
Lecture notes for Mar 29, 2023
Minimum weighted T -joins and Travelling

Salesman Problem

Chun-Hung Liu

March 29, 2023

1 Finding a minimum T -join

In this section, we will describe how to find a minimum weighted T -join, for
any subset T of V (G) for which a T -join exists. It is easy to characterize the
existence of a T -join.

Recall that we show the following proposition last time.

Proposition 1 Let G be a graph. Let T ⊆ V (G). Then there exists a T -join
of G if and only if for every component C of G, |T ∩ V (C)| is even.

Now we study the structure of a T -join.

Lemma 2 Let G be a graph. Let w : E(G) → R≥0. Let T ⊆ V (G). Let J
be a T -join of G with

∑
e∈J w(e) minimum. Then J can be partitioned into

sets, where each of them is either the edge-set of a path in G connecting two
vertices in T or the edge-set of an Eulerian subgraph of G with zero weight.

Proof. Let P be a maximal set such that each member of P is a subset
of J and is also the edge-set of a path in G connecting two vertices in T ,
and members of P are pairwise disjoint. For every v ∈ V (G), let kv be the
number of members of P corresponding to a path having v as an end. Let
HP be the graph with V (HP) = V (G) and E(HP) =

⋃
M∈PM . So for every

v ∈ V (G), degHP
(v) ≡ kv (mod 2).

1

Let HJ be the graph with V (HJ) = V (G) and E(HJ) = J . So for every
v ∈ V (G), degHJ

(v) is odd if and only if v ∈ T .
Note that for every v ∈ V (G), degHJ−E(HP)(v) = degHJ

(v)− degHP
(v) ≡

degHJ
(v)−kv (mod 2). For every vertex v in V (G)−T , v cannot be an end of

a path corresponding to a member of P , so kv = 0, and hence degHJ−E(HP)(v)
is even. So every vertex with odd degree in HJ − E(HP) is in T .

If HJ−E(HP) is Eulerian, then J∩E(HP) is a T -join, and since
∑

e∈J w(e)
is minimum among all T -joins, we know

∑
e∈J−E(HP) w(e) = 0, so we obtain

the desired partition by adding E(HJ)− E(HP) into P .
So we may assume HJ−E(HP) is not Eulerian. By the hand-shake lemma,

there are at least two vertices in T having odd degree in HJ − E(HP).
Let O be the set of odd degree vertices in HJ−E(HP). So O ⊆ T , |O| ≥ 2

and J −E(HP) is an O-join of HJ −E(HP). By the maximality of P , there
exists no path in HJ − E(HP) between two vertices in O. So there exists a
component C of HJ −E(HP) such that |O∩V (C)| = 1. That is, C has only
one odd-degree vertex, a contradiction.

Lemma 3 Let G be a graph. Let w : E(G) → R≥0. Let T ⊆ V (G) with
T 6= ∅. If there exists a T -join, then there exists a minimum weighted T -join
J such that J =

⋃|V (T)|/2
i=1 E(Pi), where P1, P2, ..., P|V (T)|/2 are edge-disjoint

paths each connecting two vertices in T , and every vertex in T is an end of
exactly one of those Pi’s.

Proof. Assume that there exists a T -join. Since every edge has nonnega-
tive weight, there exists a minimum weighted T -join. Let J be a minimum
weighted T -join with |J | minimum. Then J =

⋃k
i=1E(Pi) for some edge-

disjoint paths P1, P2, ..., Pk each connecting two vertices in T by Lemma 2,
and for some positive integer k. We choose those paths Pi’s such that k is
minimum.

Suppose to the contrary that some vertex v is an end of two of those
Pi’s, say P1 and P2. Let a1 and a2 be the ends of P1 and P2 other than v,
respectively. If a1 = a2, then P1 ∪ P2 is Eulerian, so J − (E(P1 ∪ P2)) is a
T -join, contradicting the minimality of J . So a1 6= a2, and hence P1 ∪ P2

contains a path P from a1 and a2. Note that J − (E(P1 ∪ P2) − E(P)) is
a T -join. By the minimality of J , P1 ∪ P2 = P . Hence we can reduce the
number of paths in the decomposition, a contradiction.

So every vertex is an end of exactly one of those Pi’s. Hence k = |V (T)|/2.

