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Recall the following notions: Let G be a simple graph. Let x1, x2, y1, y2
be distinct vertices. Then we say that (x1, x2, y1, y2) is feasible in G if there
exist two disjoint paths P1 and P2 in G such that for every i ∈ [2], the ends of
Pi are xi and yi; otherwise, we say that (x1, x2, y1, y2) is infeasible in G. For
a separation (A,B) of G of order at most three, the 3-reduction of (A,B) is
the graph obtained from G[A] by adding edges such that A becomes a clique.
Let x1, x2, y1, y2 be distinct vertices of G. A 3-reduction of (x1, x2, y1, y2) (for
G) is the 3-reduction of a separation (A,B) of G of order at most three with
{x1, x2, y1, y2} ⊆ A and B − A 6= ∅ such that either |A ∩ B| ≤ 1, or there
exists no separation (A′, B′) of order at most two such that A′ ⊇ A and
B′ − A′ 6= ∅. A full 3-reduction of (x1, x2, y1, y2) (for G) is a 3-irreducible
graph G′ with respect to (x1, x2, y1, y2) such that there exists a sequence of
graphs G1, G2, ..., Gt such that G1 = G, Gt = G′, and Gi+1 is a 3-reduction
of (x1, x2, y1, y2) for Gi for every 1 ≤ i ≤ t− 1.

We prove the following theorem that characterizes the feasibility.

Theorem 1 (Seymour; Thomassen) Let G be a graph. Let x1, x2, y1, y2
be distinct vertices of G. Then (x1, x2, y1, y2) is infeasible in G if and only if
for every full 3-reduction G′ of (x1, x2, y1, y2) for G, the graph G′+x1x2y1y2x1

can be drawn in the plane such that the 4-cycle x1x2y1y2x1 bounds the outer
face.

Proof. (⇐) Proved in the previous lecture.
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(⇒) We prove it by induction on |V (G)|. The case |V (G)| = 4 is obvious.
So we may assume |V (G)| ≥ 5 and the theorem holds if |V (G)| is smaller.

Suppose to the contrary that G + x1x2y1y2x1 cannot be drawn in the
plane such that the 4-cycle x1x2y1y2x1 bounds the outer face.

We prove that |V (G′)| = |V (G)|, and hence G = G′, in the previous
lecture.
Claim 1: There exists no separation (A,B) of G of order at most three such
that {x1, x2, y1, y2} ⊆ A and B − A 6= ∅.
Proof of Claim 1: Proved in the previous lecture. �
Claim 2: If (A,B) is a separation of G of order at most four such that
{x1, x2, y1, y2} ⊆ A and B −A 6= ∅ 6= A−B, then |A ∩B| = 4, |B −A| = 1,
and the unique vertex in B − A is adjacent to all four vertices in A ∩B.
Proof of Claim 2: Let (A,B) be a separation of G of order at most four
such that {x1, x2, y1, y2} ⊆ A and B − A 6= ∅ 6= A − B. We choose such
(A,B) such that B is maximal. By Claim 1, every component of G[B] − A
is adjacent to all vertices in A∩B, so for every pair of vertices u, v ∈ A∩B,
there exists a path in G[B] between u and v internally disjoint from A ∩B.

By Claim 1, (A,B) has order four. By Claim 1 and Menger’s theorem,
there exist four disjoint paths Px1 , Px2 , Py1 , Py2 in G[A] from {x1, x2, y1, y2}
to A∩B. Denote A∩B by {x′

1, x
′
2, y

′
1, y

′
2}, and we may assume that for every

z ∈ {x1, x2, y1, y2}, Pz is between z and z′. Since (x1, x2, y1, y2) is infeasible in
G, (x′

1, x
′
2, y

′
1, y

′
2) is infeasible in G[B]. Since A−B 6= ∅, |V (G[B])| < |V (G)|.

So by the induction hypothesis, for every full 3-reduction HB of (x′
1, x

′
2, y

′
1, y

′
2)

for G[B], the graph HB + x′
1x

′
2y

′
1y

′
2x

′
1 can be drawn in the plane such that

the 4-cycle x′
1x

′
2y

′
1y

′
2x

′
1 bounds the outer face.

