Lecture notes for Apr 12, 2023 2-Disjoint Path Problem, FPT and kernelization

Chun-Hung Liu

April 12, 2023

Recall the following notions: Let G be a simple graph. Let x_1, x_2, y_1, y_2 be distinct vertices. Then we say that (x_1, x_2, y_1, y_2) is *feasible* in G if there exist two disjoint paths P_1 and P_2 in G such that for every $i \in [2]$, the ends of P_i are x_i and y_i ; otherwise, we say that (x_1, x_2, y_1, y_2) is *infeasible* in G. For a separation (A, B) of G of order at most three, the 3-reduction of (A, B) is the graph obtained from G[A] by adding edges such that A becomes a clique. Let x_1, x_2, y_1, y_2 be distinct vertices of G. A 3-reduction of (x_1, x_2, y_1, y_2) (for G) is the 3-reduction of a separation (A, B) of G of order at most three with $\{x_1, x_2, y_1, y_2\} \subseteq A$ and $B - A \neq \emptyset$ such that either $|A \cap B| \leq 1$, or there exists no separation (A', B') of order at most two such that $A' \supseteq A$ and $B' - A' \neq \emptyset$. A full 3-reduction of (x_1, x_2, y_1, y_2) (for G) is a 3-irreducible graph G' with respect to (x_1, x_2, y_1, y_2) such that there exists a sequence of graphs $G_1, G_2, ..., G_t$ such that $G_1 = G, G_t = G'$, and G_{i+1} is a 3-reduction of (x_1, x_2, y_1, y_2) for G_i for every $1 \leq i \leq t - 1$.

We prove the following theorem that characterizes the feasibility.

Theorem 1 (Seymour; Thomassen) Let G be a graph. Let x_1, x_2, y_1, y_2 be distinct vertices of G. Then (x_1, x_2, y_1, y_2) is infeasible in G if and only if for every full 3-reduction G' of (x_1, x_2, y_1, y_2) for G, the graph $G' + x_1x_2y_1y_2x_1$ can be drawn in the plane such that the 4-cycle $x_1x_2y_1y_2x_1$ bounds the outer face.

Proof. (\Leftarrow) Proved in the previous lecture.

(⇒) We prove it by induction on |V(G)|. The case |V(G)| = 4 is obvious. So we may assume $|V(G)| \ge 5$ and the theorem holds if |V(G)| is smaller.

Suppose to the contrary that $G + x_1x_2y_1y_2x_1$ cannot be drawn in the plane such that the 4-cycle $x_1x_2y_1y_2x_1$ bounds the outer face.

We prove that |V(G')| = |V(G)|, and hence G = G', in the previous lecture.

Claim 1: There exists no separation (A, B) of G of order at most three such that $\{x_1, x_2, y_1, y_2\} \subseteq A$ and $B - A \neq \emptyset$.

Proof of Claim 1: Proved in the previous lecture. \Box

Claim 2: If (A, B) is a separation of G of order at most four such that $\{x_1, x_2, y_1, y_2\} \subseteq A$ and $B - A \neq \emptyset \neq A - B$, then $|A \cap B| = 4$, |B - A| = 1, and the unique vertex in B - A is adjacent to all four vertices in $A \cap B$.

Proof of Claim 2: Let (A, B) be a separation of G of order at most four such that $\{x_1, x_2, y_1, y_2\} \subseteq A$ and $B - A \neq \emptyset \neq A - B$. We choose such (A, B) such that B is maximal. By Claim 1, every component of G[B] - Ais adjacent to all vertices in $A \cap B$, so for every pair of vertices $u, v \in A \cap B$, there exists a path in G[B] between u and v internally disjoint from $A \cap B$.

By Claim 1, (A, B) has order four. By Claim 1 and Menger's theorem, there exist four disjoint paths $P_{x_1}, P_{x_2}, P_{y_1}, P_{y_2}$ in G[A] from $\{x_1, x_2, y_1, y_2\}$ to $A \cap B$. Denote $A \cap B$ by $\{x'_1, x'_2, y'_1, y'_2\}$, and we may assume that for every $z \in \{x_1, x_2, y_1, y_2\}, P_z$ is between z and z'. Since (x_1, x_2, y_1, y_2) is infeasible in $G, (x'_1, x'_2, y'_1, y'_2)$ is infeasible in G[B]. Since $A - B \neq \emptyset$, |V(G[B])| < |V(G)|. So by the induction hypothesis, for every full 3-reduction H_B of (x'_1, x'_2, y'_1, y'_2) for G[B], the graph $H_B + x'_1 x'_2 y'_1 y'_2 x'_1$ can be drawn in the plane such that the 4-cycle $x'_1 x'_2 y'_1 y'_2 x'_1$ bounds the outer face.

