Lecture notes for Apr 5, 2023
 Gomory-Hu trees

Chun-Hung Liu

April 5, 2023

We recall the terminologies. A tree-cut decomposition of (G, w) is a pair (T, \mathcal{X}), where T is a tree and \mathcal{X} is a partition $\left\{X_{t}: t \in V(T)\right\}$ of $V(G)$ into (possibly empty) sets indexed by $V(T)$. For every edge $x y$ of T,

- we know that $T-x y$ contains two components T_{x} and T_{y} of T, where T_{x} contains x and T_{y} contains y, so $\left[\bigcup_{t \in V\left(T_{x}\right)} X_{t}, \bigcup_{t \in V\left(T_{y}\right)} X_{t}\right]$ is an edge-cut of (G, w), and we call this edge-cut the edge-cut given by (x, y) (with respect to (T, \mathcal{X})),
- the adhesion of $x y$ (with respect to (T, \mathcal{X})) is defined to be the weight of the edge-cut given by (x, y),

A Gomory-Hu tree of a positive weighted graph (G, w) is a tree-cut decomposition (T, \mathcal{X}) of G such that

- $\left|X_{t}\right|=1$ for every $t \in V(T)$, and
- for any distinct $x, y \in V(G)$, the minimum weight of an edge-cut of (G, w) separating x and y equals the minimum of the adhesion of e over all edges e in the unique path in T between x and y.
(Note that it implies that if the edge e gives the minimum adhesion in the path between x and y, then the edge-cut given by e is an edge-cut of (G, w) separating x and y.)

Therefore, if a Gomory-Hu tree (T, \mathcal{X}) of a positive weighted graph (G, w) is given, we can find the edge-connectivity in linear time by simply finding the minimum adhesion of the edges of T, which only takes time $O(|V(G)|)$; and
for any distinct vertices x, y of G, we can find an edge-cut separating x and y with minimum weight by simply finding the edge in T in the path between x and y giving the minimum adhesion, which only takes time $O(|V(G)|)$.

1 Nice tree-cut decompositions

A tree-cut decomposition (T, \mathcal{X}) of (G, w) is nice if for every $x y \in E(T)$, there exist $u \in X_{x}$ and $v \in X_{y}$ such that the edge-cut given by (x, y) is a minimum (weighted) (u, v)-edge-cut in (G, w). Notice that the tree-cut decomposition (T, \mathcal{X}) of (G, w) with $|V(T)|=1$ is a nice tree-cut decomposition.

Lemma 1 Let (G, w) be a weighted graph with positive w. Let (T, \mathcal{X}) be a nice tree-cut decomposition of G such that $\left|X_{t}\right|=1$ for every $t \in V(T)$. Then (T, \mathcal{X}) is a Gomory-Hu tree.

Proof. Since $\left|X_{t}\right|=1$ for every $t \in V(T)$, we may assume $V(G)=V(T)$. Let a, b be distinct vertices of G. Let λ be the minimum weight of an edgecut of (G, w) separating a and b. Let P be the path in T between a and b. For every $e \in E(P)$, let λ_{e} be the adhesion of e. For every $e \in E(P)$, since the edge-cut of G given by e separates a and b, we know $\lambda \leq \lambda_{e}$. So $\lambda \leq \min _{e \in E(P)} \lambda_{e}$.

Suppose to the contrary that $\lambda<\min _{e \in E(P)} \lambda_{e}$. Let $[A, B]$ be a minimum weighted (a, b)-edge-cut of G. So $w(A, B)=\lambda$. Since $a \in A$ and $b \in B$, there exists an edge $u v$ of P such that $u \in A$ and $v \in B$. Then $[A, B]$ is an edge-cut separating u and v with weight $\lambda<\lambda_{u v}$. Since (T, \mathcal{X}) is nice, there exist $u^{\prime} \in X_{u}$ and $v^{\prime} \in X_{v}$ such that the edge-cut [$\left.A^{\prime}, B^{\prime}\right]$ given by (u, v) is a minimum weighted $\left(u^{\prime}, v^{\prime}\right)$-edge-cut. Note that $w\left(A^{\prime}, B^{\prime}\right)=\lambda_{u v}$. But $\left|X_{u}\right|=\left|X_{v}\right|=1$, so $u^{\prime}=u$ and $v^{\prime}=v$. Hence $[A, B]$ is an edge-cut separating u and v with weight smaller than $\left[A^{\prime}, B^{\prime}\right]$, a contradiction.

