Lecture notes for Apr 12, 2023 2-Disjoint Path Problem, FPT and kernelization

Chun-Hung Liu

April 12, 2023

Recall the following notions: Let G be a simple graph. Let $x_{1}, x_{2}, y_{1}, y_{2}$ be distinct vertices. Then we say that $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ is feasible in G if there exist two disjoint paths P_{1} and P_{2} in G such that for every $i \in[2]$, the ends of P_{i} are x_{i} and y_{i}; otherwise, we say that $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ is infeasible in G. For a separation (A, B) of G of order at most three, the 3-reduction of (A, B) is the graph obtained from $G[A]$ by adding edges such that A becomes a clique. Let $x_{1}, x_{2}, y_{1}, y_{2}$ be distinct vertices of G. A 3-reduction of $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ (for $G)$ is the 3-reduction of a separation (A, B) of G of order at most three with $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\} \subseteq A$ and $B-A \neq \emptyset$ such that either $|A \cap B| \leq 1$, or there exists no separation $\left(A^{\prime}, B^{\prime}\right)$ of order at most two such that $A^{\prime} \supseteq A$ and $B^{\prime}-A^{\prime} \neq \emptyset$. A full 3-reduction of $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)($ for $G)$ is a 3 -irreducible graph G^{\prime} with respect to $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ such that there exists a sequence of graphs $G_{1}, G_{2}, \ldots, G_{t}$ such that $G_{1}=G, G_{t}=G^{\prime}$, and G_{i+1} is a 3-reduction of $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ for G_{i} for every $1 \leq i \leq t-1$.

We prove the following theorem that characterizes the feasibility.
Theorem 1 (Seymour; Thomassen) Let G be a graph. Let $x_{1}, x_{2}, y_{1}, y_{2}$ be distinct vertices of G. Then $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ is infeasible in G if and only if for every full 3-reduction G^{\prime} of $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ for G, the graph $G^{\prime}+x_{1} x_{2} y_{1} y_{2} x_{1}$ can be drawn in the plane such that the 4-cycle $x_{1} x_{2} y_{1} y_{2} x_{1}$ bounds the outer face.

Proof. (\Leftarrow) Proved in the previous lecture.
(\Rightarrow) We prove it by induction on $|V(G)|$. The case $|V(G)|=4$ is obvious. So we may assume $|V(G)| \geq 5$ and the theorem holds if $|V(G)|$ is smaller.

Suppose to the contrary that $G+x_{1} x_{2} y_{1} y_{2} x_{1}$ cannot be drawn in the plane such that the 4-cycle $x_{1} x_{2} y_{1} y_{2} x_{1}$ bounds the outer face.

We prove that $\left|V\left(G^{\prime}\right)\right|=|V(G)|$, and hence $G=G^{\prime}$, in the previous lecture.
Claim 1: There exists no separation (A, B) of G of order at most three such that $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\} \subseteq A$ and $B-A \neq \emptyset$.
Proof of Claim 1: Proved in the previous lecture.
Claim 2: If (A, B) is a separation of G of order at most four such that $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\} \subseteq A$ and $B-A \neq \emptyset \neq A-B$, then $|A \cap B|=4,|B-A|=1$, and the unique vertex in $B-A$ is adjacent to all four vertices in $A \cap B$.
Proof of Claim 2: Let (A, B) be a separation of G of order at most four such that $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\} \subseteq A$ and $B-A \neq \emptyset \neq A-B$. We choose such (A, B) such that B is maximal. By Claim 1, every component of $G[B]-A$ is adjacent to all vertices in $A \cap B$, so for every pair of vertices $u, v \in A \cap B$, there exists a path in $G[B]$ between u and v internally disjoint from $A \cap B$.

By Claim 1, (A, B) has order four. By Claim 1 and Menger's theorem, there exist four disjoint paths $P_{x_{1}}, P_{x_{2}}, P_{y_{1}}, P_{y_{2}}$ in $G[A]$ from $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ to $A \cap B$. Denote $A \cap B$ by $\left\{x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}\right\}$, and we may assume that for every $z \in\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}, P_{z}$ is between z and z^{\prime}. Since $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ is infeasible in $G,\left(x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}\right)$ is infeasible in $G[B]$. Since $A-B \neq \emptyset,|V(G[B])|<|V(G)|$. So by the induction hypothesis, for every full 3-reduction H_{B} of $\left(x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}\right)$ for $G[B]$, the graph $H_{B}+x_{1}^{\prime} x_{2}^{\prime} y_{1}^{\prime} y_{2}^{\prime} x_{1}^{\prime}$ can be drawn in the plane such that the 4 -cycle $x_{1}^{\prime} x_{2}^{\prime} y_{1}^{\prime} y_{2}^{\prime} x_{1}^{\prime}$ bounds the outer face.