Note that if there exists a separation (A', B') of G[B] of order at most three such that $\{x'_1, x'_2, y'_1, y'_2\} \subseteq A'$ and $B' - A' \neq \emptyset$, then the separation $(A' \cup A, B')$ is a separation of G of order at most three such that $\{x_1, x_2, y_1, y_2\} \subseteq A \cup A'$ and $B' - (A \cup A') \neq \emptyset$, contradicting Claim 1. Hence the only full 3reduction of (x'_1, x'_2, y'_1, y'_2) for G[B] is G[B] itself. That is, $G[B] + x'_1 x'_2 y'_1 y'_2 x'_1$ can be drawn in the plane such that the 4-cycle $x'_1 x'_2 y'_1 y'_2 x'_1$ bounds the outer face.

Let $G_1 = G[A] + x'_1 x'_2 y'_1 y'_2 x'_1$. We first assume that (x_1, x_2, y_1, y_2) is infeasible in G_1 . Since $B - A \neq \emptyset$, $|V(G_1)| < |V(G)|$. So by the induction hypothesis, $G_1 + x_1 x_2 y_1 y_2 x_1$ can be drawn in the plane such that $x_1 x_2 y_1 y_2 x_1$ bounds the outer face. We further choose the drawing such that $x'_1 x'_2 y'_1 y'_2 x'_1$ bounds a face if possible. If $x'_1 x'_2 y'_1 y'_2 x'_1$ bounds a face in this drawing, then we can combine the drawing of $G_1 + x_1 x_2 y_1 y_2 x_1$ and $G[B] + x'_1 x'_2 y'_1 y'_2 x'_1$ to obtain a plane drawing of $G + x_1 x_2 y_1 y_2 x_1$ such that $x_1 x_2 y_1 y_2 x_1$ bounds the outer face, and we are done. So we may assume that $x'_1 x'_2 y'_1 y'_2 x'_1$ does not bound a face and hence is a separating cycle. This implies that if $\{x_1, x_2, y_1, y_2\} = \{x'_1, x'_2, y'_1, y'_2\}$, then (x_1, x_2, y_1, y_2) is feasible in G, a contradiction. So $\{x_1, x_2, y_1, y_2\} \neq \{x'_1, x'_2, y'_1, y'_2\}$. Hence there exists a separation (A', B') of G of order four such that $A' \cap B' = \{x'_1, x'_2, y'_1, y'_2\}$, $\{x_1, x_2, y_1, y_2\} \subset A'$ and $B' \supset B$, contradicting the choice of (A, B).

So we may assume that (x_1, x_2, y_1, y_2) is feasible in G_1 . So there exist two disjoint paths P_1 and P_2 in G_1 , where P_1 is between x_1 and y_1 , and P_2 is between x_2 and y_2 . Since (x_1, x_2, y_1, y_2) is infeasible in G_1 , and for every pair of vertices $u, v \in A \cap B$, there exists a path in G[B] between u and v internally disjoint from $A \cap B$, we know that both P_1 and P_2 contains edges in the 4cycle $x'_1x'_2y'_1y'_2x'_1$. Since P_1 and P_2 are disjoint, each P_i contains exactly one edge e_i and two vertices in the 4-cycle $x'_1x'_2y'_1y'_2x'_1$. Then $(P_1 - e_1) \cup (P_2 - e_2)$ is a union of four disjoint paths in G from $\{x_1, x_2, y_1, y_2\}$ to $\{x'_1, x'_2, y'_1, y'_2\}$.

For $i \in [2]$, let u_i and v_i be the ends of e_i . Since e_1 and e_2 are edges in the 4-cycle C_B bounding the outer face of a plane drawing of $G[B] + x'_1 x'_2 y'_1 y'_2 x'_1$, we may assume by symmetry that u_1, v_1, u_2, v_2 appear in C_B in the order listed. By the planarity, there exist no two disjoint paths in G[B], where one is between u_1 and u_2 , and the other is between v_1 and v_2 . Since (x_1, x_2, y_1, y_2) is infeasible in G, there exist no two disjoint paths in G[B], where one is between u_1 and v_1 and the other is between u_2 and v_2 . Hence there exist no two disjoint paths in G[B], where one is between u_1 and v_1 and the other is between u_2 and v_2 . Hence there exist no two disjoint paths in G[B] from $\{u_1, v_2\}$ to $\{u_2, v_1\}$. So by Menger's theorem, there exists a separation (A'', B'') of G[B] of order at most one such that $\{u_1, v_2\} \subseteq A'' - B''$ and $\{u_2, v_1\} \subseteq B'' - A''$. Then $(A \cup A'', B'')$ and $(A \cup B'', A'')$ are separations of G of order at most $2 + |A'' \cap B''| \leq 3$ such that $\{x_1, x_2, y_1, y_2\} \subseteq A \subseteq (A \cup A'') \cap (A \cup B'')$. By Claim 1, $B'' - (A \cup A'') = \emptyset = A'' - (A \cup B'')$. Since $B - A \neq \emptyset$, $|A'' \cap B''| = 1$. So there exists the unique vertex c in B - A. By Claim 1, c has degree at least four, so c is adjacent to all vertices in $A \cap B$. \Box

