Lecture notes for Apr 3, 2023
Metric TSP and edge-cuts

Chun-Hung Liu
April 3, 2023

1 Metric TSP

Due to the hardness for approximating TSP, we consider a special case of
TSP.

Metric TSP

Input: A positive integer n and a function w : E(K,) — R>(that satisfies
the triangle inequality (i.e. for any z,y,z € V(K,), w(x,y) + w(y,z) >
w(z, 2)).

Output: A cycle C' of K, containing every vertex exactly once such that
> een(c) w(e) is minimum.

We will give constant factor approximation for Metric TSP.

Lemma 1 Let (K,,w) be a weighted complete graph such that w satisfies
the triangle inequality. Let H be a loopless graph with V(H) = V(K,,). Let
wy be the weight function such that for every uwv € E(H), wy(uv) = w(uw).
If R is an Eulerian circuit of H, then we can construct a Hamiltonian cycle

C of K,, with w(C) < wg(R) in time O(|E(H)|).

Proof. Since K, is simple, we can describe R by listing the order vertices
that it visits. Let R = vjvqvs.... Note that R is a walk that visits all vertices
of K,, since H is connected and V(H) = V(K,,). Let Ry = R. For i > 1, if
vit1 € {v; : j € [i]}, then define R, to be the sequence obtained from R;

1

by removing v;,1; otherwise, define R;,; = R;. If R;11 = R;, then R, is a
walk visiting all vertices with wy(R;11) = wg(R;); otherwise, since K, is a
complete graph, R;.; describes the walk obtained from R; by replacing the
path v;v; 1 1v;10 by the edge v;v;19, so R;y1 is also a walk visiting all vertices
of K, (as v;41 was visited before v;) and wy(R;y1) = wy(R;) — w(viviy1) —
W(Vi410i42) + W(ViVi42) < wy(R;) (by the triangle inequality). Hence R|gj1q
is a closed walk that visits all vertices of K, with no repeated vertices (so
it is a Hamiltonian cycle) with weight at most w(R;) = w(R). Note that
R|gj41 can be constructed in time O(|R|) = O(|E(H)|). =

A 2-approximation algorithm for Metric TSP

Input: A positive integer n and a function w : F(K,) — R>(that satisfies
the triangle inequality (i.e. for any z,y,z € V(K,), w(z,y) + w(y,z) >
w(z, 2)).

Output: A Hamiltonian cycle C' of K,, with w(C) < 20PT, where OPT =
ming w(Z) over all Hamiltonian cycles Z of (K, w).

Procedure:

Step 1: Find a minimum weighted spanning tree T' of (K, w).

Step 2: Double each edge of T' to obtain the graph 7" and find an Eulerian tour
Rof T".

Step 3: Since R is an Eulerian circuit of a connected graph 7" with V(T") =
V(K,), we can replace R by a Hamiltonian cycle C' of K,, by Lemma
1. Output C.

Theorem 2 The above algorithm outputs a Hamiltonian cycle C of K,, with
w(C) < 20PT in time O(n?), where OPT = ming w(Z) over all Hamiltonian
cycle Z of (K,,w).

Proof. Let C* be a Hamiltonian cycle of K,, with w(C*) = OPT. Since
C* contains a Hamiltonian path of K,,, which is a spanning tree of K,,, we
know w(C*) > w(T). Note that w(R) = w(T’) = 2w(T). By Lemma 1,
w(C) <w(R) <2w(T) < 2w(C*) = 20PT. This shows the correctness.

Step 1 takes time O(n?) (by using Prim’s algorithm). Step 2 takes time
O(n). Step 3 takes time O(|E(T")|) = O(n). So the algorithm takes time
O(n?). =

We can improve the approximation factor by using a slower polynomial
time algorithm.

Christofide’s algorithm for Metric TSP

Input: A positive integer n and a function w : F(K,) — R, that satisfies
the triangle inequality (i.e. for any z,y,z € V(K,), w(z,y) + w(y,z) >
w(z, 2)).

Output: A Hamiltonian cycle C' of K,, with w(C) < 2OPT, where OPT =
mingz w(Z) over all Hamiltonian cycles Z of (K, w).

Procedure:

Step 1: Find a minimum weighted spanning tree T' of (K, w).

Step 2: Let X be the set of odd degree vertices in T'. Find a minimum weighted
X-join J in (K,,w).

Step 3: Note that the graph T+ J is Eulerian. Find an Eulerian circuit R of
T+ J.

Step 4: Replace R by a Hamiltonian cycle C' of K,, by Lemma 1. Output C.

Theorem 3 Christofide’s algorithm outputs a Hamiltonian cycle C' of K,
with w(C) < 3OPT in time O(n?).

