Lecture notes for Apr 19, 2023
Tree-width and dynamic programming

Chun-Hung Liu
April 12, 2023

Let G be a graph. A tree-decomposition of G is a pair (T, X'), where T is
atree and X = {X; : t € V(T)} is a collection of subsets of V(G) indexed
by the vertices of T" such that

(TD1) UteV(T) X, =V(G),

(TD2) for every edge uv € E(G), there exists t € V(T') such that {u,v} C X,
and

(TD3) for every vertex v € V(G), the set {t € V(T) : v € X;} induces a
connected subtree of T'

(that is, if t1,ty € V(T) with v € X3, N X, then v € X, for every
vertex ¢ in the path in T between t; and t5).

Each set X, is called the bag at t. The width of the tree-decomposition (7', X')
is defined to be max;cv () | X¢| —1. The tree-width of G is the minimum width
of a tree-decomposition of G.

Recall that every edge of the tree in a tree-cut decomposition of a graph
G gives an edge-cut of G. Tree-decomposition has a similar property, by
replacing “edge-cut” by “separation”, as shown in the following.

Proposition 1 Let G be a graph. Let (T, X) be a tree-decomposition of G.
Let tity € E(T). Fori € [2], let T; be the component of T —t1ty containing t;.
Then (Uevry) Xt Urev () X¢) is a separation of G with order | Xy, M Xy, |.

Proof. We first show that (U,cy () Xt: Usev(r,) Xt) is a separation of G. For
simplicity, for each i € [2], let 4; = U,y 1,y Xe- By (TD1), A;U A, = V(G).

1

So it suffices to show that there exists no edge of G between A; — A, and
As — Ay and show that A1 N Ay = X, N X,,.

Suppose to the contrary that there exists an edge of G between v, €
A — Ay and vy € Ay — Ay, By (TD2), there exists t € V(T) such that
{v1,v2} C X;. Note that t is in T3 or Ty. That is, {vi,v} C X; is either
contained in A; or contained in A,. If X; C Ay, then v, € X; C Ay,
contradicting vy € Ay — Ay. If X; C Ay, then v; € X; C Ay, contradicting
U1 € Al — AQ.

So (A1, Ay) is a separation. Now we study the order of (A, Ay). Clearly,
Xy, N Xy, € AN Ay If v € Aj N Ay, then there exist s € V(T}) and
sy € V(Ty) such that v € X, N Xg,, so (TD3) implies that v € X, for
every vertex s of T' contained in the path in T" between s; and s,, and hence
veE Xy NXy,. So AiNA; C Xy, NXy,. Hence A1 N Ay = Xy, N Xy,. That is,
the order of (A, As) is |[A1 N As| = | Xy, N X4,|. =

Proposition 1 serves a main motivation for tree-decomposition and ex-
plains why we want the conditions (TD2) and (TD3) when we define a tree-
decomposition. Proposition 1 also implies that every bag gives a vertex-cut,
as shown in the following.

Proposition 2 Let G be a graph. Let (T, X) be a tree-decomposition of G.
Let to € V(T). Let Cy and Cy be distinct components of T — to. Then
Usevicy) Xt — Xty and Uiey o,y Xe — Xy, are disjoint, and there exists no edge
of G between ey (cy) Xt — Xty and Uey e,y Xt — Xty

Proof. Let t; be the neighbor of 5 contained in C;. Let (A, B) be the
separation of G given by the edge tot; as shown in Proposition 1. Since
A — B and B — A are disjoint, U;cy(c,) Xt — Xip and Uey o,y Xe — Xy are
disjoint. And every edge of G between Utev(cl) X;—X, and Utev(@) Xi—Xy,
is an edge of G between A — B and B — A by (TD3). So there exists no edge
of G between ey (c,) Xt — Xty and U,cy (o) Xt — Xip- ®

1 Dynamic programming

Now we show how to use a tree-decomposition to obtain FPT algorithms.
We first show how to find a maximum stable set.

A dynamic programming for finding a maximum stable set with
given a tree-decomposition

Input: A graph G, a tree-decomposition (7', X), a node r of T', and a stable
set S of G[X,].

Output: A stable set I of G with I N X, = S such that |I| is maximum
among all stable sets I’ of G with I'N X, = S.

Procedure:

Step 1: If |V(T')| = 1, then output I = S and stop.
Step 2: For every neighbor ¢ of r in T,

— let T, be the component of T" — r containing c,

—let X, ={X,:t € V(T,)},
(so (T, X.) is a tree-decomposition of G.)

