Lecture notes for Apr 5, 2023 Gomory-Hu trees

Chun-Hung Liu

April 5, 2023

We recall the terminologies. A tree-cut decomposition of (G, w) is a pair (T, \mathcal{X}) , where T is a tree and \mathcal{X} is a partition $\{X_t : t \in V(T)\}$ of V(G) into (possibly empty) sets indexed by V(T). For every edge xy of T,

- we know that T xy contains two components T_x and T_y of T, where T_x contains x and T_y contains y, so $[\bigcup_{t \in V(T_x)} X_t, \bigcup_{t \in V(T_y)} X_t]$ is an edge-cut of (G, w), and we call this edge-cut the edge-cut given by (x, y) (with respect to (T, \mathcal{X})),
- the adhesion of xy (with respect to (T, \mathcal{X})) is defined to be the weight of the edge-cut given by (x, y),

A Gomory-Hu tree of a positive weighted graph (G, w) is a tree-cut decomposition (T, \mathcal{X}) of G such that

- $|X_t| = 1$ for every $t \in V(T)$, and
- for any distinct $x, y \in V(G)$, the minimum weight of an edge-cut of (G, w) separating x and y equals the minimum of the adhesion of e over all edges e in the unique path in T between x and y.

(Note that it implies that if the edge e gives the minimum adhesion in the path between x and y, then the edge-cut given by e is an edge-cut of (G, w) separating x and y.)

Therefore, if a Gomory-Hu tree (T, \mathcal{X}) of a positive weighted graph (G, w) is given, we can find the edge-connectivity in linear time by simply finding the minimum adhesion of the edges of T, which only takes time O(|V(G)|); and

for any distinct vertices x, y of G, we can find an edge-cut separating x and y with minimum weight by simply finding the edge in T in the path between x and y giving the minimum adhesion, which only takes time O(|V(G)|).

1 Nice tree-cut decompositions

A tree-cut decomposition (T, \mathcal{X}) of (G, w) is *nice* if for every $xy \in E(T)$, there exist $u \in X_x$ and $v \in X_y$ such that the edge-cut given by (x, y) is a minimum (weighted) (u, v)-edge-cut in (G, w). Notice that the tree-cut decomposition (T, \mathcal{X}) of (G, w) with |V(T)| = 1 is a nice tree-cut decomposition.

Lemma 1 Let (G, w) be a weighted graph with positive w. Let (T, \mathcal{X}) be a nice tree-cut decomposition of G such that $|X_t| = 1$ for every $t \in V(T)$. Then (T, \mathcal{X}) is a Gomory-Hu tree.

Proof. Since $|X_t| = 1$ for every $t \in V(T)$, we may assume V(G) = V(T). Let a, b be distinct vertices of G. Let λ be the minimum weight of an edgecut of (G, w) separating a and b. Let P be the path in T between a and b. For every $e \in E(P)$, let λ_e be the adhesion of e. For every $e \in E(P)$, since the edge-cut of G given by e separates a and b, we know $\lambda \leq \lambda_e$. So $\lambda \leq \min_{e \in E(P)} \lambda_e$.

Suppose to the contrary that $\lambda < \min_{e \in E(P)} \lambda_e$. Let [A, B] be a minimum weighted (a, b)-edge-cut of G. So $w(A, B) = \lambda$. Since $a \in A$ and $b \in B$, there exists an edge uv of P such that $u \in A$ and $v \in B$. Then [A, B] is an edge-cut separating u and v with weight $\lambda < \lambda_{uv}$. Since (T, \mathcal{X}) is nice, there exist $u' \in X_u$ and $v' \in X_v$ such that the edge-cut [A', B'] given by (u, v) is a minimum weighted (u', v')-edge-cut. Note that $w(A', B') = \lambda_{uv}$. But $|X_u| = |X_v| = 1$, so u' = u and v' = v. Hence [A, B] is an edge-cut separating u and v with weight smaller than [A', B'], a contradiction.

2 Submodularity

The following property for edge-cuts is useful.