2 Submodularity

The following property for edge-cuts is useful.
Proposition 2 (Submodularity of edge-cuts) Let (G, w) be a weighted graph with positive w. Let $[A, B]$ and $[C, D]$ be edge-cuts of (G, w). Then $w(A, B)+w(C, D) \geq w(A \cap C, B \cup D)+w(A \cup C, B \cap D)$.

Proof. It is straightforward to verify it by considering the contribution of $w(e)$ in the two sides of the inequality for each edge e of G.

3 Torsos and splitting

In this subsection, (G, w) is a weighted graph, where w is a positive function.
Given a partition \mathcal{P} of $V(G)$, we define $(G, w) / \mathcal{P}$ to be the weighted graph $\left(G^{\prime}, w^{\prime}\right)$, where

- G^{\prime} is the graph obtained from G by for each nonempty member M of \mathcal{P}, identifying M into a single vertex v_{M} and deleting the resulting loops (but keeping parallel edges),
(so there is a natural injection from $E\left(G^{\prime}\right)$ to $E(G)$, and we can treat each edge of G^{\prime} an edge of G),
- $w^{\prime}: E\left(G^{\prime}\right) \rightarrow \mathbb{R}$ is the function such that for every edge e of G^{\prime}, $w^{\prime}(e)=w(e)$.

Let (T, \mathcal{X}) be a tree-cut decomposition of G. For every $t \in V(T)$,

- the set X_{t} is called the bag at t, and
- the torso at t is the weighted graph $(G, w) / \mathcal{P}_{t}$, where \mathcal{P}_{t} is the partition $\left\{\{v\}: v \in X_{t}\right\} \cup\left\{\bigcup_{x \in V(C)} X_{x}: C\right.$ is a component of $\left.T-t\right\}$ of $V(G)$.

If $t \in V(T)$ and $[A, B]$ is an edge-cut of the torso at t, then

- the $[A, B]$-extension is the edge-cut $\left[A^{\prime}, B^{\prime}\right]$ of G, where
- $A^{\prime}=\left(X_{t} \cap A\right) \cup \bigcup\left\{X_{s}: s \in V(T)-\{t\}\right.$ and X_{s} is contained in a part of \mathcal{P}_{t} identified into a vertex in $\left.A\right\}$, and
- $B^{\prime}=\left(X_{t} \cap B\right) \cup \bigcup\left\{X_{s}: s \in V(T)-\{t\}\right.$ and X_{s} is contained in a part of \mathcal{P}_{t} identified into a vertex in $\left.B\right\}$,
- the $[A, B]$-split of (T, \mathcal{X}) is the tree-cut decomposition $\left(T^{\prime}, \mathcal{X}^{\prime}\right)$ such that
- the vertex-set $V\left(T^{\prime}\right)$ is obtained from $V(T)-\{t\}$ by adding two new vertices t_{A} and t_{B},
- the edge-set $E\left(T^{\prime}\right)=\left\{t_{A} t_{B}\right\} \cup(E(T)-\delta(t)) \cup\left\{t_{A} s: s \in N_{T}(t), X_{s} \subseteq\right.$ $\left.A^{\prime}\right\} \cup\left\{t_{B} s: s \in N_{T}(t), X_{s} \subseteq B^{\prime}\right\}$, and
$-\mathcal{X}^{\prime}=\left(X_{z}^{\prime}: z \in V\left(T^{\prime}\right)\right)$ such that
* $X_{t_{A}}^{\prime}=X_{t} \cap A$,
* $X_{t_{B}}^{\prime}=X_{t} \cap B$, and
* for every $z \in V\left(T^{\prime}\right)-\left\{t_{A}, t_{B}\right\}=V(T)-\{t\}, X_{z}^{\prime}=X_{z}$.