— let S. = SnNX,,

— for every stable set D of G[X] with DN X. N X, = S,, run
this algorithm with input (G, (T, X),r,S) = (Ge, (T¢, X.), ¢, D) to
obtain a stable set I, g p,

— let I.s be the set I.gp that gives maximum |/, g p| among all
stable sets D of G[X.] with DN X.NX, = S..

Step 3: Let I = S U UceNT(r) I.s. Output I.

Theorem 3 The above algorithm runs correctly.

Proof. We show the correctness by induction on [V(7T')|. When |V(T)| = 1,
G = G[X,], so it is obviously true. So we may assume |V (7)] > 2 and the
algorithms outputs the correct answer when |V(7)| is smaller.

Hence for every neighbor ¢ of T and stable set D of G[X,] with DN X.N
X, = Se, I.sp is a stable set of G. with I.sp N X. = D such that |I.sp|
is as large as possible. So for every c of T', I. ¢ is a stable set of G, with
I.sNX.NX, =5 =5NX, such that |I.g| is as large as possible.

Let I* be a stable set of G with I* N X, = S such that |I*| is as large as
possible. It suffices to show |[I*| < |[].

Let d be an arbitrary neighbor of r. Then I* N V(Gy) is a stable set of
Gg with I* N X, N Xy = SN X, Hence |[I*NV(Gy)| < |las]|- Moreover,
V(Gy)NX, = XyNX, by (TD3),so I*NV(Gy)NX, = I"NXyNX, =SNX,.
Similarly, 1, sNX, = I;sNV(Ga)NX, = I5sNXqgNX, = SNXy. Therefore,
["NV(Ga) = X, | = [I"OV(Ga) | = [I"NV (Ga) N X | = [I"NV(Ga) [= [SNXy| <
[La,s| — 1SN Xa| = [Lags] — [Las N Xo| = [Igs — Xo|.

By (TD3), if ¢; and ¢, are distinct neighbors of r in T, then V(G,,) — X,
and V(G,,)— X, are disjoint. Hence, [I"—X,[=" v [["NV(Ge) =X, | <
ZcENT(r) |IC,S_XT| = |I_Xr| So |[*| = |I*_Xr|+|[*er| = |I*_Xr|+|S| S
I — X, |+ |S|=|I — X,|+|INS|=]I|]. This shows that I is desired. =

Theorem 4 Let w be a positive integer. Given a graph G and a tree-
decomposition (T, X) of G with width at most w, we can find a maximum

stable set of G in time O(w4* |V (T)|).

Proof. Let r be a vertex of T. For each subset S of G[X,|, we can test
whether S is a stable set in G[X,] by brute force in time 21| X, | = O(w2v),
and if so, we can run the previous algorithm to obtain a stable set Ig of G
with Is N X, = S such that || is maximum. We can obtain Ig correctly by
Theorem 3. Let I* be the stable set Is such that |Ig| is maximum among all
stable sets S of G[X,] with I[g N X, = 5. Then I* is a maximum stable set
of G.

So it suffices to show the time complexity. Note that the algorithm pro-
duce a search tree 7", where the root instance is (V' (G), r, %), and its children
are the instances (V(G),r, S) among all stable sets S of G[X,], and for every
such (V(G),r,S), its children are (V(G.),c, D), where ¢ € Np(r) and D is a
stable set of G[X.] with DN X, N X.= 5N X, and so on. And to construct
this search tree 77, it takes 2**! time to construct the children of each node.
So it takes (w + 1)2¥V(T")| time to construct 7"

For each node of 7" that has no child, it takes O(1) time to obtain the
answer. For each node v of 7" that has a child, it takes O(deg;(v)) time
to obtain the answer for v from its children. Hence once T” is constructed,
it takes O(|V(T")| + |E(T")|) = O(|V(T")|) time to obtain the answer for
the root. Therefore, the total running time is O((w + 1)2¢THV(T")|) =
O(w2"[V(T7)]).

Note that each non-root node of 7" is marked as (G,, z, D) for some z €
V(T) and D C X, and we know G, is completely determined by z. So there
are at most |V(7T)| - 2**! non-root nodes. Hence |V(T")| < 1+ 2T V(T)].
Therefore, the total running time is O(w2"|V(T")]) = O(w4*|V(T)|). =

Note that the time complexity in Theorem 4 might look strange because
it does not involve |V(G)| at the first glance. But notice that since every
bag has size at most w + 1, we have (w + 1)|V(T)| > |V(G)|, so |V(T)| >
V(G)]/(w+1).

