Lecture notes for Apr 19, 2023 Tree-width and dynamic programming

Chun-Hung Liu

April 12, 2023

Let G be a graph. A tree-decomposition of G is a pair (T, \mathcal{X}), where T is a tree and $\mathcal{X}=\left\{X_{t}: t \in V(T)\right\}$ is a collection of subsets of $V(G)$ indexed by the vertices of T such that

$$
\begin{equation*}
\bigcup_{t \in V(T)} X_{t}=V(G), \tag{TD1}
\end{equation*}
$$

(TD2) for every edge $u v \in E(G)$, there exists $t \in V(T)$ such that $\{u, v\} \subseteq X_{t}$, and
(TD3) for every vertex $v \in V(G)$, the set $\left\{t \in V(T): v \in X_{t}\right\}$ induces a connected subtree of T
(that is, if $t_{1}, t_{2} \in V(T)$ with $v \in X_{t_{1}} \cap X_{t_{2}}$, then $v \in X_{t}$ for every vertex t in the path in T between t_{1} and t_{2}).

Each set X_{t} is called the bag at t. The width of the tree-decomposition (T, \mathcal{X}) is defined to be $\max _{t \in V(T)}\left|X_{t}\right|-1$. The tree-width of G is the minimum width of a tree-decomposition of G.

Recall that every edge of the tree in a tree-cut decomposition of a graph G gives an edge-cut of G. Tree-decomposition has a similar property, by replacing "edge-cut" by "separation", as shown in the following.

Proposition 1 Let G be a graph. Let (T, \mathcal{X}) be a tree-decomposition of G. Let $t_{1} t_{2} \in E(T)$. For $i \in[2]$, let T_{i} be the component of $T-t_{1} t_{2}$ containing t_{i}. Then $\left(\bigcup_{t \in V\left(T_{1}\right)} X_{t}, \bigcup_{t \in V\left(T_{2}\right)} X_{t}\right)$ is a separation of G with order $\left|X_{t_{1}} \cap X_{t_{2}}\right|$.

Proof. We first show that $\left(\bigcup_{t \in V\left(T_{1}\right)} X_{t}, \bigcup_{t \in V\left(T_{2}\right)} X_{t}\right)$ is a separation of G. For simplicity, for each $i \in[2]$, let $A_{i}=\bigcup_{t \in V\left(T_{i}\right)} X_{t}$. By (TD1), $A_{1} \cup A_{2}=V(G)$.

So it suffices to show that there exists no edge of G between $A_{1}-A_{2}$ and $A_{2}-A_{1}$ and show that $A_{1} \cap A_{2}=X_{t_{1}} \cap X_{t_{2}}$.

Suppose to the contrary that there exists an edge of G between $v_{1} \in$ $A_{1}-A_{2}$ and $v_{2} \in A_{2}-A_{1}$. By (TD2), there exists $t \in V(T)$ such that $\left\{v_{1}, v_{2}\right\} \subseteq X_{t}$. Note that t is in T_{1} or T_{2}. That is, $\left\{v_{1}, v_{2}\right\} \subseteq X_{t}$ is either contained in A_{1} or contained in A_{2}. If $X_{t} \subseteq A_{1}$, then $v_{2} \in X_{t} \subseteq A_{1}$, contradicting $v_{2} \in A_{2}-A_{1}$. If $X_{t} \subseteq A_{2}$, then $v_{1} \in X_{t} \subseteq A_{2}$, contradicting $v_{1} \in A_{1}-A_{2}$.

So $\left(A_{1}, A_{2}\right)$ is a separation. Now we study the order of $\left(A_{1}, A_{2}\right)$. Clearly, $X_{t_{1}} \cap X_{t_{2}} \subseteq A_{1} \cap A_{2}$. If $v \in A_{1} \cap A_{2}$, then there exist $s_{1} \in V\left(T_{1}\right)$ and $s_{2} \in V\left(T_{2}\right)$ such that $v \in X_{s_{1}} \cap X_{s_{2}}$, so (TD3) implies that $v \in X_{s}$ for every vertex s of T contained in the path in T between s_{1} and s_{2}, and hence $v \in X_{t_{1}} \cap X_{t_{2}}$. So $A_{1} \cap A_{2} \subseteq X_{t_{1}} \cap X_{t_{2}}$. Hence $A_{1} \cap A_{2}=X_{t_{1}} \cap X_{t_{2}}$. That is, the order of $\left(A_{1}, A_{2}\right)$ is $\left|A_{1} \cap A_{2}\right|=\left|X_{t_{1}} \cap X_{t_{2}}\right|$.

Proposition 1 serves a main motivation for tree-decomposition and explains why we want the conditions (TD2) and (TD3) when we define a treedecomposition. Proposition 1 also implies that every bag gives a vertex-cut, as shown in the following.

