Lecture notes for Apr 3, 2023
 Metric TSP and edge-cuts

Chun-Hung Liu

April 3, 2023

1 Metric TSP

Due to the hardness for approximating TSP, we consider a special case of TSP.

Metric TSP
Input: A positive integer n and a function $w: E\left(K_{n}\right) \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality (i.e. for any $x, y, z \in V\left(K_{n}\right), w(x, y)+w(y, z) \geq$ $w(x, z))$.
Output: A cycle C of K_{n} containing every vertex exactly once such that $\sum_{e \in E(C)} w(e)$ is minimum.
================================
We will give constant factor approximation for Metric TSP.
Lemma 1 Let $\left(K_{n}, w\right)$ be a weighted complete graph such that w satisfies the triangle inequality. Let H be a loopless graph with $V(H)=V\left(K_{n}\right)$. Let w_{H} be the weight function such that for every $u v \in E(H), w_{H}(u v)=w(u v)$. If R is an Eulerian circuit of H, then we can construct a Hamiltonian cycle C of K_{n} with $w(C) \leq w_{H}(R)$ in time $O(|E(H)|)$.

Proof. Since K_{n} is simple, we can describe R by listing the order vertices that it visits. Let $R=v_{1} v_{2} v_{3} \ldots$. Note that R is a walk that visits all vertices of K_{n} since H is connected and $V(H)=V\left(K_{n}\right)$. Let $R_{1}=R$. For $i \geq 1$, if $v_{i+1} \in\left\{v_{j}: j \in[i]\right\}$, then define R_{i+1} to be the sequence obtained from R_{i}
by removing v_{i+1}; otherwise, define $R_{i+1}=R_{i}$. If $R_{i+1}=R_{i}$, then R_{i+1} is a walk visiting all vertices with $w_{H}\left(R_{i+1}\right)=w_{H}\left(R_{i}\right)$; otherwise, since K_{n} is a complete graph, R_{i+1} describes the walk obtained from R_{i} by replacing the path $v_{i} v_{i+1} v_{i+2}$ by the edge $v_{i} v_{i+2}$, so R_{i+1} is also a walk visiting all vertices of K_{n} (as v_{i+1} was visited before v_{i}) and $w_{H}\left(R_{i+1}\right)=w_{H}\left(R_{i}\right)-w\left(v_{i} v_{i+1}\right)-$ $w\left(v_{i+1} v_{i+2}\right)+w\left(v_{i} v_{i+2}\right) \leq w_{H}\left(R_{i}\right)$ (by the triangle inequality). Hence $R_{|R|+1}$ is a closed walk that visits all vertices of K_{n} with no repeated vertices (so it is a Hamiltonian cycle) with weight at most $w\left(R_{1}\right)=w(R)$. Note that $R_{|R|+1}$ can be constructed in time $O(|R|)=O(|E(H)|)$.

A 2-approximation algorithm for Metric TSP
Input: A positive integer n and a function $w: E\left(K_{n}\right) \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality (i.e. for any $x, y, z \in V\left(K_{n}\right), w(x, y)+w(y, z) \geq$ $w(x, z))$.
Output: A Hamiltonian cycle C of K_{n} with $w(C) \leq 2 \mathrm{OPT}$, where OPT $=$ $\min _{Z} w(Z)$ over all Hamiltonian cycles Z of $\left(K_{n}, w\right)$.
Procedure:
Step 1: Find a minimum weighted spanning tree T of $\left(K_{n}, w\right)$.
Step 2: Double each edge of T to obtain the graph T^{\prime} and find an Eulerian tour R of T^{\prime}.

Step 3: Since R is an Eulerian circuit of a connected graph T^{\prime} with $V\left(T^{\prime}\right)=$ $V\left(K_{n}\right)$, we can replace R by a Hamiltonian cycle C of K_{n} by Lemma 1. Output C.

Theorem 2 The above algorithm outputs a Hamiltonian cycle C of K_{n} with $w(C) \leq$ 2OPT in time $O\left(n^{2}\right)$, where $\mathrm{OPT}=\min _{Z} w(Z)$ over all Hamiltonian cycle Z of $\left(K_{n}, w\right)$.