2

==============================
Finding a minimum T -join in a nonnegative weighted graph
Input: A graph G, a function w : E(G)→ R≥0, and a subset T of V (G).
Output: Either a T -join J with minimum

∑
e∈J w(e), or output “no T -join

exists”.
Procedure:

Step 1: If there exists a component C of G such that |V (C) ∩ T | is odd, then
output “no T -join exists”.

Step 2: Construct a complete graph H with V (H) = T . For each pair of
distinct vertices x, y in T , compute a shortest path Px,y in (G,w) from
x to y, and define f(xy) to be the length of Px,y. (Note that if Px,y

does not exist, we let f(xy) = |V (G)|
∑

e∈E(G) w(e) + 1.)

Step 3: Find a minimum weighted perfect matching M of the weighted graph
(H, f). Output ∆xy∈ME(Px,y), where ∆ is the operator that denotes
symmetric difference.

==============================

Theorem 4 Given a graph G, a function w : E(G) → R≥0 and a subset T
of V (G), the above algorithm correctly outputs a minimum weighted T -join
of G or concludes that there exists no T -joins, in time O(|V (G)|3).

Proof. By Proposition 1, Step 1 correctly decides whether G has a T -join.
Let J be the output of the algorithm. It implies that Step 2 is executed.

So for every component C of G, |V (C) ∩ T | is even. Hence there exists a
perfect matching M0 of H such that for every e ∈ M0, f(e) is the length of
a path in (G,w), so f(e) ≤

∑
e∈E(G) w(e). So the weight of M0 is at most

|V (H)| ·
∑

e∈E(G) w(e). Since M is a minimum weighted perfect matching of

(H, f), the weight of M is at most the weight of M0, so M does not contain
any edge e with f(e) = |V (G)|

∑
e∈E(G) w(e) + 1. That is, for every edge

e = xy ∈ M , Px,y exists. So J is well-defined. Moreover, since each vertex
in T is an end of exactly one of the path in {Px,y : xy ∈ M}, and no vertex
in V (G) − T is an end of a path in {Px,y : xy ∈ M}, we know that J is a
T -join.

Let J∗ be a minimum weighted T -join. By Lemma 3, we may assume
that J∗ is a union of edge-disjoint paths P1, P2, ..., P|V (T)|/2 each connecting

3

two vertices in T , and every vertex in T is an end of exactly one of those
Pi’s. For each i, let ai, bi be the ends of Pi. So {aibi : i ∈ [|V (T)|/2]} is a
perfect matching of H, and J∗ =

⋃
xy∈M E(Px,y). Hence the weight of J∗ is

at least the weight of J . Therefore, J is a minimum weighted T -join.
Now we consider the time complexity. Step 1 can be done in linear time.

To implement Step 2, before we find the shortest paths, we can make the
graph simple without changing the distance between any pair of vertices by
first removing all loops and for every pair of vertices x, y, only keeping one
edge between x, y with the smallest weight. So for every pair x, y, we can
find a shortest path between x, y in time O(|V (G)|2 + |E(G)|) = O(|V (G)|2)
by Dijkstra’s algorithm. Hence Step 2 can be done in time O(|V (G)|4).
In fact, it can be improved to O(|V (G)|3) by using a more efficient algo-
rithm that computes the shortest paths for each pair of vertices in V (G)
in time O(|V (G)||E(G)| + |V (G)|2 log |V (G)|) by Bazaraa and Langley and
by Johnson. And a minimum weighted perfect matching of (H, f) can be
found in time O(|T |3) = O(|V (G)|3). Finally, J can be constructed in time
O(|V (G)|2). Therefore, the total running time is O(|V (G)|3).

1.1 Solving Chinese Postman Problem

Recall that we proved the following results.

Theorem 5 Let G be a graph. Let w : E(G) → R≥0. Let T ⊆ V (G). Let
J be a T -join of G with

∑
e∈J w(e) minimum. Let G′ be the graph obtained

from G by duplicating each edge in J once. Then every Eulerian circuit of
G′ is a minimum weighted Chinese postman tour of G.

Theorem 6 Given a connected graph G whose every vertex has even degree,
one can find an Eulerian circuit of G in linear time.

Now we describe an algorithm for solving the Chinese Postman Problem.

==============================
Solving Chinese Postman Problem for nonnegative weighted graphs
Input: A connected graph G and a function w : E(G)→ R≥0.
Output: A Chinese postman tour W with minimum

∑
e∈E(W)w(e).