Proposition 2 (Submodularity of edge-cuts) Let (G, w) be a weighted graph with positive w. Let [A, B] and [C, D] be edge-cuts of (G, w). Then $w(A, B) + w(C, D) \ge w(A \cap C, B \cup D) + w(A \cup C, B \cap D).$ **Proof.** It is straightforward to verify it by considering the contribution of w(e) in the two sides of the inequality for each edge e of G.

3 Torsos and splitting

In this subsection, (G, w) is a weighted graph, where w is a positive function.

Given a partition \mathcal{P} of V(G), we define $(G, w)/\mathcal{P}$ to be the weighted graph (G', w'), where

• G' is the graph obtained from G by for each nonempty member M of \mathcal{P} , identifying M into a single vertex v_M and deleting the resulting loops (but keeping parallel edges),

(so there is a natural injection from E(G') to E(G), and we can treat each edge of G' an edge of G),

• $w' : E(G') \to \mathbb{R}$ is the function such that for every edge e of G', w'(e) = w(e).

Let (T, \mathcal{X}) be a tree-cut decomposition of G. For every $t \in V(T)$,

- the set X_t is called the *bag* at t, and
- the torso at t is the weighted graph $(G, w)/\mathcal{P}_t$, where \mathcal{P}_t is the partition $\{\{v\} : v \in X_t\} \cup \{\bigcup_{x \in V(C)} X_x : C \text{ is a component of } T t\}$ of V(G).

If $t \in V(T)$ and [A, B] is an edge-cut of the torso at t, then

- the [A, B]-extension is the edge-cut [A', B'] of G, where
 - $-A' = (X_t \cap A) \cup \bigcup \{X_s : s \in V(T) \{t\} \text{ and } X_s \text{ is contained in a part of } \mathcal{P}_t \text{ identified into a vertex in } A\}, \text{ and}$
 - $-B' = (X_t \cap B) \cup \bigcup \{X_s : s \in V(T) \{t\} \text{ and } X_s \text{ is contained in a part of } \mathcal{P}_t \text{ identified into a vertex in } B\},$
- the [A, B]-split of (T, \mathcal{X}) is the tree-cut decomposition (T', \mathcal{X}') such that
 - the vertex-set V(T') is obtained from $V(T) \{t\}$ by adding two new vertices t_A and t_B ,

Lemma 3 Let (G, w) be a weighted graph with positive w. Let (T, \mathcal{X}) be a nice tree-cut decomposition of (G, w). Let $t \in V(T)$. Let $u, v \in X_t$. If [A, B] is a minimum weighted (u, v)-edge-cut of the torso at t, then the [A, B]-extension is a minimum weighted (u, v)-edge-cut of (G, w).

Proof. Clearly, the [A, B]-extension is an edge-cut of (G, w) with $u \in A$ and $v \in B$ such that it has weight equal to w(A, B). So it suffices to show that no edge-cut of (G, w) separating u and v has weight smaller than w(A, B).

For every edge-cut [X, Y] of G, we define the *badness* of [X, Y] to be the number of nodes t of T such that $X_t \cap X \neq \emptyset \neq X_t \cap Y$. Note that every edge-cut of G separating u and v has badness at least 1, and if it has badness 1, then it also gives an edge-cut of the torso at t with the same weight. So to prove this lemma, it suffices to show that there exists a minimum weighted (u, v)-edge-cut of (G, w) with badness 1.

Let [C, D] be a minimum weighted (u, v)-edge-cut with minimum badness. Suppose to the contrary that [C, D] has badness at least two. Then there exists $s \in V(T) - \{t\}$ such that $X_s \cap C \neq \emptyset \neq X_s \cap D$. Let s' be the neighbor of s in T contained in the path in T between s and t. Let $[A_s, B_s]$ be the edge-cut given by (s, s'). Since (T, \mathcal{X}) is a nice tree-cut decomposition, there exist $u_s \in A_s$ and $v_s \in B_s$ such that $[A_s, B_s]$ is a minimum weighted (u_s, v_s) -edge-cut of (G, w).

If $u_s \in C$, then let $[C^*, D^*] = [C, D]$; otherwise, let $[C^*, D^*] = [D, C]$. That is, $u_s \in C^*$.

