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Recall the following notions: Let G' be a simple graph. Let z1, x9, y1, Y2
be distinct vertices. Then we say that (xy1, z2,y1,y2) is feasible in G if there
exist two disjoint paths P, and P in G such that for every i € [2], the ends of
P; are z; and y;; otherwise, we say that (z1, 2, y1,y2) is infeasible in G. For
a separation (A, B) of G of order at most three, the 3-reduction of (A, B) is
the graph obtained from G[A] by adding edges such that A becomes a clique.
Let x1, 2, Y1, yo be distinct vertices of G. A S-reduction of (z1,x2,y1,ya) (for
G ) is the 3-reduction of a separation (A, B) of G of order at most three with
{x1,22,91,92} € A and B — A # () such that either |[A N B| < 1, or there
exists no separation (A’, B') of order at most two such that A" O A and
B — A" £ 0. A full 3-reduction of (x1,x9,y1,y2) (for G) is a 3-irreducible
graph G’ with respect to (z1,%2,y1,y2) such that there exists a sequence of
graphs G1, Gy, ..., Gy such that G; = G, G; = G', and G4, is a 3-reduction
of (z1,x9,y1,ys) for G; for every 1 <i <t —1.

We prove the following theorem that characterizes the feasibility.

Theorem 1 (Seymour; Thomassen) Let G be a graph. Let x1,x9,y1, Yo
be distinct vertices of G. Then (x1,xa,y1,y2) is infeasible in G if and only if
for every full 3-reduction G of (x1, 2, y1,y2) for G, the graph G'+x1x2y1y271
can be drawn in the plane such that the 4-cycle x1x2y1y2x1 bounds the outer
face.

Proof. (<) Proved in the previous lecture.



(=) We prove it by induction on |V (G)|. The case |V (G)| = 4 is obvious.
So we may assume |V (G)| > 5 and the theorem holds if |V(G)| is smaller.

Suppose to the contrary that G + xyx9y1yox; cannot be drawn in the
plane such that the 4-cycle z1x2y1y221 bounds the outer face.

We prove that |V(G')| = |V(G)|, and hence G = G’, in the previous
lecture.

Claim 1: There exists no separation (A, B) of G of order at most three such
that {1, 22,91,92} C Aand B — A # ().

Proof of Claim 1: Proved in the previous lecture. [

Claim 2: If (A, B) is a separation of G of order at most four such that
{z1,22,91,2} CAand B—A# 0 # A— B, then |[ANB| =4, |B—-A| =1,
and the unique vertex in B — A is adjacent to all four vertices in AN B.
Proof of Claim 2: Let (A, B) be a separation of G of order at most four
such that {z1,z2,y1,y2} € A and B— A # () # A — B. We choose such
(A, B) such that B is maximal. By Claim 1, every component of G[B] — A
is adjacent to all vertices in AN B, so for every pair of vertices u,v € AN B,
there exists a path in G[B] between u and v internally disjoint from AN B.

By Claim 1, (A, B) has order four. By Claim 1 and Menger’s theorem,
there exist four disjoint paths Py, P,,, P,,, Py, in G[A] from {x1, a3, y1, 2}
to ANB. Denote AN B by {z}, 2}, i, v}, and we may assume that for every
z € {x1,x2,y1,Y2}, P, is between z and 2’. Since (x1, x2, Y1, y2) is infeasible in
G, (2, 24, 44, v4) is infeasible in G[B]. Since A— B # 0, |V(G[B])| < |[V(G)|.
So by the induction hypothesis, for every full 3-reduction Hg of (2!, z}, v}, v5)
for G[B], the graph Hp + z|xby y42| can be drawn in the plane such that
the 4-cycle 2 zby|y5x] bounds the outer face.

Note that if there exists a separation (A’, B") of G[B] of order at most
three such that {x], %, y1, y4} € A" and B'— A’ # (), then the separation (A'U
A, B') is a separation of G of order at most three such that {1, zs,y1,92} C
AUA and B’ — (AU A') # (), contradicting Claim 1. Hence the only full 3-
reduction of (), 4, v}, v4) for G[B] is G[B] itself. That is, G[B]+ xzhyiysx}
can be drawn in the plane such that the 4-cycle 2 24y 52 bounds the outer
face.

