
Lecture notes for Apr 3, 2023
Metric TSP and edge-cuts

Chun-Hung Liu

April 3, 2023

1 Metric TSP

Due to the hardness for approximating TSP, we consider a special case of
TSP.

==============================
Metric TSP
Input: A positive integer n and a function w : E(Kn) → R≥0 that satisfies
the triangle inequality (i.e. for any x, y, z ∈ V (Kn), w(x, y) + w(y, z) ≥
w(x, z)).
Output: A cycle C of Kn containing every vertex exactly once such that∑

e∈E(C)w(e) is minimum.
==============================

We will give constant factor approximation for Metric TSP.

Lemma 1 Let (Kn, w) be a weighted complete graph such that w satisfies
the triangle inequality. Let H be a loopless graph with V (H) = V (Kn). Let
wH be the weight function such that for every uv ∈ E(H), wH(uv) = w(uv).
If R is an Eulerian circuit of H, then we can construct a Hamiltonian cycle
C of Kn with w(C) ≤ wH(R) in time O(|E(H)|).

Proof. Since Kn is simple, we can describe R by listing the order vertices
that it visits. Let R = v1v2v3.... Note that R is a walk that visits all vertices
of Kn since H is connected and V (H) = V (Kn). Let R1 = R. For i ≥ 1, if
vi+1 ∈ {vj : j ∈ [i]}, then define Ri+1 to be the sequence obtained from Ri

1

by removing vi+1; otherwise, define Ri+1 = Ri. If Ri+1 = Ri, then Ri+1 is a
walk visiting all vertices with wH(Ri+1) = wH(Ri); otherwise, since Kn is a
complete graph, Ri+1 describes the walk obtained from Ri by replacing the
path vivi+1vi+2 by the edge vivi+2, so Ri+1 is also a walk visiting all vertices
of Kn (as vi+1 was visited before vi) and wH(Ri+1) = wH(Ri)− w(vivi+1)−
w(vi+1vi+2) +w(vivi+2) ≤ wH(Ri) (by the triangle inequality). Hence R|R|+1

is a closed walk that visits all vertices of Kn with no repeated vertices (so
it is a Hamiltonian cycle) with weight at most w(R1) = w(R). Note that
R|R|+1 can be constructed in time O(|R|) = O(|E(H)|).

==============================
A 2-approximation algorithm for Metric TSP
Input: A positive integer n and a function w : E(Kn) → R≥0 that satisfies
the triangle inequality (i.e. for any x, y, z ∈ V (Kn), w(x, y) + w(y, z) ≥
w(x, z)).
Output: A Hamiltonian cycle C of Kn with w(C) ≤ 2OPT, where OPT =
minZ w(Z) over all Hamiltonian cycles Z of (Kn, w).
Procedure:

Step 1: Find a minimum weighted spanning tree T of (Kn, w).

Step 2: Double each edge of T to obtain the graph T ′ and find an Eulerian tour
R of T ′.

Step 3: Since R is an Eulerian circuit of a connected graph T ′ with V (T ′) =
V (Kn), we can replace R by a Hamiltonian cycle C of Kn by Lemma
1. Output C.

==============================

Theorem 2 The above algorithm outputs a Hamiltonian cycle C of Kn with
w(C) ≤ 2OPT in time O(n2), where OPT = minZ w(Z) over all Hamiltonian
cycle Z of (Kn, w).

Proof. Let C∗ be a Hamiltonian cycle of Kn with w(C∗) = OPT. Since
C∗ contains a Hamiltonian path of Kn, which is a spanning tree of Kn, we
know w(C∗) ≥ w(T). Note that w(R) = w(T ′) = 2w(T). By Lemma 1,
w(C) ≤ w(R) ≤ 2w(T) ≤ 2w(C∗) = 2OPT. This shows the correctness.

2

Step 1 takes time O(n2) (by using Prim’s algorithm). Step 2 takes time
O(n). Step 3 takes time O(|E(T ′)|) = O(n). So the algorithm takes time
O(n2).

We can improve the approximation factor by using a slower polynomial
time algorithm.

==============================
Christofide’s algorithm for Metric TSP
Input: A positive integer n and a function w : E(Kn) → R≥0 that satisfies
the triangle inequality (i.e. for any x, y, z ∈ V (Kn), w(x, y) + w(y, z) ≥
w(x, z)).
Output: A Hamiltonian cycle C of Kn with w(C) ≤ 3

2
OPT, where OPT =

minZ w(Z) over all Hamiltonian cycles Z of (Kn, w).
Procedure:

Step 1: Find a minimum weighted spanning tree T of (Kn, w).

Step 2: Let X be the set of odd degree vertices in T . Find a minimum weighted
X-join J in (Kn, w).

Step 3: Note that the graph T + J is Eulerian. Find an Eulerian circuit R of
T + J .

Step 4: Replace R by a Hamiltonian cycle C of Kn by Lemma 1. Output C.

==============================

Theorem 3 Christofide’s algorithm outputs a Hamiltonian cycle C of Kn

with w(C) ≤ 3
2
OPT in time O(n3).

