
Lecture notes for Apr 17, 2023
FPT and tree-width

Chun-Hung Liu

April 12, 2023

1 Search tree algorithms

Another trick to obtain a FPT algorithm is to consider a “search tree”.
Assume that we have an increasing function b, constants c1 and c2, and

an algorithm such that given an input (I, k), we can produce b(k) instances
(I1, k1), (I2, k2), ..., (Ib(k), kb(k)) with |Ii| ≤ |I| and ki ≤ k− 1 in time |I|c1 and
we can determine whether (I, k) is a positive instance or not in time |I|c2 by
only using the information whether each (Ii, ki) is a positive instance or not.
Then we can run the above algorithm again to each (Ii, ki) to further obtain
(Ii,1, ki,1), ..., (Ii,b(ki), ki,b(ki)). Repeat this process until each ki becomes very
small so that we can do brute force in time nc3 for some constant c3. Then
we can work backwards to know whether (I, k) is positive or not by seeing
whether each (Ii, ki) is positive or not.

What’s the running time of this process? We can image that the above
process creates a rooted tree T : The root of T is (I, k) and the children
of (I, k) are (I1, k1), ..., (Ib(k), kb(k)), and then each (Ii, ki) has b(ki) children,
and so on. Every vertex of T has at most b(k) children, since b is increasing
and each ki is smaller than k. The height of T is at most k, since each ki
is strictly smaller than k. Hence T has at most (b(k))k leaves. So T has at
most 2(b(k))k vertices and edges. Since each |Ii| ≤ |I|, it takes |I|c1 ·|E(T)| ≤
2(b(k))k|I|c1 time to construct T . And it takes |I|c3 time to decide whether a
leaf instance is positive or not by brute force. So it takes 2(b(k))k · |I|c3 time
to decide the answers for all leaf instances. And the backward process take
|I|c2 · |E(T)| ≤ 2(b(k))k|I|c2 time to decide the answer for the root instance
(I, k). So the total running time is at most 6(b(k))k|I|max{c1,c2,c3}.

1

Hence this search tree algorithm gives an algorithm with running time
O(f(k)nc), where f(k) = (b(k))k and c = max{c1, c2, c3}. So it is a FPT
algorithm, and the function f is determined by the function b. In fact, the
above analysis works in the same way even we do not have the function b to
bound the degree of vertices in T . It works as long as the number of leaves
of T is bounded. More precisely, if L(T) is the number of leaves of T , then
the above search tree algorithm runs in time O(L(T) · nc).

We first see an example that applies this trick to the vertex-cover problem.

Proposition 1 k-Vertex-Cover can be solved in time O(2kn).

Proof. Assume an input (G, k) is given. Then we pick an edge uv of G. Let
(G1, k1) = (G− u, k − 1) and (G2, k2) = (G− v, k − 1).

Note that if there exists a vertex-cover S of G with size at most k, and
S contains u or v, so either S − {u} is a vertex-cover of G − u with size at
most k − 1 or S − {v} is a vertex-cover of G − v with size at most k − 1.
So if (G, k) is a positive instance, then at least one of (G1, k1) and (G2, k2)
is a positive instance. Conversely, if at least one of (G1, k1) and (G2, k2) is
a positive instance, say G1 has a vertex-cover S1 of size at most k1 = k − 1,
then G has a vertex-cover S1 ∪ {u} with size at most k. Therefore, (G, k)
is a positive instance if and only if at least one of (G1, k1) and (G2, k2) is a
positive instance.

We do brute force if k = 0. So the search tree algorithm is with the
function b = 2 and constants c = c′ = 0 and c′′ = 1, and hence has running
time O(2kn).

Now we see another example for the search tree algorithm.
A hole in a graph G is an induced subgraph H such that H is isomorphic

to a cycle of length at least 4. A graph is chordal if it has no holes.
Chordal graphs are interesting for various reasons. For example, chordal

graphs are typical examples of perfect graphs and are exactly the intersection
graphs of subtrees of a tree.

We consider the following problem.

==============================
Chordal Completion Problem
Input: A simple graph G and an integer k.
Output: Determine whether it is possible to add at most k edges to make
G become a chordal graph.

2

==============================

The case when G is a cycle is easy.

Lemma 2 Let G be a cycle of length ` with ` ≥ 3. Then (G, k) is a positive
instance if and only if k ≥ `− 3.

Proof. It can be easily proved by induction on `.

Note that each way to add exactly `− 3 edges to make a cycle of length
` become a chordal graph is exactly a way to triangulate a convex `-side
polygon by adding diagonals. The number of ways to triangulate a convex
`-side polygon by adding diagonals is equal to the Catalan number. The
proof of this fact can be found in most of standard combintorics courses, so
we do not repeat it here. (In fact, we only need the “≤ 4`−3” part in the
following lemma. And this part can be easily proved by induction on `.)

Lemma 3 Let G be a cycle of length ` with ` ≥ 4. Then there are exactly
1

`−1

(
2`−4
`−2

)
≤ 4`−3 ways to add exactly `− 3 edges to make G become a chordal

graphs.

Theorem 4 The Chrodal Partition Problem can be solved in time O(4knc)
for some constant c.