Claim 3: For every edge e of G, if at least one end of e is not in $\{x_1, x_2, y_1, y_2\}$, then $(G/e) + x_1x_2y_1y_2x_1$ is planar.

Proof of Claim 3: Let e be an edge of G with at least one end not in $\{x_1, x_2, y_1, y_2\}$. Let $G_1 = G/e$. Since at least one end of e is not in $\{x_1, x_2, y_1, y_2\}$, we can assume $\{x_1, x_2, y_1, y_2\} \subseteq V(G_1)$. Since (x_1, x_2, y_1, y_2) is infeasible in G, (x_1, x_2, y_1, y_2) is infeasible in G_1 . Since $|V(G_1)| = |V(G)| -$ 1, by the induction hypothesis, for every full 3-reduction G_2 of (x_1, x_2, y_1, y_2) for $G_1, G_2 + x_1 x_2 y_1 y_2 x_1$ can be drawn in the plane. Hence we may assume $G_2 \neq G_1$, for otherwise we are done.

Let (A, B) be a separation of G_1 of order at most three such that $\{x_1, x_2, y_1, y_2\} \subseteq A$ and $B-A \neq \emptyset$. Since $G_1 = G/e$, by recontracting e, we know that there exists a separation (A', B') of G of order at most four such that $\{x_1, x_2, y_1, y_2\} \subseteq A'$ and $B' - A \neq \emptyset$, where the order of (A', B') equals four if and only if the vertex of $G_1 = G/e$ obtained by contracting e is in $A \cap B$ and both ends of e are in $A' \cap B'$. By Claim 1, (A', B') has order four. So both ends of e are in $A' \cap B'$. Hence at least one vertex in $\{x_1, x_2, y_1, y_2\}$ is in A' - B'. In particular, $A' - B' \neq \emptyset$. By Claim 2, B' - A' = B - A contains exactly one vertex c, and c is adjacent in G to all four vertices in $A' \cap B'$.

This implies that $G_1 + x_1 x_2 y_1 y_2 x_1$ can be obtained from the plane drawing of $G_2 + x_1 x_2 y_1 y_2 x_1$ by repeatedly picking a face on 3 vertices and adding a vertex adjacent to those 3 vertices. So $G_1 + x_1 x_2 y_1 y_2 x_1$ is planar. \Box **Claim 4:** $G + x_1 x_2 y_1 y_2 x_1$ is planar.

Proof of Claim 4: Suppose to the contrary that $G + x_1x_2y_1y_2x_1$ is not planar. By Kuratowski's theorem, there exists a subgraph H of $G + x_1x_2y_1y_2x_1$ isomorphic to a subdivision of K_5 or $K_{3,3}$. If there exists a vertex v of Hwith degree 2 in H such that $v \notin \{x_1, x_2, y_1, y_2\}$, then v is incident with an edge e with at least one end not in $\{x_1, x_2, y_1, y_2\}$, so Claim 3 implies that $(G/e) + x_1x_2y_1y_2x_1$ is planar, but H/e is a subdivision of K_5 or $K_{3,3}$ contained in $(G/e) + x_1x_2y_1y_2x_1$, a contradiction. So every vertex of H with degree 2 in H is in $\{x_1, x_2, y_1, y_2\}$. Moreover, both edges of H incident with a degree-2 vertex in H have all ends in $\{x_1, x_2, y_1, y_2\}$. So H has at most two degree-2 vertices.