Note that if there exists a separation (A′, B′) of G[B] of order at most
three such that {x′

1, x
′
2, y

′
1, y

′
2} ⊆ A′ and B′−A′ 6= ∅, then the separation (A′∪

A,B′) is a separation of G of order at most three such that {x1, x2, y1, y2} ⊆
A ∪A′ and B′ − (A ∪A′) 6= ∅, contradicting Claim 1. Hence the only full 3-
reduction of (x′

1, x
′
2, y

′
1, y

′
2) for G[B] is G[B] itself. That is, G[B]+x′

1x
′
2y

′
1y

′
2x

′
1

can be drawn in the plane such that the 4-cycle x′
1x

′
2y

′
1y

′
2x

′
1 bounds the outer

face.
Let G1 = G[A] + x′

1x
′
2y

′
1y

′
2x

′
1. We first assume that (x1, x2, y1, y2) is

infeasible in G1. Since B − A 6= ∅, |V (G1)| < |V (G)|. So by the in-
duction hypothesis, G1 + x1x2y1y2x1 can be drawn in the plane such that
x1x2y1y2x1 bounds the outer face. We further choose the drawing such
that x′

1x
′
2y

′
1y

′
2x

′
1 bounds a face if possible. If x′

1x
′
2y

′
1y

′
2x

′
1 bounds a face in

this drawing, then we can combine the drawing of G1 + x1x2y1y2x1 and
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G[B] + x′
1x

′
2y

′
1y

′
2x

′
1 to obtain a plane drawing of G + x1x2y1y2x1 such that

x1x2y1y2x1 bounds the outer face, and we are done. So we may assume that
x′
1x

′
2y

′
1y

′
2x

′
1 does not bound a face and hence is a separating cycle. This im-

plies that if {x1, x2, y1, y2} = {x′
1, x

′
2, y

′
1, y

′
2}, then (x1, x2, y1, y2) is feasible in

G, a contradiction. So {x1, x2, y1, y2} 6= {x′
1, x

′
2, y

′
1, y

′
2}. Hence there exists

a separation (A′, B′) of G of order four such that A′ ∩ B′ = {x′
1, x

′
2, y

′
1, y

′
2},

{x1, x2, y1, y2} ⊂ A′ and B′ ⊃ B, contradicting the choice of (A,B).
So we may assume that (x1, x2, y1, y2) is feasible in G1. So there exist two

disjoint paths P1 and P2 in G1, where P1 is between x1 and y1, and P2 is
between x2 and y2. Since (x1, x2, y1, y2) is infeasible in G1, and for every pair
of vertices u, v ∈ A∩B, there exists a path in G[B] between u and v internally
disjoint from A ∩ B, we know that both P1 and P2 contains edges in the 4-
cycle x′

1x
′
2y

′
1y

′
2x

′
1. Since P1 and P2 are disjoint, each Pi contains exactly one

edge ei and two vertices in the 4-cycle x′
1x

′
2y

′
1y

′
2x

′
1. Then (P1− e1)∪ (P2− e2)

is a union of four disjoint paths in G from {x1, x2, y1, y2} to {x′
1, x

′
2, y

′
1, y

′
2}.

For i ∈ [2], let ui and vi be the ends of ei. Since e1 and e2 are edges in the
4-cycle CB bounding the outer face of a plane drawing of G[B] +x′