Lemma 3 Let (G, w) be a weighted graph with positive w. Let (T, \mathcal{X}) be a nice tree-cut decomposition of (G, w). Let $t \in V(T)$. Let $u, v \in X_{t}$. If $[A, B]$ is a minimum weighted (u, v)-edge-cut of the torso at t, then the $[A, B]$ extension is a minimum weighted (u, v)-edge-cut of (G, w).

Proof. Clearly, the $[A, B]$-extension is an edge-cut of (G, w) with $u \in A$ and $v \in B$ such that it has weight equal to $w(A, B)$. So it suffices to show that no edge-cut of (G, w) separating u and v has weight smaller than $w(A, B)$.

For every edge-cut $[X, Y]$ of G, we define the badness of $[X, Y]$ to be the number of nodes t of T such that $X_{t} \cap X \neq \emptyset \neq X_{t} \cap Y$. Note that every edge-cut of G separating u and v has badness at least 1 , and if it has badness 1 , then it also gives an edge-cut of the torso at t with the same weight. So to prove this lemma, it suffices to show that there exists a minimum weighted (u, v)-edge-cut of (G, w) with badness 1 .

Let $[C, D]$ be a minimum weighted (u, v)-edge-cut with minimum badness. Suppose to the contrary that $[C, D]$ has badness at least two. Then there exists $s \in V(T)-\{t\}$ such that $X_{s} \cap C \neq \emptyset \neq X_{s} \cap D$. Let s^{\prime} be the neighbor of s in T contained in the path in T between s and t. Let $\left[A_{s}, B_{s}\right]$ be the edge-cut given by $\left(s, s^{\prime}\right)$. Since (T, \mathcal{X}) is a nice tree-cut decomposition, there exist $u_{s} \in A_{s}$ and $v_{s} \in B_{s}$ such that $\left[A_{s}, B_{s}\right]$ is a minimum weighted (u_{s}, v_{s})-edge-cut of (G, w).

If $u_{s} \in C$, then let $\left[C^{*}, D^{*}\right]=[C, D]$; otherwise, let $\left[C^{*}, D^{*}\right]=[D, C]$. That is, $u_{s} \in C^{*}$.

Since $u_{s} \in A_{s}$ and $v_{s} \in B_{s},\left[A_{s} \cap C^{*}, B_{s} \cup D^{*}\right]$ is an edge-cut of G separating u_{s} and v_{s}. Since $\left[A_{s}, B_{s}\right]$ is a minimum weighted $\left(u_{s}, v_{s}\right)$-edge-cut of G, we know $w\left(A_{s} \cap C^{*}, B_{s} \cup D^{*}\right) \geq w\left(A_{s}, B_{s}\right)$. Then by Proposition 2, $w\left(A_{s} \cup C^{*}, B_{s} \cap D^{*}\right) \leq w\left(C^{*}, D^{*}\right)=w(C, D)$.

Note that $\{u, v\} \subseteq X_{t} \subseteq B_{s}$, and exactly one of u, v is in D^{*}. So $\left[A_{s} \cup\right.$ $\left.C^{*}, B_{s} \cap D^{*}\right]$ is an edge-cut of G separating u and v. Since $[C, D]$ is a minimum weighted (u, v)-edge-cut of G, we know $w\left(A_{s} \cup C^{*}, B_{s} \cap D^{*}\right) \geq w(C, D)$. Therefore, $w\left(A_{s} \cup C^{*}, B_{s} \cap D^{*}\right)=w(C, D)$.

Note that $X_{s} \cap\left(B_{s} \cap D\right)=\emptyset$. And for every $z \in V(T)-\{t, s\}$, if $X_{z} \cap\left(A_{s} \cup C\right) \neq \emptyset \neq X_{z} \cap\left(B_{s} \cap D\right)$, then z is contained in the component of $T-s s^{\prime}$ containing t, so $X_{z} \cap C \neq \emptyset \neq X_{z} \cap D$. That is, the badness of $[C, D]$ is strictly bigger than $\left[A_{s} \cup C, B_{s} \cap D\right]$, a contradiction.

Lemma 4 Let (G, w) be a weighted graph with positive w. Let (T, \mathcal{X}) be a nice tree-cut decomposition of (G, w). Let $t \in V(T)$. Let $u, v \in X_{t}$. If $[A, B]$ is a minimum weighted (u, v)-edge-cut of the torso at t, then the $[A, B]$-split of (T, \mathcal{X}) is a nice tree-cut decomposition of (G, w).