Since $u_s \in A_s$ and $v_s \in B_s$, $[A_s \cap C^*, B_s \cup D^*]$ is an edge-cut of G separating u_s and v_s . Since $[A_s, B_s]$ is a minimum weighted (u_s, v_s) -edge-cut of G, we know $w(A_s \cap C^*, B_s \cup D^*) \ge w(A_s, B_s)$. Then by Proposition 2, $w(A_s \cup C^*, B_s \cap D^*) \le w(C^*, D^*) = w(C, D)$.

Note that $\{u, v\} \subseteq X_t \subseteq B_s$, and exactly one of u, v is in D^* . So $[A_s \cup C^*, B_s \cap D^*]$ is an edge-cut of G separating u and v. Since [C, D] is a minimum weighted (u, v)-edge-cut of G, we know $w(A_s \cup C^*, B_s \cap D^*) \ge w(C, D)$. Therefore, $w(A_s \cup C^*, B_s \cap D^*) = w(C, D)$. Note that $X_s \cap (B_s \cap D) = \emptyset$. And for every $z \in V(T) - \{t, s\}$, if $X_z \cap (A_s \cup C) \neq \emptyset \neq X_z \cap (B_s \cap D)$, then z is contained in the component of T - ss' containing t, so $X_z \cap C \neq \emptyset \neq X_z \cap D$. That is, the badness of [C, D] is strictly bigger than $[A_s \cup C, B_s \cap D]$, a contradiction.

Lemma 4 Let (G, w) be a weighted graph with positive w. Let (T, \mathcal{X}) be a nice tree-cut decomposition of (G, w). Let $t \in V(T)$. Let $u, v \in X_t$. If [A, B] is a minimum weighted (u, v)-edge-cut of the torso at t, then the [A, B]-split of (T, \mathcal{X}) is a nice tree-cut decomposition of (G, w).

Proof. Let (T', \mathcal{X}') be the [A, B]-split of (T, X). Let t_A and t_B be the two new vertices in T. Since [A, B] is a minimum weighted (u, v)-edge-cut of the torso at t, Lemma 3 implies that the edge-cut of (G, w) given by $t_A t_B$ is a minimum weighted (u, v)-edge-cut with $u \in X'_{t_A}$ and $v \in X'_{t_B}$. And note that for every edge e of T not incident with t, the edge-cut given by e with respect to (T, \mathcal{X}) and the edge-cut given by e with respect to (T', \mathcal{X}') are the same.

For every $s \in N_T(t)$, let t_s be the vertex in $\{t_A, t_B\}$ such that $st_s \in E(T')$. Since (T, \mathcal{X}) is nice, to show that (T', \mathcal{X}') is nice, it suffices to show that for every $s \in N_T(t)$, there exist $v_s \in X'_s$ and $v_{t_s} \in X'_{t_s}$ such that the edge-cut given by (s, t_s) is a minimum weighted (v_s, v_{t_s}) -edge-cut of (G, w).

Let $s \in N_T(t)$. Since (T, \mathcal{X}) is nice and $st \in E(T)$, there exist $v_s \in X_s = X'_s$ and $v_t \in X_t$ such that the edge-cut $[A_{st}, B_{st}]$ given by (s, t) is a minimum weighted (v_s, v_t) -edge-cut. By the definition of the [A, B]-split, $[A_{st}, B_{st}]$ is also the edge-cut given by (s, t_s) . If $v_t \in X'_{t_s}$, then we are done by choosing $v_{t_s} = v_t$. So we may assume $v_t \notin X'_{t_s}$.

Let [A', B'] be the [A, B]-extension. Note that [A', B'] separates v_s and v_t . So $w(A', B') \ge w(A_{st}, B_{st})$.

By symmetry, we may assume $t_s = t_A$, so $v_s \in A'$ and $v_t \in B'$. Let [C, D]be a minimum weighted (v_s, u) -cut of (G, w). Note that $v_s \in X'_s$ and $u \in X'_{t_s}$. If $w(C, D) = w(A_{st}, B_{st})$, then we are done by choosing $v_{t_s} = u$. So we may assume $w(C, D) \neq w(A_{st}, B_{st})$. Since $v_s \in X_s \subseteq A_{st}$ and $u \in X_t \subseteq B_{st}$, $[A_{st}, B_{st}]$ separates v_s and u, so $w(A_{st}, B_{st}) \geq w(C, D)$. Hence $w(A_{st}, B_{st}) > w(C, D)$.