1x
′
2y

′
1y

′
2x

′
1,

we may assume by symmetry that u1, v1, u2, v2 appear in CB in the order
listed. By the planarity, there exist no two disjoint paths in G[B], where one
is between u1 and u2, and the other is between v1 and v2. Since (x1, x2, y1, y2)
is infeasible in G, there exist no two disjoint paths in G[B], where one is
between u1 and v1 and the other is between u2 and v2. Hence there exist
no two disjoint paths in G[B] from {u1, v2} to {u2, v1}. So by Menger’s
theorem, there exists a separation (A′′, B′′) of G[B] of order at most one
such that {u1, v2} ⊆ A′′ − B′′ and {u2, v1} ⊆ B′′ − A′′. Then (A ∪ A′′, B′′)
and (A∪B′′, A′′) are separations of G of order at most 2+ |A′′∩B′′| ≤ 3 such
that {x1, x2, y1, y2} ⊆ A ⊆ (A∪A′′)∩ (A∪B′′). By Claim 1, B′′− (A∪A′′) =
∅ = A′′ − (A ∪ B′′). Since B − A 6= ∅, |A′′ ∩ B′′| = 1. So there exists the
unique vertex c in B − A. By Claim 1, c has degree at least four, so c is
adjacent to all vertices in A ∩B. �
Claim 3: For every edge e of G, if at least one end of e is not in {x1, x2, y1, y2},
then (G/e) + x1x2y1y2x1 is planar.
Proof of Claim 3: Let e be an edge of G with at least one end not
in {x1, x2, y1, y2}. Let G1 = G/e. Since at least one end of e is not in
{x1, x2, y1, y2}, we can assume {x1, x2, y1, y2} ⊆ V (G1). Since (x1, x2, y1, y2)
is infeasible in G, (x1, x2, y1, y2) is infeasible in G1. Since |V (G1)| = |V (G)|−
1, by the induction hypothesis, for every full 3-reduction G2 of (x1, x2, y1, y2)
for G1, G2 + x1x2y1y2x1 can be drawn in the plane. Hence we may assume
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G2 6= G1, for otherwise we are done.
Let (A,B) be a separation of G1 of order at most three such that {x1, x2, y1, y2} ⊆

A and B−A 6= ∅. Since G1 = G/e, by recontracting e, we know that there ex-
ists a separation (A′, B′) of G of order at most four such that {x1, x2, y1, y2} ⊆
A′ and B′ −A 6= ∅, where the order of (A′, B′) equals four if and only if the
vertex of G1 = G/e obtained by contracting e is in A ∩ B and both ends
of e are in A′ ∩ B′. By Claim 1, (A′, B′) has order four. So both ends of e
are in A′ ∩ B′. Hence at least one vertex in {x1, x2, y1, y2} is in A′ − B′. In
particular, A′ − B′ 6= ∅. By Claim 2, B′ − A′ = B − A contains exactly one
vertex c, and c is adjacent in G to all four vertices in A′ ∩B′.

This implies that G1+x1x2y1y2x1 can be obtained from the plane drawing
of G2 + x1x2y1y2x1 by repeatedly picking a face on 3 vertices and adding a
vertex adjacent to those 3 vertices. So G1 + x1x2y1y2x1 is planar. �
Claim 4: G + x1x2y1y2x1 is planar.
Proof of Claim 4: Suppose to the contrary that G+x1x2y1y2x1 is not pla-
nar. By Kuratowski’s theorem, there exists a subgraph H of G+ x1x2y1y2x1

isomorphic to a subdivision of K5 or K3,3. If there exists a vertex v of H
with degree 2 in H such that v 6∈ {x1, x2, y1, y2}, then v is incident with
an edge e with at least one end not in {x1, x2, y1, y2}, so Claim 3 implies
that (G/e) + x1x2y1y2x1 is planar, but H/e is a subdivision of K5 or K3,3

contained in (G/e) + x1x2y1y2x1, a contradiction. So every vertex of H with
degree 2 in H is in {x1, x2, y1, y2}. Moreover, both edges of H incident with
a degree-2 vertex in H have all ends in {x1, x2, y1, y2}. So H has at most two
degree-2 vertices.

Since |V (G)| ≥ 5, if there exists v ∈ {x1, x2, y1, y2} such that v has no
neighbor in V (G) − {x1, x2, y1, y2}, then there exists a separation (A,B) of
order at most three such that {x1, x2, y1, y2} ⊆ A and B−A 6= ∅, contradict-
ing Claim 1. So every vertex v in {x1, x2, y1, y2} is incident with an edge ev
not incident with {x1, x2, y1, y2} − {v}. If some vertex v ∈ {x1, x2, y1, y2} is
not contained in H, then H is a subgraph of (G/ev) +x1x2y1y2x1 isomorphic
to a subdivision of K5 or K3,3, contradicting Claim 3. So every vertex in
{x1, x2, y1, y2} is contained in H. Similarly, ev has both ends in V (H) for ev-
ery v ∈ {x1, x2, y1, y2}. Then it is easy to show that (x1, x2, y1, y2) is feasible
in G by considering ev for v ∈ {x1, x2, y1, y2}, a contradiction. �

