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We recall the terminologies. A tree-cut decomposition of (G,w) is a pair
(T,X ), where T is a tree and X is a partition {Xt : t ∈ V (T )} of V (G) into
(possibly empty) sets indexed by V (T ). For every edge xy of T ,

� we know that T−xy contains two components Tx and Ty of T , where Tx
contains x and Ty contains y, so [

⋃
t∈V (Tx)

Xt,
⋃

t∈V (Ty)
Xt] is an edge-cut

of (G,w), and we call this edge-cut the edge-cut given by (x, y) (with
respect to (T,X )),

� the adhesion of xy (with respect to (T,X )) is defined to be the weight
of the edge-cut given by (x, y),

A Gomory-Hu tree of a positive weighted graph (G,w) is a tree-cut decom-
position (T,X ) of G such that

� |Xt| = 1 for every t ∈ V (T ), and

� for any distinct x, y ∈ V (G), the minimum weight of an edge-cut of
(G,w) separating x and y equals the minimum of the adhesion of e
over all edges e in the unique path in T between x and y.

(Note that it implies that if the edge e gives the minimum adhesion in
the path between x and y, then the edge-cut given by e is an edge-cut
of (G,w) separating x and y.)

Therefore, if a Gomory-Hu tree (T,X ) of a positive weighted graph (G,w) is
given, we can find the edge-connectivity in linear time by simply finding the
minimum adhesion of the edges of T , which only takes time O(|V (G)|); and
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for any distinct vertices x, y of G, we can find an edge-cut separating x and
y with minimum weight by simply finding the edge in T in the path between
x and y giving the minimum adhesion, which only takes time O(|V (G)|).

1 Nice tree-cut decompositions

A tree-cut decomposition (T,X ) of (G,w) is nice if for every xy ∈ E(T ), there
exist u ∈ Xx and v ∈ Xy such that the edge-cut given by (x, y) is a minimum
(weighted) (u, v)-edge-cut in (G,w). Notice that the tree-cut decomposition
(T,X ) of (G,w) with |V (T )| = 1 is a nice tree-cut decomposition.

Lemma 1 Let (G,w) be a weighted graph with positive w. Let (T,X ) be a
nice tree-cut decomposition of G such that |Xt| = 1 for every t ∈ V (T ). Then
(T,X ) is a Gomory-Hu tree.

Proof. Since |Xt| = 1 for every t ∈ V (T ), we may assume V (G) = V (T ).
Let a, b be distinct vertices of G. Let λ be the minimum weight of an edge-
cut of (G,w) separating a and b. Let P be the path in T between a and
b. For every e ∈ E(P ), let λe be the adhesion of e. For every e ∈ E(P ),
since the edge-cut of G given by e separates a and b, we know λ ≤ λe. So
λ ≤ mine∈E(P ) λe.

Suppose to the contrary that λ < mine∈E(P ) λe. Let [A,B] be a minimum
weighted (a, b)-edge-cut of G. So w(A,B) = λ. Since a ∈ A and b ∈ B,
there exists an edge uv of P such that u ∈ A and v ∈ B. Then [A,B] is
an edge-cut separating u and v with weight λ < λuv. Since (T,X ) is nice,
there exist u′ ∈ Xu and v′ ∈ Xv such that the edge-cut [A′, B′] given by
(u, v) is a minimum weighted (u′, v′)-edge-cut. Note that w(A′, B′) = λuv.
But |Xu| = |Xv| = 1, so u′ = u and v′ = v. Hence [A,B] is an edge-cut
separating u and v with weight smaller than [A′, B′], a contradiction.

2 Submodularity

The following property for edge-cuts is useful.

Proposition 2 (Submodularity of edge-cuts) Let (G,w) be a weighted
graph with positive w. Let [A,B] and [C,D] be edge-cuts of (G,w). Then
w(A,B) + w(C,D) ≥ w(A ∩ C,B ∪D) + w(A ∪ C,B ∩D).
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Proof. It is straightforward to verify it by considering the contribution of
w(e) in the two sides of the inequality for each edge e of G.

3 Torsos and splitting

In this subsection, (G,w) is a weighted graph, where w is a positive function.
Given a partition P of V (G), we define (G,w)/P to be the weighted

graph (G′, w′), where

� G′ is the graph obtained from G by for each nonempty member M of P ,
identifying M into a single vertex vM and deleting the resulting loops
(but keeping parallel edges),

(so there is a natural injection from E(G′) to E(G), and we can treat
each edge of G′ an edge of G),

� w′ : E(G′) → R is the function such that for every edge e of G′,
w′(e) = w(e).

Let (T,X ) be a tree-cut decomposition of G. For every t ∈ V (T ),

� the set Xt is called the bag at t, and

� the torso at t is the weighted graph (G,w)/Pt, where Pt is the partition
{{v} : v ∈ Xt} ∪ {

⋃
x∈V (C)Xx : C is a component of T − t} of V (G).