Proposition 2 Let G be a graph. Let (T, \mathcal{X}) be a tree-decomposition of G. Let $t_{0} \in V(T)$. Let C_{1} and C_{2} be distinct components of $T-t_{0}$. Then $\bigcup_{t \in V\left(C_{1}\right)} X_{t}-X_{t_{0}}$ and $\bigcup_{t \in V\left(C_{2}\right)} X_{t}-X_{t_{0}}$ are disjoint, and there exists no edge of G between $\bigcup_{t \in V\left(C_{1}\right)} X_{t}-X_{t_{0}}$ and $\bigcup_{t \in V\left(C_{2}\right)} X_{t}-X_{t_{0}}$.

Proof. Let t_{1} be the neighbor of t_{0} contained in C_{1}. Let (A, B) be the separation of G given by the edge $t_{0} t_{1}$ as shown in Proposition 1. Since $A-B$ and $B-A$ are disjoint, $\bigcup_{t \in V\left(C_{1}\right)} X_{t}-X_{t_{0}}$ and $\bigcup_{t \in V\left(C_{2}\right)} X_{t}-X_{t_{0}}$ are disjoint. And every edge of G between $\bigcup_{t \in V\left(C_{1}\right)} X_{t}-X_{t_{0}}$ and $\bigcup_{t \in V\left(C_{2}\right)} X_{t}-X_{t_{0}}$ is an edge of G between $A-B$ and $B-A$ by (TD3). So there exists no edge of G between $\bigcup_{t \in V\left(C_{1}\right)} X_{t}-X_{t_{0}}$ and $\bigcup_{t \in V\left(C_{2}\right)} X_{t}-X_{t_{0}}$.

1 Dynamic programming

Now we show how to use a tree-decomposition to obtain FPT algorithms. We first show how to find a maximum stable set.

A dynamic programming for finding a maximum stable set with given a tree-decomposition
Input: A graph G, a tree-decomposition (T, \mathcal{X}), a node r of T, and a stable set S of $G\left[X_{r}\right]$.
Output: A stable set I of G with $I \cap X_{r}=S$ such that $|I|$ is maximum among all stable sets I^{\prime} of G with $I^{\prime} \cap X_{r}=S$.
Procedure:
Step 1: If $|V(T)|=1$, then output $I=S$ and stop.
Step 2: For every neighbor c of r in T,

- let T_{c} be the component of $T-r$ containing c,
$-\operatorname{let} G_{c}=G\left[\bigcup_{t \in V\left(T_{c}\right)} X_{t}\right]$,
- let $\mathcal{X}_{c}=\left\{X_{t}: t \in V\left(T_{c}\right)\right\}$,
(so $\left(T_{c}, \mathcal{X}_{c}\right)$ is a tree-decomposition of G_{c})
- let $S_{c}=S \cap X_{c}$,
- for every stable set D of $G\left[X_{c}\right]$ with $D \cap X_{c} \cap X_{r}=S_{c}$, run this algorithm with input $(G,(T, \mathcal{X}), r, S)=\left(G_{c},\left(T_{c}, \mathcal{X}_{c}\right), c, D\right)$ to obtain a stable set $I_{c, S, D}$,
- let $I_{c, S}$ be the set $I_{c, S, D}$ that gives maximum $\left|I_{c, S, D}\right|$ among all stable sets D of $G\left[X_{c}\right]$ with $D \cap X_{c} \cap X_{r}=S_{c}$.

Step 3: Let $I=S \cup \bigcup_{c \in N_{T}(r)} I_{c, S}$. Output I.

$$
==============================
$$

Theorem 3 The above algorithm runs correctly.
Proof. We show the correctness by induction on $|V(T)|$. When $|V(T)|=1$, $G=G\left[X_{r}\right]$, so it is obviously true. So we may assume $|V(T)| \geq 2$ and the algorithms outputs the correct answer when $|V(T)|$ is smaller.

Hence for every neighbor c of T and stable set D of $G\left[X_{c}\right]$ with $D \cap X_{c} \cap$ $X_{r}=S_{c}, I_{c, S, D}$ is a stable set of G_{c} with $I_{c, S, D} \cap X_{c}=D$ such that $\left|I_{c, S, D}\right|$ is as large as possible. So for every c of $T, I_{c, S}$ is a stable set of G_{c} with $I_{c, S} \cap X_{c} \cap X_{r}=S_{c}=S \cap X_{c}$ such that $\left|I_{c, S}\right|$ is as large as possible.

Let I^{*} be a stable set of G with $I^{*} \cap X_{r}=S$ such that $\left|I^{*}\right|$ is as large as possible. It suffices to show $\left|I^{*}\right| \leq|I|$.

