
Lecture notes for Apr 19, 2023
Tree-width and dynamic programming

Chun-Hung Liu

April 12, 2023

Let G be a graph. A tree-decomposition of G is a pair (T,X), where T is
a tree and X = {Xt : t ∈ V (T)} is a collection of subsets of V (G) indexed
by the vertices of T such that

(TD1)
⋃

t∈V (T)Xt = V (G),

(TD2) for every edge uv ∈ E(G), there exists t ∈ V (T) such that {u, v} ⊆ Xt,
and

(TD3) for every vertex v ∈ V (G), the set {t ∈ V (T) : v ∈ Xt} induces a
connected subtree of T

(that is, if t1, t2 ∈ V (T) with v ∈ Xt1 ∩ Xt2 , then v ∈ Xt for every
vertex t in the path in T between t1 and t2).

Each set Xt is called the bag at t. The width of the tree-decomposition (T,X)
is defined to be maxt∈V (T) |Xt|−1. The tree-width of G is the minimum width
of a tree-decomposition of G.

Recall that every edge of the tree in a tree-cut decomposition of a graph
G gives an edge-cut of G. Tree-decomposition has a similar property, by
replacing “edge-cut” by “separation”, as shown in the following.

Proposition 1 Let G be a graph. Let (T,X) be a tree-decomposition of G.
Let t1t2 ∈ E(T). For i ∈ [2], let Ti be the component of T−t1t2 containing ti.
Then (

⋃
t∈V (T1)

Xt,
⋃

t∈V (T2)
Xt) is a separation of G with order |Xt1 ∩Xt2|.

Proof. We first show that (
⋃

t∈V (T1)
Xt,

⋃
t∈V (T2)

Xt) is a separation of G. For

simplicity, for each i ∈ [2], let Ai =
⋃

t∈V (Ti)
Xt. By (TD1), A1 ∪A2 = V (G).

1

So it suffices to show that there exists no edge of G between A1 − A2 and
A2 − A1 and show that A1 ∩ A2 = Xt1 ∩Xt2 .

Suppose to the contrary that there exists an edge of G between v1 ∈
A1 − A2 and v2 ∈ A2 − A1. By (TD2), there exists t ∈ V (T) such that
{v1, v2} ⊆ Xt. Note that t is in T1 or T2. That is, {v1, v2} ⊆ Xt is either
contained in A1 or contained in A2. If Xt ⊆ A1, then v2 ∈ Xt ⊆ A1,
contradicting v2 ∈ A2 − A1. If Xt ⊆ A2, then v1 ∈ Xt ⊆ A2, contradicting
v1 ∈ A1 − A2.

So (A1, A2) is a separation. Now we study the order of (A1, A2). Clearly,
Xt1 ∩ Xt2 ⊆ A1 ∩ A2. If v ∈ A1 ∩ A2, then there exist s1 ∈ V (T1) and
s2 ∈ V (T2) such that v ∈ Xs1 ∩ Xs2 , so (TD3) implies that v ∈ Xs for
every vertex s of T contained in the path in T between s1 and s2, and hence
v ∈ Xt1 ∩Xt2 . So A1 ∩A2 ⊆ Xt1 ∩Xt2 . Hence A1 ∩A2 = Xt1 ∩Xt2 . That is,
the order of (A1, A2) is |A1 ∩ A2| = |Xt1 ∩Xt2|.

Proposition 1 serves a main motivation for tree-decomposition and ex-
plains why we want the conditions (TD2) and (TD3) when we define a tree-
decomposition. Proposition 1 also implies that every bag gives a vertex-cut,
as shown in the following.

Proposition 2 Let G be a graph. Let (T,X) be a tree-decomposition of G.
Let t0 ∈ V (T). Let C1 and C2 be distinct components of T − t0. Then⋃

t∈V (C1)
Xt−Xt0 and

⋃
t∈V (C2)

Xt−Xt0 are disjoint, and there exists no edge

of G between
⋃

t∈V (C1)
Xt −Xt0 and

⋃
t∈V (C2)

Xt −Xt0.

Proof. Let t1 be the neighbor of t0 contained in C1. Let (A,B) be the
separation of G given by the edge t0t1 as shown in Proposition 1. Since
A− B and B − A are disjoint,

⋃
t∈V (C1)

Xt −Xt0 and
⋃

t∈V (C2)
Xt −Xt0 are

disjoint. And every edge of G between
⋃

t∈V (C1)
Xt−Xt0 and

⋃
t∈V (C2)

Xt−Xt0

is an edge of G between A−B and B−A by (TD3). So there exists no edge
of G between

⋃
t∈V (C1)

Xt −Xt0 and
⋃

t∈V (C2)
Xt −Xt0 .

1 Dynamic programming

Now we show how to use a tree-decomposition to obtain FPT algorithms.
We first show how to find a maximum stable set.

==============================

2

A dynamic programming for finding a maximum stable set with
given a tree-decomposition
Input: A graph G, a tree-decomposition (T,X), a node r of T , and a stable
set S of G[Xr].
Output: A stable set I of G with I ∩ Xr = S such that |I| is maximum
among all stable sets I ′ of G with I ′ ∩Xr = S.
Procedure:

Step 1: If |V (T)| = 1, then output I = S and stop.