Note that if there exists a separation $\left(A^{\prime}, B^{\prime}\right)$ of $G[B]$ of order at most three such that $\left\{x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}\right\} \subseteq A^{\prime}$ and $B^{\prime}-A^{\prime} \neq \emptyset$, then the separation $\left(A^{\prime} \cup\right.$ $\left.A, B^{\prime}\right)$ is a separation of G of order at most three such that $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\} \subseteq$ $A \cup A^{\prime}$ and $B^{\prime}-\left(A \cup A^{\prime}\right) \neq \emptyset$, contradicting Claim 1. Hence the only full 3reduction of $\left(x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}\right)$ for $G[B]$ is $G[B]$ itself. That is, $G[B]+x_{1}^{\prime} x_{2}^{\prime} y_{1}^{\prime} y_{2}^{\prime} x_{1}^{\prime}$ can be drawn in the plane such that the 4 -cycle $x_{1}^{\prime} x_{2}^{\prime} y_{1}^{\prime} y_{2}^{\prime} x_{1}^{\prime}$ bounds the outer face.

Let $G_{1}=G[A]+x_{1}^{\prime} x_{2}^{\prime} y_{1}^{\prime} y_{2}^{\prime} x_{1}^{\prime}$. We first assume that $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ is infeasible in G_{1}. Since $B-A \neq \emptyset,\left|V\left(G_{1}\right)\right|<|V(G)|$. So by the induction hypothesis, $G_{1}+x_{1} x_{2} y_{1} y_{2} x_{1}$ can be drawn in the plane such that $x_{1} x_{2} y_{1} y_{2} x_{1}$ bounds the outer face. We further choose the drawing such that $x_{1}^{\prime} x_{2}^{\prime} y_{1}^{\prime} y_{2}^{\prime} x_{1}^{\prime}$ bounds a face if possible. If $x_{1}^{\prime} x_{2}^{\prime} y_{1}^{\prime} y_{2}^{\prime} x_{1}^{\prime}$ bounds a face in this drawing, then we can combine the drawing of $G_{1}+x_{1} x_{2} y_{1} y_{2} x_{1}$ and
$G[B]+x_{1}^{\prime} x_{2}^{\prime} y_{1}^{\prime} y_{2}^{\prime} x_{1}^{\prime}$ to obtain a plane drawing of $G+x_{1} x_{2} y_{1} y_{2} x_{1}$ such that $x_{1} x_{2} y_{1} y_{2} x_{1}$ bounds the outer face, and we are done. So we may assume that $x_{1}^{\prime} x_{2}^{\prime} y_{1}^{\prime} y_{2}^{\prime} x_{1}^{\prime}$ does not bound a face and hence is a separating cycle. This implies that if $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}=\left\{x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}\right\}$, then $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ is feasible in G, a contradiction. So $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\} \neq\left\{x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}\right\}$. Hence there exists a separation $\left(A^{\prime}, B^{\prime}\right)$ of G of order four such that $A^{\prime} \cap B^{\prime}=\left\{x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}\right\}$, $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\} \subset A^{\prime}$ and $B^{\prime} \supset B$, contradicting the choice of (A, B).

So we may assume that $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ is feasible in G_{1}. So there exist two disjoint paths P_{1} and P_{2} in G_{1}, where P_{1} is between x_{1} and y_{1}, and P_{2} is between x_{2} and y_{2}. Since $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ is infeasible in G_{1}, and for every pair of vertices $u, v \in A \cap B$, there exists a path in $G[B]$ between u and v internally disjoint from $A \cap B$, we know that both P_{1} and P_{2} contains edges in the 4cycle $x_{1}^{\prime} x_{2}^{\prime} y_{1}^{\prime} y_{2}^{\prime} x_{1}^{\prime}$. Since P_{1} and P_{2} are disjoint, each P_{i} contains exactly one edge e_{i} and two vertices in the 4 -cycle $x_{1}^{\prime} x_{2}^{\prime} y_{1}^{\prime} y_{2}^{\prime} x_{1}^{\prime}$. Then $\left(P_{1}-e_{1}\right) \cup\left(P_{2}-e_{2}\right)$ is a union of four disjoint paths in G from $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ to $\left\{x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}\right\}$.

