
Lecture notes for Apr 24, 2023
Tree-decomposition, Logic and Courcelle’s

theorem

Chun-Hung Liu

April 24, 2023

Recall that we show the following theorem last time.

Theorem 1 Let w be a positive integer. Given a graph G and a tree-
decomposition (T,X) of G with width at most w, we can find a maximum
stable set of G in time O(w4w|V (T)|).

1 Finding a good tree-decomposition

According to Theorem 1, we want to, given an input graph G, find a tree-
decomposition (T,X) with small width and small |V (T)|. Ideally, we hope
the width equals the tree-width. However, it is NP-hard to decide the tree-
width.

Theorem 2 (Arnborg, Corneil, Proskurowski) It is NP-hard to decide
that given a graph G and a positive integer w, whether the tree-width of G is
at most w.

Note that the above problem is NP-hard when w is part of the input.
As our purpose is to design an FPT algorithm with parameterization by the
tree-width, the w is fixed for our applications. So the following theorem is
good enough for us.

Theorem 3 (Bodlaender) For every positive integer w, there is a linear
time algorithm that given a graph G, either finds a tree-decomposition of G

1

with width at most w, or correctly concludes that the tree-width of G is greater
than w.

Note that the above theorem runs in linear time, so the tree-decomposition
(T,X) that it produces satisfies |V (T)| = O(|V (G)|). Therefore we obtain
the following corollary.

Corollary 4 For every positive integer w, there exists a linear time algo-
rithm that given a graph G with tree-width at most w, find a maximum stable
set in G. More precisely, a maximum stable set of G can be found in time
f(w)|V (G)| for some function f for graphs G with tree-width at most w.

Proof. Let w be a fixed positive integer. Let G be an input graph with
tree-width at most w. Then we can obtain a tree-decomposition (T,X) with
width at most w and |V (T)| = O(|V (G)|) in time O(g(w)|V (G)|) (for some
function g) by Theorem 3. Then we can find a maximum stable set of G in
time O(w4w|V (T)|). Hence the total running time is O(f(w)|V (G)|), where
f(w) = g(w) + w4w.

Note that this argument works for a much general setting than just finding
a maximum stable set. For example, we can decide the k-colorability for
graphs with bounded tree-width in a very similar way.

Corollary 5 For every any positive integers w and k, there exists a linear
time algorithm that given a graph G with tree-width at most w, decide whether
G is k-colorable.

Proof. It suffices to modify the dynamic programming in Theorem 1 to
work for k-colorability. It can be done by considering all possible k-colorings
of Xr.

2 Graph properties and logic

We have seen that some problems can be solved in polynomial time for graphs
with bounded tree-width. They actually work in a much more general setting,
and we will discuss it in this section.

We will express a graph property by using terminologies in logic. For
example, the property that “G contains a stable set with size 2” can be ex-
pressed as “G satisfies ∃x1∃x2 (x1 6= x2) ∧ ¬R(x, y)”, where R(x, y) means

2

that “x is adjacent to y”. Note that different properties require logic ex-
pressions with different “strength”. The main goal here is to show that if
a property that can be expressed by a logic expression with “low strength”,
then a FPT algorithm exists as long as the graphs have nice properties (such
as having bounded tree-width etc.).

We will give more formal definition for this concept. But we remark that
the logic concepts presented in this section are somehow simplified and might
be slightly different from the use in model theory.

2.1 First-order graph properties

We say that a graph property P can be expressed in FO if there exists a first-
order sentence φ such that a graph G satisfies P if and only if G satisfies φ,
where a first-order sentence is defined as follows:

� A first-order variable (or just called “variable” for short) is a vertex of
a graph.

� An atomic formula is either

– “x = y”, where x and y are variables, or

– “x ∼ y”, which means “x is adjacent to y”, or

– “True” or “False”,

� A first-order formula is defined by applying the following rules a finite
number of times:

– Every atomic formula is a first-order formula.

– If φ1 and φ2 are formulas, then ¬φ1, φ1 ∨ φ2, φ1 ∧ φ2, ∃xφ1 and
∀xφ1 are also formulas.

(Note that it implies that φ1 → φ2 is also a formula because it is
logically equivalent to ¬φ1 ∨ φ2.)

� A variable is free in a first-order formula if it is not bounded by a
quantifier (i.e. ∀ or ∃).

� A first-order sentence is a first-order formula with no free variables.

3

For simplicity, we write ¬(x = y) as x 6= y, and write ¬(x ∼ y) as x 6∼ y.