Proof. Let $\left(T^{\prime}, \mathcal{X}^{\prime}\right)$ be the $[A, B]$-split of (T, X). Let t_{A} and t_{B} be the two new vertices in T. Since $[A, B]$ is a minimum weighted (u, v)-edge-cut of the torso at t, Lemma 3 implies that the edge-cut of (G, w) given by $t_{A} t_{B}$ is a minimum weighted (u, v)-edge-cut with $u \in X_{t_{A}}^{\prime}$ and $v \in X_{t_{B}}^{\prime}$. And note that for every edge e of T not incident with t, the edge-cut given by e with respect to (T, \mathcal{X}) and the edge-cut given by e with respect to $\left(T^{\prime}, \mathcal{X}^{\prime}\right)$ are the same.

For every $s \in N_{T}(t)$, let t_{s} be the vertex in $\left\{t_{A}, t_{B}\right\}$ such that $s t_{s} \in E\left(T^{\prime}\right)$. Since (T, \mathcal{X}) is nice, to show that $\left(T^{\prime}, \mathcal{X}^{\prime}\right)$ is nice, it suffices to show that for every $s \in N_{T}(t)$, there exist $v_{s} \in X_{s}^{\prime}$ and $v_{t_{s}} \in X_{t_{s}}^{\prime}$ such that the edge-cut given by $\left(s, t_{s}\right)$ is a minimum weighted $\left(v_{s}, v_{t_{s}}\right)$-edge-cut of (G, w).

Let $s \in N_{T}(t)$. Since (T, \mathcal{X}) is nice and $s t \in E(T)$, there exist $v_{s} \in X_{s}=$ X_{s}^{\prime} and $v_{t} \in X_{t}$ such that the edge-cut $\left[A_{s t}, B_{s t}\right]$ given by (s, t) is a minimum weighted $\left(v_{s}, v_{t}\right)$-edge-cut. By the definition of the $[A, B]$-split, $\left[A_{s t}, B_{s t}\right]$ is also the edge-cut given by $\left(s, t_{s}\right)$. If $v_{t} \in X_{t_{s}}^{\prime}$, then we are done by choosing $v_{t_{s}}=v_{t}$. So we may assume $v_{t} \notin X_{t_{s}}^{\prime}$.

Let $\left[A^{\prime}, B^{\prime}\right]$ be the $[A, B]$-extension. Note that $\left[A^{\prime}, B^{\prime}\right]$ separates v_{s} and v_{t}. So $w\left(A^{\prime}, B^{\prime}\right) \geq w\left(A_{s t}, B_{s t}\right)$.

By symmetry, we may assume $t_{s}=t_{A}$, so $v_{s} \in A^{\prime}$ and $v_{t} \in B^{\prime}$. Let $[C, D]$ be a minimum weighted $\left(v_{s}, u\right)$-cut of (G, w). Note that $v_{s} \in X_{s}^{\prime}$ and $u \in X_{t_{s}}^{\prime}$. If $w(C, D)=w\left(A_{s t}, B_{s t}\right)$, then we are done by choosing $v_{t_{s}}=u$. So we may assume $w(C, D) \neq w\left(A_{s t}, B_{s t}\right)$. Since $v_{s} \in X_{s} \subseteq A_{s t}$ and $u \in X_{t} \subseteq B_{s t}$, $\left[A_{s t}, B_{s t}\right]$ separates v_{s} and u, so $w\left(A_{s t}, B_{s t}\right) \geq w(C, D)$. Hence $w\left(A_{s t}, B_{s t}\right)>$ $w(C, D)$.

By Lemma 3, $\left[A^{\prime}, B^{\prime}\right]$ is a minimum weighted (u, v)-edge-cut. If $v \in C$, then $[C, D]$ separates v and u, so $w(C, D) \geq w\left(A^{\prime}, B^{\prime}\right) \geq w\left(A_{s t}, B_{s t}\right)$, a contradiction. So $v \in D$.