Proof. We use a search tree algorithm. Let (G, k) be the input.
We first determine whether G has a hole, and if it does, find a hole in

G. It is known that it can be done in polynomial time (but we will not
describe how to do it here). If there is no hole in G, then G is chordal
and we answer “yes”. So we may assume that we find a hole C in G. By
each way W to add |V (C)| − 3 edges that makes C chordal, we produce a
child (G′, k− (|V (C)| − 3)) of (G, k), where G′ is obtained from G by adding
|V (C)|−3 edges in the way W . Note that (G, k) has at most 4|V (C)|−3 children
by Lemma 3. And (G, k) is positive if and only if at least one child of (G, k)
is positive. And when k = 0, we can decide whether (G, k) is a positive
instance or not by testing whether G has a hole and hence can be done in
polynomial time.

We prove that the search tree T created in this way has at most 4k leaves.
We prove this fact by induction on k. Note that (G, k) has 4|V (C)|−3 children.
For each children h of (G, k), it is an instance of the form (G′, k−|V (C)|+3).

3

Since |V (C)| ≥ 4, for each child h of (G, k), by the induction hypothesis, the
number of leaves of T that are descendants of h is at most 4k−|V (C)|+3. So T
has at most 4|V (C)|−3 · 4k−|V (C)|+3 = 4k leaves.

Therefore, the search tree algorithms runs in time O(4knc) for some con-
stant c.

There are many other tricks to obtain FPT algorithms. One main research
direction is to consider width parameter of graphs. We will give details for
one such width parameter, called tree-width in the next section.

2 Tree-width

One way to get a parameterization of an algorithmic problem on graphs is to
use properties of the input graphs. That is, we consider a measurement to
measure the “complexity” of the input graph. For example, the chromatic
number is such a measurement, as graphs with smaller chromatic number
can be considered “simpler”. But the chromatic number does not seem to be
a useful measurement for parametrization of algorithmic problems. Graph
width turns out to more effective. There are numerous different notions of
width parameters extensively studied in the literature. In this section we
focus on tree-width, which is arguably the most famous one.

Let G be a graph. A tree-decomposition of G is a pair (T,X), where T is
a tree and X = {Xt : t ∈ V (T)} is a collection of subsets of V (G) indexed
by the vertices of T such that

(TD1)
⋃

t∈V (T)Xt = V (G),

(TD2) for every edge uv ∈ E(G), there exists t ∈ V (T) such that {u, v} ⊆ Xt,
and

(TD3) for every vertex v ∈ V (G), the set {t ∈ V (T) : v ∈ Xt} induces a
connected subtree of T

(that is, if t1, t2 ∈ V (T) with v ∈ Xt1 ∩ Xt2 , then v ∈ Xt for every
vertex t in the path in T between t1 and t2).

Each set Xt is called the bag at t.
Note that every graph has a “trivial” tree-decomposition, which is the

tree-decomposition whose tree only has one vertex and the unique bag equals

4

V (G). This tree-decomposition is useless, and we usually want a tree-decomposition
whose every bag is small.

The width of the tree-decomposition (T,X) is defined to be maxt∈V (T) |Xt|−
1. The tree-width of G is the minimum width of a tree-decomposition of G.

To get feelings about tree-decompositions, we first show some easy exam-
ples.

Proposition 5 Let G be a graph. Then G has tree-width 0 if and only if G
has no edge.

Proof. (⇒) Clearly, if G has at least one edge, then (TD2) implies that every
tree-decomposition of G has a bag with size at least two, so the tree-width
is at least 1.

(⇐) If G has no edge, then by taking a tree T with V (T) = V (G)
and defining Xv = {v} for every v ∈ V (T) = V (G), we obtain a tree-
decomposition with width 0.

Proposition 6 Every tree with at least one edge has tree-width 1.

Proof. Let T be a tree with at least one edge. Let T ′ be the tree obtained
from T by subdividing every edge of T exactly once. So V (T ′) = V (T)∪E(T).
That is, every vertex of T ′ is either a vertex of T or an edge of T .

For every t ∈ V (T), let Xt = {t}. For every uv ∈ E(T), let Xuv = {u, v}.
Let X = {Xt, Xuv : t ∈ V (T), uv ∈ E(T)}.

We show that (T ′,X) is a tree-decomposition of T . Clearly (TD1) and
(TD2) hold. Now we prove (TD3). Let v ∈ V (T). Note that if t ∈ V (T ′)
such that v ∈ Xt, then either t = v or t is an edge of T incident with v. So
the subgraph of T ′ induced by the set {t ∈ V (T ′) : v ∈ Xt} is a star centered
at v. Hence (TD3) holds.

So (T ′,X) is a tree-decomposition of T . Clearly every bag has size at
most 2, so the width of (T ′,X) is at most 1. So the tree-width of T is at
most 1. And the tree-width of T is at least 1 by Proposition 5.

Proposition 7 Every cycle on at least three vertices has tree-width at most
2.

Proof. Let C = v1v2...vnv1 be a cycle on n ≥ 3 vertices. Let T = t1t2...tn−1
be a path. For every i ∈ [n − 1], define Xti = {vi, vn}. Then it is easy

5

to check (TD1)-(TD3) for (T,X), so it is a tree-decomposition of width 2.
Hence C has tree-width at most 2.

In fact, it is not hard to show that every cycle on at least three vertices
has tree-width exactly 2. Also, we know what graphs have large tree-width
and what graphs have small tree-width. We will give more details about
them later when we pay more attention on graph minors.

6