For $i \in[2]$, let u_{i} and v_{i} be the ends of e_{i}. Since e_{1} and e_{2} are edges in the 4 -cycle C_{B} bounding the outer face of a plane drawing of $G[B]+x_{1}^{\prime} x_{2}^{\prime} y_{1}^{\prime} y_{2}^{\prime} x_{1}^{\prime}$, we may assume by symmetry that $u_{1}, v_{1}, u_{2}, v_{2}$ appear in C_{B} in the order listed. By the planarity, there exist no two disjoint paths in $G[B]$, where one is between u_{1} and u_{2}, and the other is between v_{1} and v_{2}. Since $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ is infeasible in G, there exist no two disjoint paths in $G[B]$, where one is between u_{1} and v_{1} and the other is between u_{2} and v_{2}. Hence there exist no two disjoint paths in $G[B]$ from $\left\{u_{1}, v_{2}\right\}$ to $\left\{u_{2}, v_{1}\right\}$. So by Menger's theorem, there exists a separation $\left(A^{\prime \prime}, B^{\prime \prime}\right)$ of $G[B]$ of order at most one such that $\left\{u_{1}, v_{2}\right\} \subseteq A^{\prime \prime}-B^{\prime \prime}$ and $\left\{u_{2}, v_{1}\right\} \subseteq B^{\prime \prime}-A^{\prime \prime}$. Then $\left(A \cup A^{\prime \prime}, B^{\prime \prime}\right)$ and $\left(A \cup B^{\prime \prime}, A^{\prime \prime}\right)$ are separations of G of order at most $2+\left|A^{\prime \prime} \cap B^{\prime \prime}\right| \leq 3$ such that $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\} \subseteq A \subseteq\left(A \cup A^{\prime \prime}\right) \cap\left(A \cup B^{\prime \prime}\right)$. By Claim 1, $B^{\prime \prime}-\left(A \cup A^{\prime \prime}\right)=$ $\emptyset=A^{\prime \prime}-\left(A \cup B^{\prime \prime}\right)$. Since $B-A \neq \emptyset,\left|A^{\prime \prime} \cap B^{\prime \prime}\right|=1$. So there exists the unique vertex c in $B-A$. By Claim 1, c has degree at least four, so c is adjacent to all vertices in $A \cap B$.
Claim 3: For every edge e of G, if at least one end of e is not in $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$, then $(G / e)+x_{1} x_{2} y_{1} y_{2} x_{1}$ is planar.
Proof of Claim 3: Let e be an edge of G with at least one end not in $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$. Let $G_{1}=G / e$. Since at least one end of e is not in $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$, we can assume $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\} \subseteq V\left(G_{1}\right)$. Since $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ is infeasible in $G,\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ is infeasible in G_{1}. Since $\left|V\left(G_{1}\right)\right|=|V(G)|-$ 1, by the induction hypothesis, for every full 3-reduction G_{2} of $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ for $G_{1}, G_{2}+x_{1} x_{2} y_{1} y_{2} x_{1}$ can be drawn in the plane. Hence we may assume
$G_{2} \neq G_{1}$, for otherwise we are done.
Let (A, B) be a separation of G_{1} of order at most three such that $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\} \subseteq$ A and $B-A \neq \emptyset$. Since $G_{1}=G / e$, by recontracting e, we know that there exists a separation $\left(A^{\prime}, B^{\prime}\right)$ of G of order at most four such that $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\} \subseteq$ A^{\prime} and $B^{\prime}-A \neq \emptyset$, where the order of $\left(A^{\prime}, B^{\prime}\right)$ equals four if and only if the vertex of $G_{1}=G / e$ obtained by contracting e is in $A \cap B$ and both ends of e are in $A^{\prime} \cap B^{\prime}$. By Claim $1,\left(A^{\prime}, B^{\prime}\right)$ has order four. So both ends of e are in $A^{\prime} \cap B^{\prime}$. Hence at least one vertex in $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ is in $A^{\prime}-B^{\prime}$. In particular, $A^{\prime}-B^{\prime} \neq \emptyset$. By Claim 2, $B^{\prime}-A^{\prime}=B-A$ contains exactly one vertex c, and c is adjacent in G to all four vertices in $A^{\prime} \cap B^{\prime}$.