Proof. Let C^{*} be a Hamiltonian cycle of K_{n} with $w\left(C^{*}\right)=$ OPT. Since C^{*} contains a Hamiltonian path of K_{n}, which is a spanning tree of K_{n}, we know $w\left(C^{*}\right) \geq w(T)$. Note that $w(R)=w\left(T^{\prime}\right)=2 w(T)$. By Lemma 1, $w(C) \leq w(R) \leq 2 w(T) \leq 2 w\left(C^{*}\right)=2$ OPT. This shows the correctness.

Step 1 takes time $O\left(n^{2}\right)$ (by using Prim's algorithm). Step 2 takes time $O(n)$. Step 3 takes time $O\left(\left|E\left(T^{\prime}\right)\right|\right)=O(n)$. So the algorithm takes time $O\left(n^{2}\right)$.

We can improve the approximation factor by using a slower polynomial time algorithm.

Christofide's algorithm for Metric TSP

Input: A positive integer n and a function $w: E\left(K_{n}\right) \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality (i.e. for any $x, y, z \in V\left(K_{n}\right), w(x, y)+w(y, z) \geq$ $w(x, z))$.
Output: A Hamiltonian cycle C of K_{n} with $w(C) \leq \frac{3}{2} \mathrm{OPT}$, where $\mathrm{OPT}=$ $\min _{Z} w(Z)$ over all Hamiltonian cycles Z of $\left(K_{n}, w\right)$.

Procedure:

Step 1: Find a minimum weighted spanning tree T of $\left(K_{n}, w\right)$.
Step 2: Let X be the set of odd degree vertices in T. Find a minimum weighted X-join J in $\left(K_{n}, w\right)$.

Step 3: Note that the graph $T+J$ is Eulerian. Find an Eulerian circuit R of $T+J$.

Step 4: Replace R by a Hamiltonian cycle C of K_{n} by Lemma 1. Output C.

$$
==============================
$$

Theorem 3 Christofide's algorithm outputs a Hamiltonian cycle C of K_{n} with $w(C) \leq \frac{3}{2} \mathrm{OPT}$ in time $O\left(n^{3}\right)$.

Proof. Let C^{*} be a Hamiltonian cycle of K_{n} with $w\left(C^{*}\right)=$ OPT. Since C^{*} contains a Hamiltonian path of K_{n}, which is a spanning tree of K_{n}, we know $w\left(C^{*}\right) \geq w(T)$. Since C^{*} is a Hamiltonian cycle, it passes through all vertices in X. Let $x_{1}, x_{2}, \ldots, x_{|X|}$ be the vertices in X, ordered by the order passed though by C^{*}. For every $i \in[|X|]$, let P_{i} be the subpath of C^{*} between x_{i} and x_{i+1} internally disjoint from X, where $x_{|X|+1}=x_{1}$. Note that X is the set of odd degree vertices, so $|X|$ is even. Hence $\bigcup_{i=1}^{|X| / 2} E\left(P_{2 i-1}\right)$ and $\bigcup_{i=1}^{|X| / 2} E\left(P_{2 i}\right)$ are two disjoint X-joins. That is, $E\left(C^{*}\right)$ is a union of two disjoint X-joins,
so $w\left(C^{*}\right) \geq 2 w(J)$. Hence $w(C) \leq w(R)=w(T+J) \leq \frac{3}{2} w\left(C^{*}\right)$. This shows the correctness.

Step 1 takes time $O\left(n^{2}\right)$. Step 2 takes time $O\left(n^{3}\right)$. Step 3 takes time $O(n)$. Step 4 takes time $O(n)$. So it takes $O\left(n^{3}\right)$ in total.

This $\frac{3}{2}$ approximation ratio was established in the 1970s. Only until recently (2021), Karlin, Klein and Gharan proved that there is a randomized algorithm that outputs a Hamiltonian cycle with expected weight at most $\left(\frac{3}{2}-\epsilon\right)$ OPT for some constant $\epsilon>10^{-36}$.

