W be a Chinese postman tour
of G that uses every edge of G at most twice. Let T = {v ∈ V (G) : degG(v)
is odd}. Let G′ be the graph with V (G′) = V (G) and E(G′) = E(W ). Then
G′ is Eulerian and E(G′) is a disjoint union of E(G) and a T -join of G.

Proof. Clearly, W is an Eulerian circuit of G′, so G′ is Eulerian.
Let H = G′−E(G). For every v ∈ V (G) = V (G′), degG′(v) = degG(v) +

degH(v), and degG′(v) is even, so degH(v) ≡ degG(v) (mod 2). Since every
edge of G is used in W at most twice, it is used in G′ at most twice, so it
is used in H at most once. Hence every edge in H can be viewed as a copy
of an edge in G, and no edge of G is copied twice. So E(H) is a copy of a
T -join of G.

Lemma 7 Let G be a connected graph. Let w be a nonnegative function on
E(G). Let T = {v ∈ V (G) : degG(v) is odd}. Then there exists a minimum
weighted Chinese postman tour that is a disjoint union of E(G) and a T -join
of G.

Proof. It immediately follows from Lemmas 5 and 6.
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Lemma 8 Let G be a connected graph. Let T = {v ∈ V (G) : degG(v) is
odd}. Let J be a T -join. Let G′ be the graph obtained from G by duplicating
each edge in J once. Then G′ is Eulerian, and every Eulerian circuit of G′

is a Chinese postman tour of G using every edge in J exactly twice and every
edge in E(G)− J exactly once.

Proof. For every v ∈ V (G) = V (G′), degG′(v) = degG(v) + |δ(v) ∩ J | ≡ 0
(mod 2). So G′ is Eulerian. And it is clear that every Eulerian circuit of
G′ is a Chinese postman tour of G using every edge in J exactly twice and
every edge in E(G)− J exactly once.

Theorem 9 Let G be a graph. Let w : E(G) → R≥0. Let T ⊆ V (G). Let
J be a T -join of G with

∑
e∈J w(e) minimum. Let G′ be the graph obtained

from G by duplicating each edge in J once. Then every Eulerian circuit of
G′ is a minimum weighted Chinese postman tour of G.

Proof. Let W be an Eulerian circuit of G′. By Lemma 8, W is a Chinese
postman tour with weight w(E(G)) + w(J).

By Lemma 7, there exists a minimum weighted Chinese postman tour W ∗

that is a disjoint union of E(G) and a T -join J ′ of G. Note that w(E(G)) +
w(J) = w(W ) ≥ w(W ∗) = w(E(G)) + w(J ′). So w(J) ≥ w(J ′). But J
is a minimum weighted T -join, so w(J) = w(J ′). Hence w(W ) = w(W ∗).
Therefore, W is a minimum weighted Chinese postman tour.

2.2 Finding a minimum T -join

By Theorem 9, to find a minimum weighted Chinese postman tour, it suffices
to find a minimum weighted T -join, where T = {v ∈ V (G) : degG(v) is odd}.

In the next lecture, we will describe how to find a minimum weighted T -
join, for any subset T of V (G) for which a T -join exists. We first characterize
the existence of a T -join.

Proposition 10 Let G be a graph. Let T ⊆ V (G). Then there exists a
T -join of G if and only if for every component C of G, |T ∩ V (C)| is even.

Proof. (⇒) Let J be a T -join. Let HJ be the graph with V (HJ) = V (G)
and E(HJ) = J . For every component C of G, T ∩ V (C) is the set of odd
degree vertices in C, so its size must be even by the hand-shake lemma.
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(⇐) We prove it by induction on |T |. There is nothing to prove when
|T | = 0. So we may assume |T | ≥ 1 and the proposition holds when |T | is
smaller. Hence there exists a component C of G with |T ∩ V (C)| ≥ 2. Let
x, y be distinct vertices in T ∩V (C). Let P be a path in C connecting x and
y. Note that for every component Q of G, |(T − {x, y}) ∩ V (Q)| is even. So
by the induction hypothesis, there exists a (T − {x, y})-join J ′ of G. Then
J ′∆E(P ) is a T -join of G.
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