This implies that $G_{1}+x_{1} x_{2} y_{1} y_{2} x_{1}$ can be obtained from the plane drawing of $G_{2}+x_{1} x_{2} y_{1} y_{2} x_{1}$ by repeatedly picking a face on 3 vertices and adding a vertex adjacent to those 3 vertices. So $G_{1}+x_{1} x_{2} y_{1} y_{2} x_{1}$ is planar.
Claim 4: $G+x_{1} x_{2} y_{1} y_{2} x_{1}$ is planar.
Proof of Claim 4: Suppose to the contrary that $G+x_{1} x_{2} y_{1} y_{2} x_{1}$ is not planar. By Kuratowski's theorem, there exists a subgraph H of $G+x_{1} x_{2} y_{1} y_{2} x_{1}$ isomorphic to a subdivision of K_{5} or $K_{3,3}$. If there exists a vertex v of H with degree 2 in H such that $v \notin\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$, then v is incident with an edge e with at least one end not in $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$, so Claim 3 implies that $(G / e)+x_{1} x_{2} y_{1} y_{2} x_{1}$ is planar, but H / e is a subdivision of K_{5} or $K_{3,3}$ contained in $(G / e)+x_{1} x_{2} y_{1} y_{2} x_{1}$, a contradiction. So every vertex of H with degree 2 in H is in $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$. Moreover, both edges of H incident with a degree- 2 vertex in H have all ends in $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$. So H has at most two degree-2 vertices.

Since $|V(G)| \geq 5$, if there exists $v \in\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ such that v has no neighbor in $V(G)-\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$, then there exists a separation (A, B) of order at most three such that $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\} \subseteq A$ and $B-A \neq \emptyset$, contradicting Claim 1. So every vertex v in $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ is incident with an edge e_{v} not incident with $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}-\{v\}$. If some vertex $v \in\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ is not contained in H, then H is a subgraph of $\left(G / e_{v}\right)+x_{1} x_{2} y_{1} y_{2} x_{1}$ isomorphic to a subdivision of K_{5} or $K_{3,3}$, contradicting Claim 3. So every vertex in $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ is contained in H. Similarly, e_{v} has both ends in $V(H)$ for every $v \in\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$. Then it is easy to show that $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ is feasible in G by considering e_{v} for $v \in\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$, a contradiction.

Take a plane embedding of $G+x_{1} x_{2} y_{1} y_{2} x_{1}$. Suppose to the contrary that the 4 -cycle $C=x_{1} x_{2} y_{1} y_{2} x_{1}$ does not bound a face. Let D be the disk bounded by C. Let A be the set consisting of vertices in C and the vertices drawn outside the disk D. Let B be the set consisting of vertices in C and
the vertices drawn inside the disk D. Then (A, B) is a separation of G with $A \cap B=\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$. Since C does not bound a face, $A-B \neq \emptyset \neq B-A$. By Claim 2, $|A-B|=|B-A|=1$, the only vertex in $A-B$ adjacent to all vertices in $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$, and the only vertex in $B-A$ adjacent to all vertices in $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$. So $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$ is feasible in G, a contradiction.

1 Fixed-Parameter Tractability

Recall that determine whether a graph G has a vertex-cover with size at most k is NP-hard when k is part of the input. On the other hand, there are at most $O\left(|V(G)|^{k}\right)$ subsets S of $V(G)$ with size at most k, and testing whether each such S is a vertex-cover can be done in time $O(|V(G)|)$. So there exists a $O\left(|V(G)|^{k+1}\right)$ time algorithm to determine whether G has a vertex-cover with size at most k. That is, if k is a fixed integer instead of part of the input, we can determine whether G has a vertex-cover with size at most k in polynomial time. On the other hand, we mentioned (without a proof) that the Disjoint Path Problem is NP-hard, but the k-Disjoint Path Problem can be solved in $f(k)|V(G)|^{3}$ time.