Let Gy = G[A] + x| zhy yha. We first assume that (21,29, y1,y2) is
infeasible in Gy. Since B — A # 0, |[V(Gy)| < |V(G)|. So by the in-
duction hypothesis, G + x1x2y1y2x1 can be drawn in the plane such that
r122y1y2x1 bounds the outer face. We further choose the drawing such
that z|xhy,ysz] bounds a face if possible. If z{z4y ysz} bounds a face in
this drawing, then we can combine the drawing of Gi + zi12xoy1y221 and
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G[B] + x| zhy yha to obtain a plane drawing of G + x1x9y1y2x1 such that
T122Y1Y2x1 bounds the outer face, and we are done. So we may assume that
x by yse does not bound a face and hence is a separating cycle. This im-
plies that if {z1, x2, y1,y2} = {x}, 25, ¥}, y5}, then (x1, 29,41, y2) is feasible in
G, a contradiction. So {1, T2, y1,y2} # {2, 25, y1,v5}. Hence there exists
a separation (A’, B') of G of order four such that A'N B" = {2, 2}, v}, v},
{1, 29,y1,92} C A" and B’ D B, contradicting the choice of (A, B).

So we may assume that (z1, za, Y1, y2) is feasible in G. So there exist two
disjoint paths P; and P, in GG, where P; is between x; and y;, and P, is
between x5 and y,. Since (z1, x2, Y1, yo) is infeasible in Gy, and for every pair
of vertices u,v € ANDB, there exists a path in G[B] between u and v internally
disjoint from A N B, we know that both P, and P, contains edges in the 4-
cycle 2\ xhy yha. Since Py and P; are disjoint, each P, contains exactly one
edge e; and two vertices in the 4-cycle 2} xbyjysa). Then (P, —ep) U (Py —e2)
is a union of four disjoint paths in G from {xy, e, y1,y2} to {x, 2%, v}, v4}.

For i € [2], let u; and v; be the ends of e;. Since e; and e, are edges in the
4-cycle Cg bounding the outer face of a plane drawing of G[B] + 2|24y, y42!,
we may assume by symmetry that wui, vi, us, vo appear in Cp in the order
listed. By the planarity, there exist no two disjoint paths in G[B], where one
is between u; and ug, and the other is between v; and vy. Since (1, 2, y1, Y2)
is infeasible in G, there exist no two disjoint paths in G[B], where one is
between u; and v; and the other is between us and vy. Hence there exist
no two disjoint paths in G[B] from {uj,ve} to {ug,v1}. So by Menger’s
theorem, there exists a separation (A”, B”) of G[B] of order at most one
such that {u,ve} € A” — B” and {ug,v1} € B” — A”. Then (AU A", B")
and (AU B", A”) are separations of G of order at most 2+|A”NB"| < 3 such
that {z1,29,y1,92} CAC (AUA")N(AUB"). By Claim 1, B" — (AUA") =
) =A"—(AUB"). Since B— A # 0, |A” N B"| = 1. So there exists the
unique vertex ¢ in B — A. By Claim 1, ¢ has degree at least four, so c¢ is
adjacent to all vertices in AN B. [J
Claim 3: For every edge e of G, if at least one end of e is not in {x1, z2,y1, Y2},
then (G/e) + x1x2y 1y is planar.

Proof of Claim 3: Let e be an edge of G with at least one end not
in {x1,29,y1,92}. Let G; = G/e. Since at least one end of e is not in
{1, 9, y1,y2}, we can assume {z1,xs,y1,y2} € V(G). Since (21, 22,91, y2)
is infeasible in G, (x1, 2, y1, y2) is infeasible in G;. Since |V (Gy)| = |V(G)|—
1, by the induction hypothesis, for every full 3-reduction Gy of (x1, x2, y1, y2)
for Gy, G5 + x122y1y221 can be drawn in the plane. Hence we may assume



Gy # Gy, for otherwise we are done.

Let (A, B) be a separation of G of order at most three such that {x, z2,y1,y2} C
Aand B—A # (). Since G; = G/e, by recontracting e, we know that there ex-
ists a separation (A’, B') of G of order at most four such that {z1, o, y1, 92} C
A" and B’ — A # (), where the order of (A’, B') equals four if and only if the
vertex of G; = (/e obtained by contracting e is in A N B and both ends
of e are in A’ N B’. By Claim 1, (A’, B’) has order four. So both ends of e
are in A’ N B’. Hence at least one vertex in {x1, 2, 41,y2} is in A’ — B’. In
particular, A’ — B’ # (). By Claim 2, B — A’ = B — A contains exactly one
vertex ¢, and ¢ is adjacent in G to all four vertices in A'N B’.

This implies that G'1 +x122y1y221 can be obtained from the plane drawing
of G5 + x122y1y2x1 by repeatedly picking a face on 3 vertices and adding a
vertex adjacent to those 3 vertices. So G + x122y1y2x1 is planar. [

Claim 4: G + z122y1y2x; is planar.