By Lemma 3, [A', B'] is a minimum weighted (u, v)-edge-cut. If $v \in C$, then [C, D] separates v and u, so $w(C, D) \geq w(A', B') \geq w(A_{st}, B_{st})$, a contradiction. So $v \in D$.

Since $[A' \cap C, B' \cup D]$ separates v_s and v_t , $w(A' \cap C, B' \cup D) \ge w(A_{st}, B_{st}) > w(C, D)$. Since $[A' \cup C, B' \cap D]$ separates u and v, $w(A' \cup C, B' \cap D) \ge w(A_{st}, B_{st}) > w(C, D)$.

w(A',B'). But by Proposition 2, $w(A'\cap C,B'\cup D)+w(A'\cup C,B'\cap D)\leq w(A',B')+w(C,D),$ a contradiction. \blacksquare

4 Algorithm

An algorithm for finding a Gomory-Hu tree Input: A weighted graph (G, w), where w is a positive function. Output: A Gomory-Hu tree (T, \mathcal{X}) of (G, w). Procedure:

- Step 0: Delete all loops of G. And for any two distinct vertices u and v of G, if there exist more than one edge of G between u and v, then delete all those edges and add a single edge between u and v whose weight equals the sum of the weight of the original edges between u and v.
- Step 1: Set (T_0, \mathcal{X}_0) be a tree-cut decomposition of G such that T_0 is a tree with one vertex,
- Step 2: For i = 1, 2, ..., |V(G)| 1, do the following:

- Pick a node t of T_{i-1} with $|X_t| \ge 2$, pick two distinct vertices x, y in X_t , and find a minimum weighted (x, y)-edge-cut $[S_x, S_y]$ of the torso at t with respect to $(T_{i-1}, \mathcal{X}_{i-1})$.
- Define (T_i, \mathcal{X}_i) to be the $[S_x, S_y]$ -split of $(T_{i-1}, \mathcal{X}_{i-1})$.

Step 3: Output $(T_{|V(G)|-1}, \mathcal{X}_{|V(G)|-1}).$

Theorem 5 The above algorithm outputs a Gomory-Hu tree in time $O(|E(G)| + |V(G)|^3 \sqrt{|E(G)|}).$

Proof. Note that Gormory-Hu trees of the original graph G are exactly the Gomory-Hu tree of the graph G modified in Step 0.

We first show the correctness. Clearly, (T_0, \mathcal{X}_0) is a nice tree-cut decomposition. By Lemma 4, (T_i, \mathcal{X}_i) is nice for every $i \ge 1$. And clearly for every $0 \leq i \leq |V(G)| - 1$, $|V(T_i)| = i + 1$ and the bag of (T_i, \mathcal{X}_i) at any node contains at least one vertex. So $(T_{|V(G)|-1}, \mathcal{X}_{|V(G)|-1})$ is a nice tree-decomposition such that every bag has size one. Hence $(T_{|V(G)|-1}, \mathcal{X}_{|V(G)|-1})$ is a Gomory-Hu tree by Lemma 1.

Now we show the time complexity. Step 0 takes time O(|E(G)|). Step 1 takes time O(|V(G)|). For each round of Step 2, we can find a desired vertex t of T in linear time, construct the torso at t in linear time, find the edge-cut $[S_x, S_y]$ in time that runs a minimum cut algorithm (which can be done in $O(|V(G)|^2 \sqrt{|E(G)|})$ time by a previous theorem), and find the $[S_x, S_y]$ -split in linear time. So each round of Step 2 can be done in time $O(|V(G)|^2 \sqrt{|E(G)|}) = O(|V(G)|^2 \sqrt{|E(G)|})$ since G is simple after Step 1. And we execute Step 2 |V(G)| times. So the total running time is $O(|E(G)| + |V(G)|^3 \sqrt{|E(G)|})$.