Hence by fixing the "parameter" k, we can make an NP-hard problem become in P. But there are two kinds of polynomial time algorithms as mentioned above. One runs in time $n^{g(k)}$ and the other runs in time $f(k) n^{c}$ for some constant c. We usually prefer the second one, because it usually gives better complexity. For example, when $k=\log \log n$ (which grows to infinity slowly with respect to n), if f is an exponential (or even double exponential) function, then $f(k) n^{c}=O\left(n^{c+1}\right)$; while for any increasing non-constant function $g, n^{g(k)}$ is not polynomial. The problems that have the second kind of algorithm is said to be fixed-parameter tractable.

We give a more precise definition. The parameterization of a decision problem is a function p that maps every every instance of the problem to an integer. (For example, both the inputs of the Vertex-Cover Problem and Disjoint Path Problem are (G, k), and the function p that maps (G, k) to k is a parameterization.) A decision problem with a parameterization p is fixedparameter tractable (a.k.a $F P T$) if there exist a function f and a constant c such that for every input x, it can be solved in time $f(p(x)) n^{c}$, where n is the size of x.

Hence the k-Disjoint Path Problem is FPT, while our above naive algo-
rithm for k-Vertex-Cover Problem does not build the fixed-parameter tractability. But we will show that k-Vertex-Cover Problem is indeed FPT.

1.1 Kernalization

One trick to obtain an FPT algorithm is to find a "kernel".
Let P be a decision problem and let p be a parameterization. We usually write the instance of this parameterized problem as (I, k), where I is an stance of P and $k=p(I)$. A kernalization of P with size s, where s is a function, is a polynomial time algorithm that transforms each instance (I, k) to another instance $\left(I^{\prime}, k^{\prime}\right)$ such that

- (I, k) is a positive instance if and only if $\left(I^{\prime}, k^{\prime}\right)$ is a positive instance,
- $k^{\prime} \leq k$, and
- $\left|I^{\prime}\right| \leq s(k)$.

We call $\left(I^{\prime}, k^{\prime}\right)$ the kernel of (I, k) (for this kernalization).
Note that having a kernalization implies fixed-parameter tractability, since we can do brute-force on the kernel (whose running time only depends on the size of the kernel and hence only depends on k but not n) to decide whether the original input is a positive instance or not.
$==========================$
An algorithm for finding a kernel for Vertex-cover with size k^{2}
Input: A simple graph G and an integer k.
Output: A simple graph G^{\prime} and an integer k^{\prime} with $\left|V\left(G^{\prime}\right)\right| \leq k^{2}$ and $k^{\prime} \leq k$ such that G has a vertex-cover with size at most k if and only if G^{\prime} has a vertex-cover with size at most k^{\prime}.

Procedure:

Step 0: Set $G^{\prime}=G$ and $k^{\prime}=k$.
Step 1: If G^{\prime} has an isolated vertex, then redefine $G^{\prime}=G^{\prime}-v$.
Step 2: If there exists a vertex v in G^{\prime} with degree at least $k+1$, redefine $G^{\prime}=G^{\prime}-v$ and $k^{\prime}=k^{\prime}-1$.

Step 3: If there exists a vertex v in G^{\prime} with degree equal to 1 , then let u be the unique neighbor of v, redefine $G^{\prime}=G^{\prime}-u$ and $k^{\prime}=k-1$.

Step 4: Repeat Steps 1-3 until no modification can be made. If $\left|E\left(G^{\prime}\right)\right| \leq k^{2}$, then output G^{\prime} and k^{\prime}; otherwise, redefine $G^{\prime}=K_{2}$ and $k^{\prime}=0$, and output G^{\prime} and k^{\prime}.
$============================$

Proposition 2 The above algorithm runs correctly in time $O\left(|V(G)|^{3}\right)$. And k-Vertex Cover can be solved in time $O\left(|V(G)|^{3}+k^{2 k}\right)=O\left(k^{2 k}|V(G)|^{3}\right)$.

Proof. We first prove that $\left(G^{\prime}, k^{\prime}\right)$ is a positive instance if and only if it remains positive when a round of Steps 1,2 or 3 is done. It is clearly true for Step 1.

Assume that v is a vertex of degree at least $k+1$. If v is not used in a vertex-cover, then in order to cover at least $k+1$ edges that are incident with v, we need to put at least $k+1$ vertices in a vertex-cover. So if G^{\prime} has a vertex-cover of size at most k, then v is in it; if G^{\prime} does not have a vertex-cover of size at most k, then $G^{\prime}-v$ does not have a vertex-cover of size $k-1$. Hence Step 2 preserves the positivity and negativity.