Proof of Claim 4: Suppose to the contrary that G + x1x2y1y221 is not pla-
nar. By Kuratowski’s theorem, there exists a subgraph H of G + x1z2y1y271
isomorphic to a subdivision of K5 or K33. If there exists a vertex v of H
with degree 2 in H such that v & {1, x2,y1,¥2}, then v is incident with
an edge e with at least one end not in {z1,zs,y1,%2}, so Claim 3 implies
that (G/e) + z1x2y1y221 is planar, but H/e is a subdivision of K5 or K33
contained in (G/e) 4+ x1x9y1y21, a contradiction. So every vertex of H with
degree 2 in H is in {x1, %2, y1,y2}. Moreover, both edges of H incident with
a degree-2 vertex in H have all ends in {x, 22, 91,y2}. So H has at most two
degree-2 vertices.

Since |V(G)| > b5, if there exists v € {1, 22,91, ¥y2} such that v has no
neighbor in V(G) — {x1, 22,1, y2}, then there exists a separation (A, B) of
order at most three such that {x1, x9,y1,y2} C A and B— A # (), contradict-
ing Claim 1. So every vertex v in {xy, Z2,91,¥y2} is incident with an edge e,
not incident with {xy, z2,y1,y2} — {v}. If some vertex v € {xy, 22, y1,y2} is
not contained in H, then H is a subgraph of (G/e,) + x122y1y2x1 isomorphic
to a subdivision of K5 or K33, contradicting Claim 3. So every vertex in
{1, z2, 91, Y2} is contained in H. Similarly, e, has both ends in V(H) for ev-
ery v € {x1,%2,91,y2}. Then it is easy to show that (x1, z2,y1,y2) is feasible
in G by considering e, for v € {z1,x9,y1,92}, a contradiction. [

Take a plane embedding of G + x1x9y1y2x1. Suppose to the contrary
that the 4-cycle C = x1291y1y221 does not bound a face. Let D be the disk
bounded by C'. Let A be the set consisting of vertices in C' and the vertices
drawn outside the disk D. Let B be the set consisting of vertices in C' and
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the vertices drawn inside the disk D. Then (A, B) is a separation of G with
ANB = {x1,22,y1,y2}. Since C does not bound a face, A— B # () # B— A.
By Claim 2, |A — B| = |B — A| = 1, the only vertex in A — B adjacent to
all vertices in {x1,z2,91,y2}, and the only vertex in B — A adjacent to all
vertices in {z1, xa, y1,Y2}. So (21, 22,y1,y2) is feasible in G, a contradiction.
"

1 Fixed-Parameter Tractability

Recall that determine whether a graph G has a vertex-cover with size at most
k is NP-hard when k is part of the input. On the other hand, there are at
most O(|V(G)|¥) subsets S of V(G) with size at most k, and testing whether
each such S is a vertex-cover can be done in time O(|V (G)|). So there exists
a O(|V(G)[F*1) time algorithm to determine whether G has a vertex-cover
with size at most k. That is, if £ is a fixed integer instead of part of the
input, we can determine whether G has a vertex-cover with size at most k in
polynomial time. On the other hand, we mentioned (without a proof) that
the Disjoint Path Problem is NP-hard, but the k-Disjoint Path Problem can
be solved in f(k)|V(G)]? time.

Hence by fixing the “parameter” k, we can make an NP-hard problem
become in P. But there are two kinds of polynomial time algorithms as men-
tioned above. One runs in time n9*) and the other runs in time f(k)n¢ for
some constant c. We usually prefer the second one, because it usually gives
better complexity. For example, when k = loglogn (which grows to infinity
slowly with respect to n), if f is an exponential (or even double exponen-
tial) function, then f(k)n® = O(n“"); while for any increasing non-constant
function ¢, n?*) is not polynomial. The problems that have the second kind
of algorithm is said to be fixed-parameter tractable.

We give a more precise definition. The parameterization of a decision
problem is a function p that maps every every instance of the problem to
an integer. (For example, both the inputs of the Vertex-Cover Problem and
Disjoint Path Problem are (G, k), and the function p that maps (G, k) to k is
a parameterization.) A decision problem with a parameterization p is fized-
parameter tractable (a.k.a FPT) if there exist a function f and a constant ¢
such that for every input z, it can be solved in time f(p(z))n®, where n is
the size of x.

Hence the k-Disjoint Path Problem is FPT, while our above naive algo-



rithm for k-Vertex-Cover Problem does not build the fixed-parameter tractabil-
ity. But we will show that k-Vertex-Cover Problem is indeed FPT.

1.1 Kernalization

One trick to obtain an FPT algorithm is to find a “kernel”.

Let P be a decision problem and let p be a parameterization. We usually
write the instance of this parameterized problem as ([, k), where [ is an
stance of P and k = p(I). A kernalization of P with size s, where s is a
function, is a polynomial time algorithm that transforms each instance (7, k)
to another instance (I’, k") such that

e (I,k) is a positive instance if and only if (I, k') is a positive instance,
o k' <k, and
o |I'| < s(k).

We call (I, k") the kernel of (I, k) (for this kernalization).