Since $|V(G)| \geq 5$, if there exists $v \in \{x_1, x_2, y_1, y_2\}$ such that v has no neighbor in $V(G) - \{x_1, x_2, y_1, y_2\}$, then there exists a separation (A, B) of order at most three such that $\{x_1, x_2, y_1, y_2\} \subseteq A$ and $B - A \neq \emptyset$, contradicting Claim 1. So every vertex v in $\{x_1, x_2, y_1, y_2\}$ is incident with an edge e_v not incident with $\{x_1, x_2, y_1, y_2\} - \{v\}$. If some vertex $v \in \{x_1, x_2, y_1, y_2\}$ is not contained in H, then H is a subgraph of $(G/e_v) + x_1x_2y_1y_2x_1$ isomorphic to a subdivision of K_5 or $K_{3,3}$, contradicting Claim 3. So every vertex in $\{x_1, x_2, y_1, y_2\}$ is contained in H. Similarly, e_v has both ends in V(H) for every $v \in \{x_1, x_2, y_1, y_2\}$. Then it is easy to show that (x_1, x_2, y_1, y_2) is feasible in G by considering e_v for $v \in \{x_1, x_2, y_1, y_2\}$, a contradiction. \Box

Take a plane embedding of $G + x_1x_2y_1y_2x_1$. Suppose to the contrary that the 4-cycle $C = x_1x_2y_1y_2x_1$ does not bound a face. Let D be the disk bounded by C. Let A be the set consisting of vertices in C and the vertices drawn outside the disk D. Let B be the set consisting of vertices in C and the vertices drawn inside the disk D. Then (A, B) is a separation of G with $A \cap B = \{x_1, x_2, y_1, y_2\}$. Since C does not bound a face, $A - B \neq \emptyset \neq B - A$. By Claim 2, |A - B| = |B - A| = 1, the only vertex in A - B adjacent to all vertices in $\{x_1, x_2, y_1, y_2\}$, and the only vertex in B - A adjacent to all vertices in $\{x_1, x_2, y_1, y_2\}$. So (x_1, x_2, y_1, y_2) is feasible in G, a contradiction.

1 Fixed-Parameter Tractability

Recall that determine whether a graph G has a vertex-cover with size at most k is NP-hard when k is part of the input. On the other hand, there are at most $O(|V(G)|^k)$ subsets S of V(G) with size at most k, and testing whether each such S is a vertex-cover can be done in time O(|V(G)|). So there exists a $O(|V(G)|^{k+1})$ time algorithm to determine whether G has a vertex-cover with size at most k. That is, if k is a fixed integer instead of part of the input, we can determine whether G has a vertex-cover with size at most k in polynomial time. On the other hand, we mentioned (without a proof) that the Disjoint Path Problem is NP-hard, but the k-Disjoint Path Problem can be solved in $f(k)|V(G)|^3$ time.

Hence by fixing the "parameter" k, we can make an NP-hard problem become in P. But there are two kinds of polynomial time algorithms as mentioned above. One runs in time $n^{g(k)}$ and the other runs in time $f(k)n^c$ for some constant c. We usually prefer the second one, because it usually gives better complexity. For example, when $k = \log \log n$ (which grows to infinity slowly with respect to n), if f is an exponential (or even double exponential) function, then $f(k)n^c = O(n^{c+1})$; while for any increasing non-constant function g, $n^{g(k)}$ is not polynomial. The problems that have the second kind of algorithm is said to be fixed-parameter tractable.

We give a more precise definition. The parameterization of a decision problem is a function p that maps every every instance of the problem to an integer. (For example, both the inputs of the Vertex-Cover Problem and Disjoint Path Problem are (G, k), and the function p that maps (G, k) to k is a parameterization.) A decision problem with a parameterization p is fixedparameter tractable (a.k.a FPT) if there exist a function f and a constant csuch that for every input x, it can be solved in time $f(p(x))n^c$, where n is the size of x.

Hence the k-Disjoint Path Problem is FPT, while our above naive algo-

rithm for k-Vertex-Cover Problem does not build the fixed-parameter tractability. But we will show that k-Vertex-Cover Problem is indeed FPT.

1.1 Kernalization

One trick to obtain an FPT algorithm is to find a "kernel".

Let P be a decision problem and let p be a parameterization. We usually write the instance of this parameterized problem as (I, k), where I is an stance of P and k = p(I). A *kernalization of* P with size s, where s is a function, is a polynomial time algorithm that transforms each instance (I, k)to another instance (I', k') such that

- (I, k) is a positive instance if and only if (I', k') is a positive instance,
- $k' \leq k$, and
- $|I'| \leq s(k)$.

We call (I', k') the kernel of (I, k) (for this kernalization).

Note that having a kernalization implies fixed-parameter tractability, since we can do brute-force on the kernel (whose running time only depends on the size of the kernel and hence only depends on k but not n) to decide whether the original input is a positive instance or not.

An algorithm for finding a kernel for Vertex-cover with size k^2 Input: A simple graph G and an integer k.

Output: A simple graph G' and an integer k' with $|V(G')| \le k^2$ and $k' \le k$ such that G has a vertex-cover with size at most k if and only if G' has a vertex-cover with size at most k'.