Proof. Let C∗ be a Hamiltonian cycle of Kn with w(C∗) = OPT. Since C∗

contains a Hamiltonian path of Kn, which is a spanning tree of Kn, we know
w(C∗) ≥ w(T). Since C∗ is a Hamiltonian cycle, it passes through all vertices
in X. Let x1, x2, ..., x|X| be the vertices in X, ordered by the order passed
though by C∗. For every i ∈ [|X|], let Pi be the subpath of C∗ between xi and
xi+1 internally disjoint from X, where x|X|+1 = x1. Note that X is the set of

odd degree vertices, so |X| is even. Hence
⋃|X|/2
i=1 E(P2i−1) and

⋃|X|/2
i=1 E(P2i)

are two disjoint X-joins. That is, E(C∗) is a union of two disjoint X-joins,

3

so w(C∗) ≥ 2w(J). Hence w(C) ≤ w(R) = w(T + J) ≤ 3
2
w(C∗). This shows

the correctness.
Step 1 takes time O(n2). Step 2 takes time O(n3). Step 3 takes time

O(n). Step 4 takes time O(n). So it takes O(n3) in total.

This 3
2

approximation ratio was established in the 1970s. Only until
recently (2021), Karlin, Klein and Gharan proved that there is a randomized
algorithm that outputs a Hamiltonian cycle with expected weight at most
(3
2
− ε)OPT for some constant ε > 10−36.

2 Preparation for Gomory-Hu tree

Recall that we have a polynomial time algorithm to find a maximum flow
and a minimum cut of a network. In particular, given a digraph D and two
vertices x, y, we can find an edge-cut of D of minimum size that separates x
and y by considering the network (D, x, y, 1). Given a graph G, by replacing
each edge of G by a pair of directed edges with different directions, the
above algorithm finds, given two vertices x, y, an edge-cut of G of minimum
size that separates x and y. So we can determine the edge-connectivity of
G by checking the minimum size of an edge-cut for

(|V (G)|
2

)
pairs of distinct

vertices. That is, we can determine the edge-connectivity of a n-vertex graph
by applying the algorithm for finding a maximum flow and a minimum cut(|V (G)|

2

)
times.

Gomory-Hu tree provides a more efficient way to find the edge-connectivity
and more structural information for the graph. We will consider a more gen-
eral setting for weighted graphs.

2.1 Edge-cuts

Before defining Gomory-Hu trees, we define some terminologies that will be
convenient later.

An edge-cut of a positive weighted graph (G,w) is an ordered partition
[A,B] of V (G) into (possibly empty) sets. And the weight of [A,B] is defined
to be

∑
e∈δ(A)w(e), denoted by w(A,B). For two vertices u and v of G,

� we say that an edge-cut of (G,w) separating u and v if u and v are in
different parts of the edge-cut, and

4

� a minimum weighted (u, v)-edge-cut is an edge-cut [A,B] of G with
u ∈ A and v ∈ B such that the weight of [A,B] is the minimum among
all edge-cuts of (G,w) separating u and v.

Theorem 4 Let (G,w) be a weighted graph with positive w. Let u, v be
distinct vertices of G. Then a minimum weighted (u, v)-edge-cut can be found
in time O(|V (G)|2

√
|E(G)|).

Proof. Create a digraph D obtained from G by replacing each edge of G by
two directed edges with different directions. For every (x, y) ∈ E(D), define
c(x, y) = w(xy). Then use Edmonds-Karp algorithm to find a minimum cut
S for the network (D, u, v, c) in time O(|V (G)||E(G)|2). (In fact, it can be
done in time O(|V (G)|2

√
|E(G)|) by a more complicated algorithm.) Let

A = S and B = V (G)− S. Then [A,B] is a minimum weighted (u, v)-edge-
cut.

2.2 Tree-cut decomposition

A tree-cut decomposition of (G,w) is a pair (T,X), where T is a tree and X
is a partition {Xt : t ∈ V (T)} of V (G) into (possibly empty) sets indexed by
V (T). For every edge xy of T ,

� we know that T−xy contains two components Tx and Ty of T , where Tx
contains x and Ty contains y, so [

⋃
t∈V (Tx)

Xt,
⋃
t∈V (Ty)

Xt] is an edge-cut

of (G,w), and we call this edge-cut the edge-cut given by (x, y) (with
respect to (T,X)),

� the adhesion of xy (with respect to (T,X)) is defined to be the weight
of the edge-cut given by (x, y),

2.3 Gomory-Hu tree

A Gomory-Hu tree of a positive weighted graph (G,w) is a tree-cut decom-
position (T,X) of G such that

� |Xt| = 1 for every t ∈ V (T), and

� for any distinct x, y ∈ V (G), the minimum weight of an edge-cut of
(G,w) separating x and y equals the minimum of the adhesion of e
over all edges e in the unique path in T between x and y.

5

(Note that it implies that if the edge e gives the minimum adhesion in
the path between x and y, then the edge-cut given by e is an edge-cut
of (G,w) separating x and y.)

Therefore, if a Gomory-Hu tree (T,X) of a positive weighted graph (G,w)
is given, we can find the edge-connectivity in linear time by simply finding the
minimum adhesion of the edges of T , which only takes time O(|V (G)|); and
for any distinct vertices x, y of G, we can find an edge-cut separating x and
y with minimum weight by simply finding the edge in T in the path between
x and y giving the minimum adhesion, which only takes time O(|V (G)|).

6