Proof. Let C* be a Hamiltonian cycle of K,, with w(C*) = OPT. Since C*
contains a Hamiltonian path of K, which is a spanning tree of K,,, we know
w(C*) > w(T). Since C* is a Hamiltonian cycle, it passes through all vertices
in X. Let z1,zs,...,xx| be the vertices in X, ordered by the order passed
though by C*. For every i € [|X|], let P; be the subpath of C* between z; and
741 internally disjoint from X, where zx|+1 = x1. Note that X is the set of
odd degree vertices, so | X| is even. Hence U'Z)jl/ > E(Py_1) and Ul):(ll/ > E(Py)
are two disjoint X-joins. That is, F(C*) is a union of two disjoint X-joins,

so w(C*) > 2w(J). Hence w(C) < w(R) = w(T + J) < 3w(C*). This shows
the correctness.

Step 1 takes time O(n?). Step 2 takes time O(n?). Step 3 takes time
O(n). Step 4 takes time O(n). So it takes O(n?®) in total. m

This % approximation ratio was established in the 1970s. Only until
recently (2021), Karlin, Klein and Gharan proved that there is a randomized
algorithm that outputs a Hamiltonian cycle with expected weight at most

(3 — €)OPT for some constant € > 10736,

2 Preparation for Gomory-Hu tree

Recall that we have a polynomial time algorithm to find a maximum flow
and a minimum cut of a network. In particular, given a digraph D and two
vertices x,y, we can find an edge-cut of D of minimum size that separates x
and y by considering the network (D, x,y,1). Given a graph G, by replacing
each edge of G by a pair of directed edges with different directions, the
above algorithm finds, given two vertices z,y, an edge-cut of G of minimum
size that separates x and y. So we can determine the edge-connectivity of
G by checking the minimum size of an edge-cut for (W(ZG”) pairs of distinct
vertices. That is, we can determine the edge-connectivity of a n-vertex graph
by applying the algorithm for finding a maximum flow and a minimum cut
(‘V(f)') times.

Gomory-Hu tree provides a more efficient way to find the edge-connectivity
and more structural information for the graph. We will consider a more gen-
eral setting for weighted graphs.

2.1 Edge-cuts

Before defining Gomory-Hu trees, we define some terminologies that will be
convenient later.

An edge-cut of a positive weighted graph (G, w) is an ordered partition
[A, B] of V(G) into (possibly empty) sets. And the weight of [A, B] is defined
to be 3 54y w(e), denoted by w(A, B). For two vertices u and v of G,

e we say that an edge-cut of (G, w) separating u and v if v and v are in
different parts of the edge-cut, and

e a minimum weighted (u,v)-edge-cut is an edge-cut [A, B] of G with
u € A and v € B such that the weight of [A, B] is the minimum among
all edge-cuts of (G, w) separating u and v.

Theorem 4 Let (G,w) be a weighted graph with positive w. Let u,v be
distinct vertices of G. Then a minimum weighted (u,v)-edge-cut can be found

in time O(|V(G)|*\/|E(G)]).

Proof. Create a digraph D obtained from G by replacing each edge of G by
two directed edges with different directions. For every (z,y) € E(D), define
c(x,y) = w(zy). Then use Edmonds-Karp algorithm to find a minimum cut
S for the network (D,u,v,¢) in time O(|V(G)||E(G)[?). (In fact, it can be
done in time O(|V(G)|?\/|F(G)|) by a more complicated algorithm.) Let
A= Sand B=V(G)—S. Then [A, B] is a minimum weighted (u,v)-edge-
cut. m

2.2 Tree-cut decomposition

A tree-cut decomposition of (G,w) is a pair (T, X'), where T is a tree and X
is a partition {X; : t € V(T')} of V(G) into (possibly empty) sets indexed by
V(T). For every edge xy of T,

e we know that T'—zy contains two components T}, and 7T}, of T', where T,
contains and T, contains y, s0 [Uyey (1) Xt, Usev(r,) X¢) 1s an edge-cut
of (G,w), and we call this edge-cut the edge-cut given by (z,y) (with
respect to (T, X)),

e the adhesion of xy (with respect to (T, X)) is defined to be the weight
of the edge-cut given by (z,v),

2.3 Gomory-Hu tree

A Gomory-Hu tree of a positive weighted graph (G, w) is a tree-cut decom-
position (T, X') of G such that

o | X;| =1 forevery t € V(T), and

e for any distinct z,y € V(G), the minimum weight of an edge-cut of
(G,w) separating = and y equals the minimum of the adhesion of e
over all edges e in the unique path in T" between x and y.

5

(Note that it implies that if the edge e gives the minimum adhesion in
the path between x and y, then the edge-cut given by e is an edge-cut
of (G, w) separating = and y.)

Therefore, if a Gomory-Hu tree (T, X') of a positive weighted graph (G, w)
is given, we can find the edge-connectivity in linear time by simply finding the
minimum adhesion of the edges of T', which only takes time O(|V(G)]); and
for any distinct vertices x,y of GG, we can find an edge-cut separating = and
y with minimum weight by simply finding the edge in 7" in the path between
x and y giving the minimum adhesion, which only takes time O(|V(G)]).