Let d be an arbitrary neighbor of r. Then $I^{*} \cap V\left(G_{d}\right)$ is a stable set of G_{d} with $I^{*} \cap X_{r} \cap X_{d}=S \cap X_{d}$. Hence $\left|I^{*} \cap V\left(G_{d}\right)\right| \leq\left|I_{d, S}\right|$. Moreover, $V\left(G_{d}\right) \cap X_{r}=X_{d} \cap X_{r}$ by (TD3), so $I^{*} \cap V\left(G_{d}\right) \cap X_{r}=I^{*} \cap X_{d} \cap X_{r}=S \cap X_{d}$. Similarly, $I_{d, S} \cap X_{r}=I_{d, S} \cap V\left(G_{d}\right) \cap X_{r}=I_{d, S} \cap X_{d} \cap X_{r}=S \cap X_{d}$. Therefore, $\left|I^{*} \cap V\left(G_{d}\right)-X_{r}\right|=\left|I^{*} \cap V\left(G_{d}\right)\right|-\left|I^{*} \cap V\left(G_{d}\right) \cap X_{r}\right|=\left|I^{*} \cap V\left(G_{d}\right)\right|-\left|S \cap X_{d}\right| \leq$ $\left|I_{d, S}\right|-\left|S \cap X_{d}\right|=\left|I_{d, S}\right|-\left|I_{d, S} \cap X_{r}\right|=\left|I_{d, S}-X_{r}\right|$.

By (TD3), if c_{1} and c_{2} are distinct neighbors of r in T, then $V\left(G_{c_{1}}\right)-X_{r}$ and $V\left(G_{c_{2}}\right)-X_{r}$ are disjoint. Hence, $\left|I^{*}-X_{r}\right|=\sum_{c \in N_{T}(r)}\left|I^{*} \cap V\left(G_{c}\right)-X_{r}\right| \leq$ $\sum_{c \in N_{T}(r)}\left|I_{c, S}-X_{r}\right|=\left|I-X_{r}\right|$. So $\left|I^{*}\right|=\left|I^{*}-X_{r}\right|+\left|I^{*} \cap X_{r}\right|=\left|I^{*}-X_{r}\right|+|S| \leq$ $\left|I-X_{r}\right|+|S|=\left|I-X_{r}\right|+|I \cap S|=|I|$. This shows that I is desired.

Theorem 4 Let w be a positive integer. Given a graph G and a treedecomposition (T, \mathcal{X}) of G with width at most w, we can find a maximum stable set of G in time $O\left(w 4^{w}|V(T)|\right)$.

Proof. Let r be a vertex of T. For each subset S of $G\left[X_{r}\right]$, we can test whether S is a stable set in $G\left[X_{r}\right]$ by brute force in time $2^{\left|X_{r}\right|}\left|X_{r}\right|=O\left(w 2^{w}\right)$, and if so, we can run the previous algorithm to obtain a stable set I_{S} of G with $I_{S} \cap X_{r}=S$ such that $\left|I_{S}\right|$ is maximum. We can obtain I_{S} correctly by Theorem 3. Let I^{*} be the stable set I_{S} such that $\left|I_{S}\right|$ is maximum among all stable sets S of $G\left[X_{r}\right]$ with $I_{S} \cap X_{r}=S$. Then I^{*} is a maximum stable set of G.

So it suffices to show the time complexity. Note that the algorithm produce a search tree T^{\prime}, where the root instance is $(V(G), r, *)$, and its children are the instances $(V(G), r, S)$ among all stable sets S of $G\left[X_{r}\right]$, and for every such $(V(G), r, S)$, its children are $\left(V\left(G_{c}\right), c, D\right)$, where $c \in N_{T}(r)$ and D is a stable set of $G\left[X_{c}\right]$ with $D \cap X_{r} \cap X_{c}=S \cap X_{c}$, and so on. And to construct this search tree T^{\prime}, it takes 2^{w+1} time to construct the children of each node. So it takes $(w+1) 2^{w+1}\left|V\left(T^{\prime}\right)\right|$ time to construct T^{\prime}.

For each node of T^{\prime} that has no child, it takes $O(1)$ time to obtain the answer. For each node v of T^{\prime} that has a child, it takes $O\left(\operatorname{deg}_{T^{\prime}}(v)\right)$ time to obtain the answer for v from its children. Hence once T^{\prime} is constructed, it takes $O\left(\left|V\left(T^{\prime}\right)\right|+\left|E\left(T^{\prime}\right)\right|\right)=O\left(\left|V\left(T^{\prime}\right)\right|\right)$ time to obtain the answer for the root. Therefore, the total running time is $O\left((w+1) 2^{w+1}\left|V\left(T^{\prime}\right)\right|\right)=$ $O\left(w 2^{w}\left|V\left(T^{\prime}\right)\right|\right)$.

Note that each non-root node of T^{\prime} is marked as $\left(G_{z}, z, D\right)$ for some $z \in$ $V(T)$ and $D \subseteq X_{z}$, and we know G_{z} is completely determined by z. So there are at most $|V(T)| \cdot 2^{w+1}$ non-root nodes. Hence $\left|V\left(T^{\prime}\right)\right| \leq 1+2^{w+1}|V(T)|$. Therefore, the total running time is $O\left(w 2^{w}\left|V\left(T^{\prime}\right)\right|\right)=O\left(w 4^{w}|V(T)|\right)$.

Note that the time complexity in Theorem 4 might look strange because it does not involve $|V(G)|$ at the first glance. But notice that since every bag has size at most $w+1$, we have $(w+1)|V(T)| \geq|V(G)|$, so $|V(T)| \geq$ $|V(G)| /(w+1)$.