Take a plane embedding of G + x1x2y1y2x1. Suppose to the contrary
that the 4-cycle C = x1x2y1y2x1 does not bound a face. Let D be the disk
bounded by C. Let A be the set consisting of vertices in C and the vertices
drawn outside the disk D. Let B be the set consisting of vertices in C and
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the vertices drawn inside the disk D. Then (A,B) is a separation of G with
A∩B = {x1, x2, y1, y2}. Since C does not bound a face, A−B 6= ∅ 6= B−A.
By Claim 2, |A − B| = |B − A| = 1, the only vertex in A − B adjacent to
all vertices in {x1, x2, y1, y2}, and the only vertex in B − A adjacent to all
vertices in {x1, x2, y1, y2}. So (x1, x2, y1, y2) is feasible in G, a contradiction.

1 Fixed-Parameter Tractability

Recall that determine whether a graph G has a vertex-cover with size at most
k is NP-hard when k is part of the input. On the other hand, there are at
most O(|V (G)|k) subsets S of V (G) with size at most k, and testing whether
each such S is a vertex-cover can be done in time O(|V (G)|). So there exists
a O(|V (G)|k+1) time algorithm to determine whether G has a vertex-cover
with size at most k. That is, if k is a fixed integer instead of part of the
input, we can determine whether G has a vertex-cover with size at most k in
polynomial time. On the other hand, we mentioned (without a proof) that
the Disjoint Path Problem is NP-hard, but the k-Disjoint Path Problem can
be solved in f(k)|V (G)|3 time.

Hence by fixing the “parameter” k, we can make an NP-hard problem
become in P. But there are two kinds of polynomial time algorithms as men-
tioned above. One runs in time ng(k) and the other runs in time f(k)nc for
some constant c. We usually prefer the second one, because it usually gives
better complexity. For example, when k = log log n (which grows to infinity
slowly with respect to n), if f is an exponential (or even double exponen-
tial) function, then f(k)nc = O(nc+1); while for any increasing non-constant
function g, ng(k) is not polynomial. The problems that have the second kind
of algorithm is said to be fixed-parameter tractable.

We give a more precise definition. The parameterization of a decision
problem is a function p that maps every every instance of the problem to
an integer. (For example, both the inputs of the Vertex-Cover Problem and
Disjoint Path Problem are (G, k), and the function p that maps (G, k) to k is
a parameterization.) A decision problem with a parameterization p is fixed-
parameter tractable (a.k.a FPT) if there exist a function f and a constant c
such that for every input x, it can be solved in time f(p(x))nc, where n is
the size of x.

Hence the k-Disjoint Path Problem is FPT, while our above naive algo-
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rithm for k-Vertex-Cover Problem does not build the fixed-parameter tractabil-
ity. But we will show that k-Vertex-Cover Problem is indeed FPT.

1.1 Kernalization

One trick to obtain an FPT algorithm is to find a “kernel”.
Let P be a decision problem and let p be a parameterization. We usually

write the instance of this parameterized problem as (I, k), where I is an
stance of P and k = p(I). A kernalization of P with size s, where s is a
function, is a polynomial time algorithm that transforms each instance (I, k)
to another instance (I ′, k′) such that

� (I, k) is a positive instance if and only if (I ′, k′) is a positive instance,

� k′ ≤ k, and

� |I ′| ≤ s(k).

We call (I ′, k′) the kernel of (I, k) (for this kernalization).
Note that having a kernalization implies fixed-parameter tractability,

since we can do brute-force on the kernel (whose running time only depends
on the size of the kernel and hence only depends on k but not n) to decide
whether the original input is a positive instance or not.

==============================
An algorithm for finding a kernel for Vertex-cover with size k2

Input: A simple graph G and an integer k.
Output: A simple graph G′ and an integer k′ with |V (G′)| ≤ k2 and k′ ≤ k
such that G has a vertex-cover with size at most k if and only if G′ has a
vertex-cover with size at most k′.
Procedure:

Step 0: Set G′ = G and k′ = k.

Step 1: If G′ has an isolated vertex, then redefine G′ = G′ − v.

Step 2: If there exists a vertex v in G′ with degree at least k + 1, redefine
G′ = G′ − v and k′ = k′ − 1.