Examples of properties expressible in FO:

1. For every positive integer k, the property “having a dominating set
with size k” can be expressed as ∃x1∃x2...∃xk∀x φ1∨φ2∨ ...∨φk, where
for every i ∈ [k], φi is defined to be (x = xi) ∨ (x ∼ xi).

2. For every positive integer k, the property “having a stable set with size
k” can be expressed as ∃x1∃x2...∃xk (φ1,2 ∧ φ1,3 ∧ ... ∧ φ1,k) ∧ (φ2,3 ∧
φ2,4...∧φ2,k)∧ ...∧φk−1,k, where for every 1 ≤ i < j ≤ k, φi,j is defined
to be xi 6∼ xj.

3. For every graph H, the property “containing H as an induced sub-
graph” can be expressed as ∃x1∃x2...∃xk (φ1,2∧φ1,3∧ ...∧φ1,k)∧ (φ2,3∧
φ2,4...∧φ2,k)∧...∧φk−1,k, where for every 1 ≤ i < j ≤ k, φi,j is defined to
be xi 6= xj∧φ′i,j, and φ′i,j is defined to be xi ∼ xj or xi 6∼ xj (depending
on whether the i-th vertex of H is adjacent to the j-th vertex).

4. For every graph H, the property “containing H as a subgraph” can be
expressed in a similar way as “containing H as an induced subgraph” by
removing φi,j for the pairs (i.j) corresponding to non-adjacent vertices
in H.

2.2 Monadic second-order logic

We say that a graph property P is a MSO1-property if there exists a MSO1-
sentence φ expressible in MSO1 such that a graph G satisfies P if and only
if G satisfies φ, where a MSO1-sentence is defined as follows:

� A variable is a vertex of a graph or a set of vertices.

(We usually use letters of small case for vertices and letters of large
case for set of vertices.)

� An atomic formula is either

– “x = y”, where x and y are variables, or

– “x ∼ y”, which means “x is adjacent to y”, or

– “x ∈ X”, which means “x is in the set X”,

4

– “True” or “False”,

� A MSO1-formula is defined by applying the following rules a finite
number of times:

– Every atomic formula is a MSO1-formula.

– If φ1 and φ2 are formulas, then ¬φ1, φ1 ∨ φ2, φ1 ∧ φ2, ∃xφ1 and
∀xφ1 are also formulas.

� A MSO1-sentence is a MSO1-formula with no free variables.

Note that every FO-sentence is a MSO1-sentence. But MSO1-sentences
are much stronger than FO-sentences.

Proposition 6 For every positive integer k, “being k-colorable” is a MSO1-
property.

Proof. It can be expressed as ∃X1...∃Xk(∀x φ0(x)) ∧ (∀x∀y φ1(x, y) ∧
φ2(x, y)∧...∧φk(x, y)), where φ0(x) is defined to be x ∈ X1∨x ∈ X2∨...∨x ∈
Xk, and for every i ∈ [k], φi(x, y) is defined to be ((x 6= y) ∧ x ∈ Xi ∧ y ∈
Xi)→ x 6∼ y.

Proposition 7 “Being connected” is a MSO1-property.

Proof. “Being connected” is the negation of “has at least two components”.
So it suffices to express “has at least two components”.

“X is a non-empty proper subset of V (G)”, denoted by φ0(X), can be
expressed as ∃x∃y x ∈ X ∧ y 6∈ X. “Has at least two components” can be
expressed as ∃X φ0(X) ∧ (∀u∀v(u ∈ X ∧ u ∼ v)→ v ∈ X).

Let G and H be simple graphs. We say that H is a minor of G (or G con-
tains H as a minor) if H can be obtained from G by repeatedly deleting ver-
tices and edges and contracting edges. Note that it is equivalent to the state-
ment that there exist pairwise disjoint subsets X1, X2, ..., X|V (H)| of V (G)
each inducing a connected subgraph such that for any 1 ≤ i < j ≤ |V (H)| if
the i-th vertex of H is adjacent to the j-th vertex of H, then there exists an
edge of G between Xi and Xj.

Proposition 8 For every simple graph H, “containing H as a minor” is a
MSO1-property.

5

Proof. Denote V (H) by h1, h2, ..., h|V (H)|. For every 1 ≤ i < j ≤ |V (H)|,
define ϕi,j(Xi, Xj) to be ∀x∀y(x ∈ Xi ∧ y ∈ Xj) → x 6= y, which denotes
“Xi ∩Xj = ∅”. Let ϕ = ∧1≤i<j≤|V (H)|ϕi,j(Xi, Xj).