Note that having a kernalization implies fixed-parameter tractability,
since we can do brute-force on the kernel (whose running time only depends
on the size of the kernel and hence only depends on &k but not n) to decide
whether the original input is a positive instance or not.

An algorithm for finding a kernel for Vertex-cover with size k?
Input: A simple graph G and an integer k.

Output: A simple graph G’ and an integer &’ with |V (G’)| < k? and k¥’ < k
such that G has a vertex-cover with size at most k if and only if G’ has a
vertex-cover with size at most k’.

Procedure:

Step 0: Set G’ = G and k' = k.
Step 1: If G’ has an isolated vertex, then redefine G' = G' — v.

Step 2: If there exists a vertex v in G’ with degree at least k& + 1, redefine
G'=G —-vand ¥ =k —1.

Step 3: If there exists a vertex v in G’ with degree equal to 1, then let u be the
unique neighbor of v, redefine G’ = G —uw and k' =k — 1.
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Step 4: Repeat Steps 1-3 until no modification can be made. If |E(G")| < k?,
then output G’ and k’; otherwise, redefine G' = K5 and k' = 0, and
output G’ and £’

Proposition 2 The above algorithm runs correctly in time O(|V(G)|?). And
k-Vertex Cover can be solved in time O(|V(G)> + k*) = O(K*|V (G)]?).

Proof. We first prove that (G’,k’) is a positive instance if and only if it
remains positive when a round of Steps 1, 2 or 3 is done. It is clearly true
for Step 1.

Assume that v is a vertex of degree at least k + 1. If v is not used in
a vertex-cover, then in order to cover at least k 4+ 1 edges that are incident
with v, we need to put at least k + 1 vertices in a vertex-cover. So if G’
has a vertex-cover of size at most k, then v is in it; if G’ does not have a
vertex-cover of size at most k, then G’ — v does not have a vertex-cover of
size k — 1. Hence Step 2 preserves the positivity and negativity.

Assume v’ is a vertex of degree 1. Let u' be the unique neighbor of /. If
a vertex-cover S contains v’, then (S — {v'})U{u'} is a vertex-cover with the
same size, and S — {v'} is a vertex-cover of G’ — '. So if G’ has a vertex-
cover of size at most k, then G’ — u’ has a vertex-cover of size at most k — 1;
if G’ does not have a vertex-cover of size at most k, then G’ — v’ does not
have a vertex-cover of size k — 1. Hence Step 3 preserves the positivity and
negativity.

So (G', k') is a kernel when no further Steps 1-3 can be applied. Note
that G’ has minimum degree at least two at this point. So |E(G")| > |V(G")|.
Hence if |E(G')| < k2, then |V(G")| < |E(G)| < k? and (G, k) is output,
so we are done. If |E(G")| > k?, then since Step 2 is not applicable, G’ has
minimum degree at most k, so k vertices can cover at most k* < |E(G')
edges, and hence (G, k) is a negative instance, and the algorithm outputs a
negative instance with size 2 < k2.

Hence the algorithm works correctly. And it clearly runs in time O(|V(G)[?).

Note that for the final graph G’ and integer k', we can test whether G’ has
a vertex-cover in time O(|V(G")[*) = O(k?*). So the above process decides
whether G has a vertex-cover of size at most & or not in time O(|V (G)[3+k2%).
|



We remark that we actually obtain an algorithm whose running time is
of the form f(k) + n¢ in Proposition 2, which looks better than the required
running time f(k)n® for FPT. But f(k)+n° and f(k)n® are in fact equivalent
(with different functions f and constants ¢) since f(k) + n® < f(k)n® and
fk)n® < (f(k))* + (n)* = g(k) + n°, where g(k) = (f(k))* and ¢ = 2c.
(We use the easy fact that for any positive numbers a and b, ab < max{a, b} -
max{a, b} = max{a? b*} < a® + %)

We also remark that the size of the kernel mentioned in Proposition 2
can be reduced to be linear in k by using other tricks. And the running time
for k-Vertex-Cover Problem in Proposition 2 can be further reduced, as we
will see in next section.

As we mentioned above, having kernelization implies fixed-parameter
tractability. But in fact they are equivalent.

Proposition 3 A parameterized problem has a kernelization if and only if
it is fixed-parameter tractable.

Proof. It suffices to show that if a parameterized problem is FPT, then it
has a kernelization. Assume the running time of this problem is f(k)n¢ for
some function f and constant c. Now we describe a kernalization with size
f.

If the input size n < f(k), then we just output the input as the kernel.
If the input size n > f(k), then we just run the FPT algorithm (which takes
time f(k)n® < n°™!) to know whether the input is positive or negative, and
output a trivially positive instance or trivially negative instance as a kernel.
Note that this process for producing the kernel takes time O(n) + O(nt) =
O(n°t!), which is polynomial. =