Step 2: For every neighbor c of r in T ,

– let Tc be the component of T − r containing c,

– let Gc = G[
⋃

t∈V (Tc)
Xt],

– let Xc = {Xt : t ∈ V (Tc)},
(so (Tc,Xc) is a tree-decomposition of Gc)

– let Sc = S ∩Xc,

– for every stable set D of G[Xc] with D ∩ Xc ∩ Xr = Sc, run
this algorithm with input (G, (T,X), r, S) = (Gc, (Tc,Xc), c,D) to
obtain a stable set Ic,S,D,

– let Ic,S be the set Ic,S,D that gives maximum |Ic,S,D| among all
stable sets D of G[Xc] with D ∩Xc ∩Xr = Sc.

Step 3: Let I = S ∪
⋃

c∈NT (r) Ic,S. Output I.

==============================

Theorem 3 The above algorithm runs correctly.

Proof. We show the correctness by induction on |V (T)|. When |V (T)| = 1,
G = G[Xr], so it is obviously true. So we may assume |V (T)| ≥ 2 and the
algorithms outputs the correct answer when |V (T)| is smaller.

Hence for every neighbor c of T and stable set D of G[Xc] with D ∩Xc ∩
Xr = Sc, Ic,S,D is a stable set of Gc with Ic,S,D ∩ Xc = D such that |Ic,S,D|
is as large as possible. So for every c of T , Ic,S is a stable set of Gc with
Ic,S ∩Xc ∩Xr = Sc = S ∩Xc such that |Ic,S| is as large as possible.

3

Let I∗ be a stable set of G with I∗ ∩Xr = S such that |I∗| is as large as
possible. It suffices to show |I∗| ≤ |I|.

Let d be an arbitrary neighbor of r. Then I∗ ∩ V (Gd) is a stable set of
Gd with I∗ ∩ Xr ∩ Xd = S ∩ Xd. Hence |I∗ ∩ V (Gd)| ≤ |Id,S|. Moreover,
V (Gd)∩Xr = Xd∩Xr by (TD3), so I∗∩V (Gd)∩Xr = I∗∩Xd∩Xr = S∩Xd.
Similarly, Id,S∩Xr = Id,S∩V (Gd)∩Xr = Id,S∩Xd∩Xr = S∩Xd. Therefore,
|I∗∩V (Gd)−Xr| = |I∗∩V (Gd)|−|I∗∩V (Gd)∩Xr| = |I∗∩V (Gd)|−|S∩Xd| ≤
|Id,S| − |S ∩Xd| = |Id,S| − |Id,S ∩Xr| = |Id,S −Xr|.

By (TD3), if c1 and c2 are distinct neighbors of r in T , then V (Gc1)−Xr

and V (Gc2)−Xr are disjoint. Hence, |I∗−Xr| =
∑

c∈NT (r) |I∗∩V (Gc)−Xr| ≤∑
c∈NT (r) |Ic,S−Xr| = |I−Xr|. So |I∗| = |I∗−Xr|+|I∗∩Xr| = |I∗−Xr|+|S| ≤

|I −Xr|+ |S| = |I −Xr|+ |I ∩ S| = |I|. This shows that I is desired.

Theorem 4 Let w be a positive integer. Given a graph G and a tree-
decomposition (T,X) of G with width at most w, we can find a maximum
stable set of G in time O(w4w|V (T)|).

Proof. Let r be a vertex of T . For each subset S of G[Xr], we can test
whether S is a stable set in G[Xr] by brute force in time 2|Xr||Xr| = O(w2w),
and if so, we can run the previous algorithm to obtain a stable set IS of G
with IS ∩Xr = S such that |IS| is maximum. We can obtain IS correctly by
Theorem 3. Let I∗ be the stable set IS such that |IS| is maximum among all
stable sets S of G[Xr] with IS ∩Xr = S. Then I∗ is a maximum stable set
of G.

So it suffices to show the time complexity. Note that the algorithm pro-
duce a search tree T ′, where the root instance is (V (G), r, ∗), and its children
are the instances (V (G), r, S) among all stable sets S of G[Xr], and for every
such (V (G), r, S), its children are (V (Gc), c,D), where c ∈ NT (r) and D is a
stable set of G[Xc] with D ∩Xr ∩Xc = S ∩Xc, and so on. And to construct
this search tree T ′, it takes 2w+1 time to construct the children of each node.
So it takes (w + 1)2w+1|V (T ′)| time to construct T ′.

For each node of T ′ that has no child, it takes O(1) time to obtain the
answer. For each node v of T ′ that has a child, it takes O(degT ′(v)) time
to obtain the answer for v from its children. Hence once T ′ is constructed,
it takes O(|V (T ′)| + |E(T ′)|) = O(|V (T ′)|) time to obtain the answer for
the root. Therefore, the total running time is O((w + 1)2w+1|V (T ′)|) =
O(w2w|V (T ′)|).

4

Note that each non-root node of T ′ is marked as (Gz, z,D) for some z ∈
V (T) and D ⊆ Xz, and we know Gz is completely determined by z. So there
are at most |V (T)| · 2w+1 non-root nodes. Hence |V (T ′)| ≤ 1 + 2w+1|V (T)|.
Therefore, the total running time is O(w2w|V (T ′)|) = O(w4w|V (T)|).

Note that the time complexity in Theorem 4 might look strange because
it does not involve |V (G)| at the first glance. But notice that since every
bag has size at most w + 1, we have (w + 1)|V (T)| ≥ |V (G)|, so |V (T)| ≥
|V (G)|/(w + 1).

5