Denote E(H) by e1, e2..., e|E(H)|. For every 1 ≤ i < j ≤ |V (H)|, if
hihj ∈ E(H), then define φi,j(Xi, Xj) to be ∃x∃y x ∈ Xi ∧ y ∈ Xj ∧ x ∼ y.
For every k ∈ [|E(H)|], say ek = hakhbk , we define ψk = φak,bk(Xak , Xbk).

By Proposition 7, for every i ∈ [k], “G[Xi] is connected”, denoted by φi,
can be expressed as a MSO1-sentence. So “containing H as a minor” can be
expressed as ∃X1∃X2...∃X|V (H)|ϕ∧(φ1∧φ2∧∧φk)∧(ψ1∧ψ2∧ ...∧ψ|E(H)|).

Proposition 9 “Being planar” is a MSO1-property.

Proof. “Being planar” is equivalent to “not containing K5 as a minor and
not containing K3,3 as a minor” by Wagner’s theorem. So this proposition
follows from Proposition 8.

We say that a graph property P is a MSO2-property if there exists a
MSO2-sentence φ expressible in MSO2 such that a graph G satisfies P if and
only if G satisfies φ, where a MSO2-sentence is defined as follows:

� A variable is a vertex, edge, a set of vertices, or a set of edges.

� An atomic formula is either

– “x = y”, where x and y are variables, or

– “x ∼ y”, which means “x is adjacent to y” (requiring both x and
y are vertices), or

– “x ∈ X”, which means “x is in the set X”, or

– “x ≈ y”, which means “x and y are incident” (requiring one of x
and y is a vertex and the other is an edge), or

– “True” or “False”,

� A MSO2-formula is defined by applying the following rules a finite
number of times:

– Every atomic formula is a MSO2-formula.

– If φ1 and φ2 are formulas, then ¬φ1, φ1 ∨ φ2, φ1 ∧ φ2, ∃xφ1 and
∀xφ1 are also formulas.

6

� A MSO2-sentence is a MSO2-formula with no free variables.

Note that every MSO1-sentence is a MSO2-sentence. But MSO2-sentences
are much stronger than MSO1-sentences.

Proposition 10 “Having a Hamiltonian cycle” is a MSO2-property.

Proof. Let G be a graph. Note that a subset Y of E(G) is the edge-set of a
Hamiltonian cycle if and only if every vertex of G is incident with exactly two
edges in Y and for every nonempty proper subset X of V (G), there exists at
least one edge in Y between X and V (G)−X.

For a set of edges Y and a vertex x, “there are exactly two edges in
Y incident with x”, denoted by φ1(Y, x), can be expressed as ∃e1∃e2(e1 ∈
Y ∧ e2 ∈ Y ∧ e1 6= e2 ∧ e1 ≈ x∧ e2 ≈ x)∧ ∀e3((e3 ∈ Y ∧ e3 6= e1 ∧ e3 6= e2)→
e3 6≈ x). For a set X of vertices, “X is a non-empty proper subset”, denoted
by φ2(X), can be expressed as “∃x1∃x2 x1 6= x2 ∧ x1 ∈ X ∧ x2 6∈ X. For a
set X of vertices and a set of edges Y , “there exists an edge in Y between
X and V (G)−X”, denoted by φ3(X, Y), can be expressed as ∃y∃x1∃x2 y ∈
Y ∧ x1 ≈ y ∧ x2 ≈ y ∧ x1 ∈ X ∧ x2 6∈ X.

So “having a Hamiltonian cycle” can be expressed as ∃Y ((∀xφ1(Y, x)) ∧
∀X(φ2(X)→ φ3(X, Y))).

The following is a famous theorem. We will not give its proof here, but
it somehow uses the ideas about dynamic programming that we mentioned
before.

Theorem 11 (Courcelle) For every graph MSO2-property P , there exist a
function f and an algorithm such that given a graph G with tree-width at
most w, deciding whether G satisfies P can be done in f(w)|V (G)| time.

Courcelle’s theorem is strong. But it is limited to graphs with bounded
tree-width. Can we relax this condition, for example, by considering planar
graphs instead? It is not possible unless NP=P, since 3-colorability is NP-
hard for planar graphs and is a MSO1-property. So if we want to relax the
condition on graph structure, then we have to weaken the graph property.
We will do it in the next lecture.

7