2 Preparation for Gomory-Hu tree

Recall that we have a polynomial time algorithm to find a maximum flow and a minimum cut of a network. In particular, given a digraph D and two vertices x, y, we can find an edge-cut of D of minimum size that separates x and y by considering the network ($D, x, y, 1$). Given a graph G, by replacing each edge of G by a pair of directed edges with different directions, the above algorithm finds, given two vertices x, y, an edge-cut of G of minimum size that separates x and y. So we can determine the edge-connectivity of G by checking the minimum size of an edge-cut for $\binom{|V(G)|}{2}$ pairs of distinct vertices. That is, we can determine the edge-connectivity of a n-vertex graph by applying the algorithm for finding a maximum flow and a minimum cut $\binom{|V(G)|}{2}$ times.

Gomory-Hu tree provides a more efficient way to find the edge-connectivity and more structural information for the graph. We will consider a more general setting for weighted graphs.

2.1 Edge-cuts

Before defining Gomory-Hu trees, we define some terminologies that will be convenient later.

An edge-cut of a positive weighted graph (G, w) is an ordered partition $[A, B]$ of $V(G)$ into (possibly empty) sets. And the weight of $[A, B]$ is defined to be $\sum_{e \in \delta(A)} w(e)$, denoted by $w(A, B)$. For two vertices u and v of G,

- we say that an edge-cut of (G, w) separating u and v if u and v are in different parts of the edge-cut, and
- a minimum weighted (u, v)-edge-cut is an edge-cut $[A, B]$ of G with $u \in A$ and $v \in B$ such that the weight of $[A, B]$ is the minimum among all edge-cuts of (G, w) separating u and v.

Theorem 4 Let (G, w) be a weighted graph with positive w. Let u, v be distinct vertices of G. Then a minimum weighted (u, v)-edge-cut can be found in time $O\left(|V(G)|^{2} \sqrt{|E(G)|}\right)$.

Proof. Create a digraph D obtained from G by replacing each edge of G by two directed edges with different directions. For every $(x, y) \in E(D)$, define $c(x, y)=w(x y)$. Then use Edmonds-Karp algorithm to find a minimum cut S for the network (D, u, v, c) in time $O\left(|V(G) \| E(G)|^{2}\right)$. (In fact, it can be done in time $O\left(|V(G)|^{2} \sqrt{|E(G)|}\right)$ by a more complicated algorithm.) Let $A=S$ and $B=V(G)-S$. Then $[A, B]$ is a minimum weighted (u, v)-edgecut.

2.2 Tree-cut decomposition

A tree-cut decomposition of (G, w) is a pair (T, \mathcal{X}), where T is a tree and \mathcal{X} is a partition $\left\{X_{t}: t \in V(T)\right\}$ of $V(G)$ into (possibly empty) sets indexed by $V(T)$. For every edge $x y$ of T,

- we know that $T-x y$ contains two components T_{x} and T_{y} of T, where T_{x} contains x and T_{y} contains y, so $\left[\bigcup_{t \in V\left(T_{x}\right)} X_{t}, \bigcup_{t \in V\left(T_{y}\right)} X_{t}\right]$ is an edge-cut of (G, w), and we call this edge-cut the edge-cut given by (x, y) (with respect to (T, \mathcal{X})),
- the adhesion of $x y$ (with respect to (T, \mathcal{X})) is defined to be the weight of the edge-cut given by (x, y),

2.3 Gomory-Hu tree

A Gomory-Hu tree of a positive weighted graph (G, w) is a tree-cut decomposition (T, \mathcal{X}) of G such that

- $\left|X_{t}\right|=1$ for every $t \in V(T)$, and
- for any distinct $x, y \in V(G)$, the minimum weight of an edge-cut of (G, w) separating x and y equals the minimum of the adhesion of e over all edges e in the unique path in T between x and y.
(Note that it implies that if the edge e gives the minimum adhesion in the path between x and y, then the edge-cut given by e is an edge-cut of (G, w) separating x and y.)

Therefore, if a Gomory-Hu tree (T, \mathcal{X}) of a positive weighted graph (G, w) is given, we can find the edge-connectivity in linear time by simply finding the minimum adhesion of the edges of T, which only takes time $O(|V(G)|)$; and for any distinct vertices x, y of G, we can find an edge-cut separating x and y with minimum weight by simply finding the edge in T in the path between x and y giving the minimum adhesion, which only takes time $O(|V(G)|)$.