Assume v^{\prime} is a vertex of degree 1 . Let u^{\prime} be the unique neighbor of v^{\prime}. If a vertex-cover S contains v^{\prime}, then $\left(S-\left\{v^{\prime}\right\}\right) \cup\left\{u^{\prime}\right\}$ is a vertex-cover with the same size, and $S-\left\{v^{\prime}\right\}$ is a vertex-cover of $G^{\prime}-u^{\prime}$. So if G^{\prime} has a vertexcover of size at most k, then $G^{\prime}-u^{\prime}$ has a vertex-cover of size at most $k-1$; if G^{\prime} does not have a vertex-cover of size at most k, then $G^{\prime}-u^{\prime}$ does not have a vertex-cover of size $k-1$. Hence Step 3 preserves the positivity and negativity.

So $\left(G^{\prime}, k^{\prime}\right)$ is a kernel when no further Steps 1-3 can be applied. Note that G^{\prime} has minimum degree at least two at this point. So $\left|E\left(G^{\prime}\right)\right| \geq\left|V\left(G^{\prime}\right)\right|$. Hence if $\left|E\left(G^{\prime}\right)\right| \leq k^{2}$, then $\left|V\left(G^{\prime}\right)\right| \leq\left|E\left(G^{\prime}\right)\right| \leq k^{2}$ and $\left(G^{\prime}, k^{\prime}\right)$ is output, so we are done. If $\left|E\left(G^{\prime}\right)\right|>k^{2}$, then since Step 2 is not applicable, G^{\prime} has minimum degree at most k, so k vertices can cover at most $k^{2}<\left|E\left(G^{\prime}\right)\right|$ edges, and hence (G, k) is a negative instance, and the algorithm outputs a negative instance with size $2 \leq k^{2}$.

Hence the algorithm works correctly. And it clearly runs in time $O\left(|V(G)|^{3}\right)$.
Note that for the final graph G^{\prime} and integer k^{\prime}, we can test whether G^{\prime} has a vertex-cover in time $O\left(\left|V\left(G^{\prime}\right)\right|^{k^{\prime}}\right)=O\left(k^{2 k}\right)$. So the above process decides whether G has a vertex-cover of size at most k or not in time $O\left(|V(G)|^{3}+k^{2 k}\right)$.

We remark that we actually obtain an algorithm whose running time is of the form $f(k)+n^{c}$ in Proposition 2, which looks better than the required running time $f(k) n^{c}$ for FPT. But $f(k)+n^{c}$ and $f(k) n^{c}$ are in fact equivalent (with different functions f and constants c) since $f(k)+n^{c} \leq f(k) n^{c}$ and $f(k) n^{c} \leq(f(k))^{2}+\left(n^{c}\right)^{2}=g(k)+n^{c^{\prime}}$, where $g(k)=(f(k))^{2}$ and $c^{\prime}=2 c$. (We use the easy fact that for any positive numbers a and $b, a b \leq \max \{a, b\}$. $\max \{a, b\}=\max \left\{a^{2}, b^{2}\right\} \leq a^{2}+b^{2}$.)

We also remark that the size of the kernel mentioned in Proposition 2 can be reduced to be linear in k by using other tricks. And the running time for k-Vertex-Cover Problem in Proposition 2 can be further reduced, as we will see in next section.

As we mentioned above, having kernelization implies fixed-parameter tractability. But in fact they are equivalent.

Proposition 3 A parameterized problem has a kernelization if and only if it is fixed-parameter tractable.

Proof. It suffices to show that if a parameterized problem is FPT, then it has a kernelization. Assume the running time of this problem is $f(k) n^{c}$ for some function f and constant c. Now we describe a kernalization with size f.

If the input size $n \leq f(k)$, then we just output the input as the kernel. If the input size $n>f(k)$, then we just run the FPT algorithm (which takes time $\left.f(k) n^{c} \leq n^{c+1}\right)$ to know whether the input is positive or negative, and output a trivially positive instance or trivially negative instance as a kernel. Note that this process for producing the kernel takes time $O(n)+O\left(n^{c+1}\right)=$ $O\left(n^{c+1}\right)$, which is polynomial.