Since $\left[A^{\prime} \cap C, B^{\prime} \cup D\right]$ separates v_{s} and $v_{t}, w\left(A^{\prime} \cap C, B^{\prime} \cup D\right) \geq w\left(A_{s t}, B_{s t}\right)>$ $w(C, D)$. Since $\left[A^{\prime} \cup C, B^{\prime} \cap D\right]$ separates u and $v, w\left(A^{\prime} \cup C, B^{\prime} \cap D\right) \geq$
$w\left(A^{\prime}, B^{\prime}\right)$. But by Proposition 2, w($\left.A^{\prime} \cap C, B^{\prime} \cup D\right)+w\left(A^{\prime} \cup C, B^{\prime} \cap D\right) \leq$ $w\left(A^{\prime}, B^{\prime}\right)+w(C, D)$, a contradiction.

4 Algorithm

$==========================$
An algorithm for finding a Gomory-Hu tree
Input: A weighted graph (G, w), where w is a positive function.
Output: A Gomory-Hu tree (T, \mathcal{X}) of (G, w).
Procedure:
Step 0: Delete all loops of G. And for any two distinct vertices u and v of G, if there exist more than one edge of G between u and v, then delete all those edges and add a single edge between u and v whose weight equals the sum of the weight of the original edges between u and v.

Step 1: Set $\left(T_{0}, \mathcal{X}_{0}\right)$ be a tree-cut decomposition of G such that T_{0} is a tree with one vertex,

Step 2: For $i=1,2, \ldots,|V(G)|-1$, do the following:

- Pick a node t of T_{i-1} with $\left|X_{t}\right| \geq 2$, pick two distinct vertices x, y in X_{t}, and find a minimum weighted (x, y)-edge-cut $\left[S_{x}, S_{y}\right]$ of the torso at t with respect to $\left(T_{i-1}, \mathcal{X}_{i-1}\right)$.
- Define $\left(T_{i}, \mathcal{X}_{i}\right)$ to be the $\left[S_{x}, S_{y}\right]$-split of $\left(T_{i-1}, \mathcal{X}_{i-1}\right)$.

Step 3: Output $\left(T_{|V(G)|-1}, \mathcal{X}_{|V(G)|-1}\right)$.

Theorem 5 The above algorithm outputs a Gomory-Hu tree in time $O\left(|E(G)|+|V(G)|^{3} \sqrt{|E(G)|}\right)$.

Proof. Note that Gormory-Hu trees of the original graph G are exactly the Gomory-Hu tree of the graph G modified in Step 0.

We first show the correctness. Clearly, $\left(T_{0}, \mathcal{X}_{0}\right)$ is a nice tree-cut decomposition. By Lemma $4,\left(T_{i}, \mathcal{X}_{i}\right)$ is nice for every $i \geq 1$. And clearly for every
$0 \leq i \leq|V(G)|-1,\left|V\left(T_{i}\right)\right|=i+1$ and the bag of $\left(T_{i}, \mathcal{X}_{i}\right)$ at any node contains at least one vertex. So $\left(T_{|V(G)|-1}, \mathcal{X}_{|V(G)|-1}\right)$ is a nice tree-decomposition such that every bag has size one. Hence $\left(T_{|V(G)|-1}, \mathcal{X}_{|V(G)|-1}\right)$ is a Gomory-Hu tree by Lemma 1 .

Now we show the time complexity. Step 0 takes time $O(|E(G)|)$. Step 1 takes time $O(|V(G)|)$. For each round of Step 2, we can find a desired vertex t of T in linear time, construct the torso at t in linear time, find the edge-cut $\left[S_{x}, S_{y}\right]$ in time that runs a minimum cut algorithm (which can be done in $O\left(|V(G)|^{2} \sqrt{|E(G)|}\right)$ time by a previous theorem), and find the $\left[S_{x}, S_{y}\right]$-split in linear time. So each round of Step 2 can be done in time $O\left(|V(G)|^{2} \sqrt{|E(G)|}+|E(G)|\right)=O\left(|V(G)|^{2} \sqrt{|E(G)|}\right)$ since G is simple after Step 1. And we execute Step $2|V(G)|$ times. So the total running time is $O\left(|E(G)|+|V(G)|^{3} \sqrt{|E(G)|}\right)$.