If t ∈ V (T ) and [A,B] is an edge-cut of the torso at t, then

� the [A,B]-extension is the edge-cut [A′, B′] of G, where

– A′ = (Xt ∩ A) ∪
⋃
{Xs : s ∈ V (T )− {t} and Xs is contained in a

part of Pt identified into a vertex in A}, and

– B′ = (Xt ∩B) ∪
⋃
{Xs : s ∈ V (T )− {t} and Xs is contained in a

part of Pt identified into a vertex in B},

� the [A,B]-split of (T,X ) is the tree-cut decomposition (T ′,X ′) such
that

– the vertex-set V (T ′) is obtained from V (T ) − {t} by adding two
new vertices tA and tB,
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– the edge-set E(T ′) = {tAtB}∪(E(T )−δ(t))∪{tAs : s ∈ NT (t), Xs ⊆
A′} ∪ {tBs : s ∈ NT (t), Xs ⊆ B′}, and

– X ′ = (X ′z : z ∈ V (T ′)) such that

* X ′tA = Xt ∩ A,

* X ′tB = Xt ∩B, and

* for every z ∈ V (T ′)− {tA, tB} = V (T )− {t}, X ′z = Xz.

Lemma 3 Let (G,w) be a weighted graph with positive w. Let (T,X ) be a
nice tree-cut decomposition of (G,w). Let t ∈ V (T ). Let u, v ∈ Xt. If [A,B]
is a minimum weighted (u, v)-edge-cut of the torso at t, then the [A,B]-
extension is a minimum weighted (u, v)-edge-cut of (G,w).

Proof. Clearly, the [A,B]-extension is an edge-cut of (G,w) with u ∈ A and
v ∈ B such that it has weight equal to w(A,B). So it suffices to show that
no edge-cut of (G,w) separating u and v has weight smaller than w(A,B).

For every edge-cut [X, Y ] of G, we define the badness of [X, Y ] to be the
number of nodes t of T such that Xt ∩ X 6= ∅ 6= Xt ∩ Y . Note that every
edge-cut of G separating u and v has badness at least 1, and if it has badness
1, then it also gives an edge-cut of the torso at t with the same weight. So to
prove this lemma, it suffices to show that there exists a minimum weighted
(u, v)-edge-cut of (G,w) with badness 1.

Let [C,D] be a minimum weighted (u, v)-edge-cut with minimum badness.
Suppose to the contrary that [C,D] has badness at least two. Then there
exists s ∈ V (T ) − {t} such that Xs ∩ C 6= ∅ 6= Xs ∩ D. Let s′ be the
neighbor of s in T contained in the path in T between s and t. Let [As, Bs]
be the edge-cut given by (s, s′). Since (T,X ) is a nice tree-cut decomposition,
there exist us ∈ As and vs ∈ Bs such that [As, Bs] is a minimum weighted
(us, vs)-edge-cut of (G,w).

If us ∈ C, then let [C∗, D∗] = [C,D]; otherwise, let [C∗, D∗] = [D,C].
That is, us ∈ C∗.

Since us ∈ As and vs ∈ Bs, [As ∩ C∗, Bs ∪ D∗] is an edge-cut of G
separating us and vs. Since [As, Bs] is a minimum weighted (us, vs)-edge-cut
of G, we know w(As ∩ C∗, Bs ∪ D∗) ≥ w(As, Bs). Then by Proposition 2,
w(As ∪ C∗, Bs ∩D∗) ≤ w(C∗, D∗) = w(C,D).

Note that {u, v} ⊆ Xt ⊆ Bs, and exactly one of u, v is in D∗. So [As ∪
C∗, Bs∩D∗] is an edge-cut of G separating u and v. Since [C,D] is a minimum
weighted (u, v)-edge-cut of G, we know w(As ∪ C∗, Bs ∩ D∗) ≥ w(C,D).
Therefore, w(As ∪ C∗, Bs ∩D∗) = w(C,D).

4



Note that Xs ∩ (Bs ∩ D) = ∅. And for every z ∈ V (T ) − {t, s}, if
Xz ∩ (As ∪C) 6= ∅ 6= Xz ∩ (Bs ∩D), then z is contained in the component of
T − ss′ containing t, so Xz ∩C 6= ∅ 6= Xz ∩D. That is, the badness of [C,D]
is strictly bigger than [As ∪ C,Bs ∩D], a contradiction.

Lemma 4 Let (G,w) be a weighted graph with positive w. Let (T,X ) be a
nice tree-cut decomposition of (G,w). Let t ∈ V (T ). Let u, v ∈ Xt. If [A,B]
is a minimum weighted (u, v)-edge-cut of the torso at t, then the [A,B]-split
of (T,X ) is a nice tree-cut decomposition of (G,w).

Proof. Let (T ′,X ′) be the [A,B]-split of (T,X). Let tA and tB be the two
new vertices in T . Since [A,B] is a minimum weighted (u, v)-edge-cut of the
torso at t, Lemma 3 implies that the edge-cut of (G,w) given by tAtB is a
minimum weighted (u, v)-edge-cut with u ∈ X ′tA and v ∈ X ′tB . And note
that for every edge e of T not incident with t, the edge-cut given by e with
respect to (T,X ) and the edge-cut given by e with respect to (T ′,X ′) are the
same.