Procedure:

- Step 0: Set G' = G and k' = k.
- Step 1: If G' has an isolated vertex, then redefine G' = G' v.
- Step 2: If there exists a vertex v in G' with degree at least k + 1, redefine G' = G' v and k' = k' 1.
- Step 3: If there exists a vertex v in G' with degree equal to 1, then let u be the unique neighbor of v, redefine G' = G' u and k' = k 1.

Step 4: Repeat Steps 1-3 until no modification can be made. If $|E(G')| \leq k^2$, then output G' and k'; otherwise, redefine $G' = K_2$ and k' = 0, and output G' and k'.

Proposition 2 The above algorithm runs correctly in time $O(|V(G)|^3)$. And k-Vertex Cover can be solved in time $O(|V(G)|^3 + k^{2k}) = O(k^{2k}|V(G)|^3)$.

Proof. We first prove that (G', k') is a positive instance if and only if it remains positive when a round of Steps 1, 2 or 3 is done. It is clearly true for Step 1.

Assume that v is a vertex of degree at least k + 1. If v is not used in a vertex-cover, then in order to cover at least k + 1 edges that are incident with v, we need to put at least k + 1 vertices in a vertex-cover. So if G'has a vertex-cover of size at most k, then v is in it; if G' does not have a vertex-cover of size at most k, then G' - v does not have a vertex-cover of size k - 1. Hence Step 2 preserves the positivity and negativity.

Assume v' is a vertex of degree 1. Let u' be the unique neighbor of v'. If a vertex-cover S contains v', then $(S - \{v'\}) \cup \{u'\}$ is a vertex-cover with the same size, and $S - \{v'\}$ is a vertex-cover of G' - u'. So if G' has a vertexcover of size at most k, then G' - u' has a vertex-cover of size at most k - 1; if G' does not have a vertex-cover of size at most k, then G' - u' does not have a vertex-cover of size k - 1. Hence Step 3 preserves the positivity and negativity.

So (G', k') is a kernel when no further Steps 1-3 can be applied. Note that G' has minimum degree at least two at this point. So $|E(G')| \ge |V(G')|$. Hence if $|E(G')| \le k^2$, then $|V(G')| \le |E(G')| \le k^2$ and (G', k') is output, so we are done. If $|E(G')| > k^2$, then since Step 2 is not applicable, G' has minimum degree at most k, so k vertices can cover at most $k^2 < |E(G')|$ edges, and hence (G, k) is a negative instance, and the algorithm outputs a negative instance with size $2 \le k^2$.

Hence the algorithm works correctly. And it clearly runs in time $O(|V(G)|^3)$.

Note that for the final graph G' and integer k', we can test whether G' has a vertex-cover in time $O(|V(G')|^{k'}) = O(k^{2k})$. So the above process decides whether G has a vertex-cover of size at most k or not in time $O(|V(G)|^3 + k^{2k})$.

We remark that we actually obtain an algorithm whose running time is of the form $f(k) + n^c$ in Proposition 2, which looks better than the required running time $f(k)n^c$ for FPT. But $f(k)+n^c$ and $f(k)n^c$ are in fact equivalent (with different functions f and constants c) since $f(k) + n^c \leq f(k)n^c$ and $f(k)n^c \leq (f(k))^2 + (n^c)^2 = g(k) + n^{c'}$, where $g(k) = (f(k))^2$ and c' = 2c. (We use the easy fact that for any positive numbers a and b, $ab \leq \max\{a, b\} \cdot \max\{a, b\} = \max\{a^2, b^2\} \leq a^2 + b^2$.)

We also remark that the size of the kernel mentioned in Proposition 2 can be reduced to be linear in k by using other tricks. And the running time for k-Vertex-Cover Problem in Proposition 2 can be further reduced, as we will see in next section.

As we mentioned above, having kernelization implies fixed-parameter tractability. But in fact they are equivalent.

Proposition 3 A parameterized problem has a kernelization if and only if it is fixed-parameter tractable.

Proof. It suffices to show that if a parameterized problem is FPT, then it has a kernelization. Assume the running time of this problem is $f(k)n^c$ for some function f and constant c. Now we describe a kernalization with size f.

If the input size $n \leq f(k)$, then we just output the input as the kernel. If the input size n > f(k), then we just run the FPT algorithm (which takes time $f(k)n^c \leq n^{c+1}$) to know whether the input is positive or negative, and output a trivially positive instance or trivially negative instance as a kernel. Note that this process for producing the kernel takes time $O(n) + O(n^{c+1}) = O(n^{c+1})$, which is polynomial.