Step 3: If there exists a vertex v in G′ with degree equal to 1, then let u be the
unique neighbor of v, redefine G′ = G′ − u and k′ = k − 1.
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Step 4: Repeat Steps 1-3 until no modification can be made. If |E(G′)| ≤ k2,
then output G′ and k′; otherwise, redefine G′ = K2 and k′ = 0, and
output G′ and k′.

==============================

Proposition 2 The above algorithm runs correctly in time O(|V (G)|3). And
k-Vertex Cover can be solved in time O(|V (G)|3 + k2k) = O(k2k|V (G)|3).

Proof. We first prove that (G′, k′) is a positive instance if and only if it
remains positive when a round of Steps 1, 2 or 3 is done. It is clearly true
for Step 1.

Assume that v is a vertex of degree at least k + 1. If v is not used in
a vertex-cover, then in order to cover at least k + 1 edges that are incident
with v, we need to put at least k + 1 vertices in a vertex-cover. So if G′

has a vertex-cover of size at most k, then v is in it; if G′ does not have a
vertex-cover of size at most k, then G′ − v does not have a vertex-cover of
size k − 1. Hence Step 2 preserves the positivity and negativity.

Assume v′ is a vertex of degree 1. Let u′ be the unique neighbor of v′. If
a vertex-cover S contains v′, then (S−{v′})∪{u′} is a vertex-cover with the
same size, and S − {v′} is a vertex-cover of G′ − u′. So if G′ has a vertex-
cover of size at most k, then G′− u′ has a vertex-cover of size at most k− 1;
if G′ does not have a vertex-cover of size at most k, then G′ − u′ does not
have a vertex-cover of size k − 1. Hence Step 3 preserves the positivity and
negativity.

So (G′, k′) is a kernel when no further Steps 1-3 can be applied. Note
that G′ has minimum degree at least two at this point. So |E(G′)| ≥ |V (G′)|.
Hence if |E(G′)| ≤ k2, then |V (G′)| ≤ |E(G′)| ≤ k2 and (G′, k′) is output,
so we are done. If |E(G′)| > k2, then since Step 2 is not applicable, G′ has
minimum degree at most k, so k vertices can cover at most k2 < |E(G′)|
edges, and hence (G, k) is a negative instance, and the algorithm outputs a
negative instance with size 2 ≤ k2.

Hence the algorithm works correctly. And it clearly runs in time O(|V (G)|3).
Note that for the final graph G′ and integer k′, we can test whether G′ has

a vertex-cover in time O(|V (G′)|k′) = O(k2k). So the above process decides
whether G has a vertex-cover of size at most k or not in time O(|V (G)|3+k2k).
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We remark that we actually obtain an algorithm whose running time is
of the form f(k) + nc in Proposition 2, which looks better than the required
running time f(k)nc for FPT. But f(k)+nc and f(k)nc are in fact equivalent
(with different functions f and constants c) since f(k) + nc ≤ f(k)nc and
f(k)nc ≤ (f(k))2 + (nc)2 = g(k) + nc′ , where g(k) = (f(k))2 and c′ = 2c.
(We use the easy fact that for any positive numbers a and b, ab ≤ max{a, b}·
max{a, b} = max{a2, b2} ≤ a2 + b2.)

We also remark that the size of the kernel mentioned in Proposition 2
can be reduced to be linear in k by using other tricks. And the running time
for k-Vertex-Cover Problem in Proposition 2 can be further reduced, as we
will see in next section.

As we mentioned above, having kernelization implies fixed-parameter
tractability. But in fact they are equivalent.

Proposition 3 A parameterized problem has a kernelization if and only if
it is fixed-parameter tractable.

Proof. It suffices to show that if a parameterized problem is FPT, then it
has a kernelization. Assume the running time of this problem is f(k)nc for
some function f and constant c. Now we describe a kernalization with size
f .

If the input size n ≤ f(k), then we just output the input as the kernel.
If the input size n > f(k), then we just run the FPT algorithm (which takes
time f(k)nc ≤ nc+1) to know whether the input is positive or negative, and
output a trivially positive instance or trivially negative instance as a kernel.
Note that this process for producing the kernel takes time O(n) +O(nc+1) =
O(nc+1), which is polynomial.
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