For every s ∈ NT (t), let ts be the vertex in {tA, tB} such that sts ∈ E(T ′).
Since (T,X ) is nice, to show that (T ′,X ′) is nice, it suffices to show that for
every s ∈ NT (t), there exist vs ∈ X ′s and vts ∈ X ′ts such that the edge-cut
given by (s, ts) is a minimum weighted (vs, vts)-edge-cut of (G,w).

Let s ∈ NT (t). Since (T,X ) is nice and st ∈ E(T ), there exist vs ∈ Xs =
X ′s and vt ∈ Xt such that the edge-cut [Ast, Bst] given by (s, t) is a minimum
weighted (vs, vt)-edge-cut. By the definition of the [A,B]-split, [Ast, Bst] is
also the edge-cut given by (s, ts). If vt ∈ X ′ts , then we are done by choosing
vts = vt. So we may assume vt 6∈ X ′ts .

Let [A′, B′] be the [A,B]-extension. Note that [A′, B′] separates vs and
vt. So w(A′, B′) ≥ w(Ast, Bst).

By symmetry, we may assume ts = tA, so vs ∈ A′ and vt ∈ B′. Let [C,D]
be a minimum weighted (vs, u)-cut of (G,w). Note that vs ∈ X ′s and u ∈ X ′ts .
If w(C,D) = w(Ast, Bst), then we are done by choosing vts = u. So we may
assume w(C,D) 6= w(Ast, Bst). Since vs ∈ Xs ⊆ Ast and u ∈ Xt ⊆ Bst,
[Ast, Bst] separates vs and u, so w(Ast, Bst) ≥ w(C,D). Hence w(Ast, Bst) >
w(C,D).

By Lemma 3, [A′, B′] is a minimum weighted (u, v)-edge-cut. If v ∈ C,
then [C,D] separates v and u, so w(C,D) ≥ w(A′, B′) ≥ w(Ast, Bst), a
contradiction. So v ∈ D.

Since [A′∩C,B′∪D] separates vs and vt, w(A′∩C,B′∪D) ≥ w(Ast, Bst) >
w(C,D). Since [A′ ∪ C,B′ ∩ D] separates u and v, w(A′ ∪ C,B′ ∩ D) ≥
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w(A′, B′). But by Proposition 2, w(A′ ∩ C,B′ ∪ D) + w(A′ ∪ C,B′ ∩ D) ≤
w(A′, B′) + w(C,D), a contradiction.

4 Algorithm

==============================
An algorithm for finding a Gomory-Hu tree
Input: A weighted graph (G,w), where w is a positive function.
Output: A Gomory-Hu tree (T,X ) of (G,w).
Procedure:

Step 0: Delete all loops of G. And for any two distinct vertices u and v of G,
if there exist more than one edge of G between u and v, then delete
all those edges and add a single edge between u and v whose weight
equals the sum of the weight of the original edges between u and v.

Step 1: Set (T0,X0) be a tree-cut decomposition of G such that T0 is a tree
with one vertex,

Step 2: For i = 1, 2, ..., |V (G)| − 1, do the following:

– Pick a node t of Ti−1 with |Xt| ≥ 2, pick two distinct vertices x, y
in Xt, and find a minimum weighted (x, y)-edge-cut [Sx, Sy] of the
torso at t with respect to (Ti−1,Xi−1).

– Define (Ti,Xi) to be the [Sx, Sy]-split of (Ti−1,Xi−1).

Step 3: Output (T|V (G)|−1,X|V (G)|−1).

==============================

Theorem 5 The above algorithm outputs a Gomory-Hu tree in time
O(|E(G)|+ |V (G)|3

√
|E(G)|).

Proof. Note that Gormory-Hu trees of the original graph G are exactly the
Gomory-Hu tree of the graph G modified in Step 0.

We first show the correctness. Clearly, (T0,X0) is a nice tree-cut decom-
position. By Lemma 4, (Ti,Xi) is nice for every i ≥ 1. And clearly for every
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0 ≤ i ≤ |V (G)| − 1, |V (Ti)| = i+ 1 and the bag of (Ti,Xi) at any node con-
tains at least one vertex. So (T|V (G)|−1,X|V (G)|−1) is a nice tree-decomposition
such that every bag has size one. Hence (T|V (G)|−1,X|V (G)|−1) is a Gomory-Hu
tree by Lemma 1.

Now we show the time complexity. Step 0 takes time O(|E(G)|). Step
1 takes time O(|V (G)|). For each round of Step 2, we can find a desired
vertex t of T in linear time, construct the torso at t in linear time, find
the edge-cut [Sx, Sy] in time that runs a minimum cut algorithm (which can

be done in O(|V (G)|2
√
|E(G)|) time by a previous theorem), and find the

[Sx, Sy]-split in linear time. So each round of Step 2 can be done in time

O(|V (G)|2
√
|E(G)|+ |E(G)|) = O(|V (G)|2

√
|E(G)|) since G is simple after

Step 1. And we execute Step 2 |V (G)| times. So the total running time is
O(|E(G)|+ |V (G)|3

√
|E(G)|).
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