Procedure:

Step 1: Let T = {v ∈ V (G) : degG(v) is odd}. Find a minimum weighted
T -join J of (G,w).

4

Step 2: Construct the graph G′ by copying each edge in J .

Step 3: Find an Eulerian circuit W ′ of G′. Let W be the walk obtained from
W ′ by replacing each edge in J by its original in G. Output W .

==============================

Theorem 7 Given an nonnegative weighted graph (G,w), the above algo-
rithm outputs a Chinese postman tour W with minimum

∑
e∈E(W) w(e) in

time O(|V (G)|3).

Proof. The correctness immediately follows from Theorem 5. The time
complexity immediately follows from Theorems 6 and 4.

2 Travelling Salesman Problem

Recall that the Chinese Postman Problem asks for a tour that visits every
edge at least once. Travelling Salesman Problem is similar, but now we ask
for a tour that visits every vertex exactly once, and the problem is restricted
on weighted complete graphs.

==============================
Travelling Salesman Problem (TSP)
Input: A positive integer n and a function w : E(Kn)→ R≥0.
Output: A cycle C of Kn containing every vertex exactly once such that∑

e∈E(C) w(e) is minimum.
==============================

Travelling Salesman Problem is NP-hard because it is more general than
finding a Hamiltonian cycle of a graph, as we will show. A Hamiltonian cycle
of a graph G is a cycle C with V (C) = V (G).

Theorem 8 Deciding whether the input graph has a Hamiltonian cycle or
not is NP-hard.

Proof. Recall that deciding whether a graph G has a Hamiltonian path is
NP-hard. Note that for every pair of vertices x, y, G has a Hamiltonian path
between x and y if and only if G+ xy has a Hamiltonian cycle. So if testing

5

Hamiltonian cycle of any given graph can be done in polynomial time, then
we can test whether an input G has a Hamiltonian path in polynomial time
by checking

(
n
2

)
graphs has a Hamiltonian cycle or not, where each graph is

obtained from G by adding one edge.

Theorem 8 not only implies that TSP is NP-hard, it implies that even
finding a constant factor approximation is NP-hard, as shown below.

Corollary 9 For every real number k, it is NP-hard to, given a weighted
complete graph (Kn, w), output a Hamiltonian cycle C such that

∑
e∈E(C) w(e) ≤

k · OPT, where OPT is the weight of the shortest Hamiltonian cycle in
(Kn, w).

Proof. Let G be a graph. Let n = |V (G)|. We assume V (G) = V (Kn)
for simplicity of notations. Define w : E(Kn) → R≥0 such that w(e) = 1 if
e ∈ E(G), and w(e) = k|V (G)|+ 1 if e 6∈ E(G).

Note that if G has a Hamiltonian cycle, then OPT = n; if G does not
have a Hamiltonian cycle, then the minimum weighted Hamiltonian cycle C
of (Kn, w) must uses at least one edge in E(Kn)−E(G), so OPT = w(C) ≥
k|V (G)|+ 1.

Let A be an algorithm that approximates OPT with factor k. Let ` be
the weight of the cycle output from A (with input (Kn, w)). So OPT ≤ ` ≤
k ·OPT. Hence if ` ≤ k|V (G)|, then OPT ≤ |V (G)|, so G has a Hamiltonian
cycle; if ` > k|V (G)|, then OPT 6= |V (G)|, so OPT ≥ k|V (G)| + 1, and
hence G does not have a Hamiltonian cycle. That is, ` ≤ k|V (G)| if and
only if G has a Hamiltonian cycle. Therefore, if A runs in polynomial time,
then we can test whether G has a Hamiltonian cycle in polynomial time. So
approximating OPT up to a factor k is NP-hard by Theorem 8.

As TSP is NP-hard, we look for approximation algorithms. Due to the
hardness for approximating TSP, we consider a special case of TSP.

==============================
Metric TSP
Input: A positive integer n and a function w : E(Kn) → R≥0 that satisfies
the triangle inequality (i.e. for any x, y, z ∈ V (Kn), w(x, y) + w(y, z) ≥
w(x, z)).
Output: A cycle C of Kn containing every vertex exactly once such that∑

e∈E(C) w(e) is minimum.
==============================

6

