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1 Bounded expansion

We will try to relax Courcelle’s theorem by considering more general graphs.
Here we focus on “sparse” graphs.

Naturally, if the number of edges of a graph is small when comparing
to its number of vertices, then it can be considered “sparse”. The average
degree of a graph G is defined to be 2|E(G)|/|V (G)|. So graphs with small
average degree are sparse.

But considering the average degree of G only does not really give enough
information. For example, if G is obtained from a very dense graph H by
adding k isolated vertices, then the average degree of G equals |E(H)|/(|V (H)|+
k), which can be very small if k is large. That is, even if G has small average
degree, to solve a problem on G, we essentially have to solve the problem on
H, but H can be arbitrary. So only knowing G has small average degree is
not helpful.

According to the above example, we might want to require all induced
subgraphs of G has small average degree. For an integer k, we say that a
graph G is k-degenerate if every induced subgraph H of G contains a vertex
with degree in H at most k. Note that 0-degenerate graphs are exactly edge-
less graphs; 1-degenerate graphs are exactly forests; every induced subgraph
of a k-degenerate graph is also k-degenerate. And if G is k-degenerate, then
we can order the vertices of G as v1, v2, ... such that for every i, vi is adjacent
in G to at most k vertices in {vj : j > i}, so every induced subgraph H of G
has at most k|V (H)| edges and hence has average degree at most 2k.
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Having bounded degeneracy describes the sparsity of a graph, and this
sparsity is “robust” under deleting vertices and edges. But in order to prove
a variant of Courcelle’s theorem, we need a more robust sparsity. More
precisely, we want the sparity is robust under contracting edges as well.
That is, we want to require that every minor of G has small average degree.
There are many examples for such a sparsity, as we will see in this section.

All graphs are assumed to be simple in this section.

1.1 Minor-closed families

A set F of graphs is a minor-closed family if H ∈ F for every graph G ∈ F
and for every graph H that is a minor of G.

For example, the set of planar graphs is a minor-closed family since no
matter how we delete vertices or edges or contracting edges, the resulting
graph remains planar.

Theorem 1 (Euler’s formula) Every simple planar graph G has at most
3|V (G)| − 6 edges.

Euler’s formula implies that every planar graph has average degree at
most 6. And every minor of a planar graph is planar. So every minor of a
planar graph has average degree at most 6. Hence the set of simple planar
graphs is a minor-closed family and enjoy the robust sparsity mentioned
above.

Proposition 2 Let w be a nonnegative integer. If G has tree-width at most
w, then every minor of G has tree-width at most w. That is, the class of
graphs with tree-width at most w is a minor-closed family.

Proof. Let (T,X ) be a tree-decomposition of G with width at most w.
Note that (T,X ) is also a tree-decomposition of G−e with width at most

w, for every edge e of G. For every vertex v, if we remove v from every bag,
then (T,X ) becomes a tree-decomposition of G − v with width at most w.
For every edge e = uv, if z is the vertex in G/uv obtained from contracting
the edge uv, then replacing the appearance of u and v by z makes (T,X ) a
tree-decomposition of G/uv with width at most w.

So every minor of G has tree-width at most w.
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It is easy to show that every simple graph with tree-width at most w is
w-degenerate by considering a vertex in the bag of the leaf in the tree in
the tree-decomposition. Hence Proposition 2 implies that the class of simple
graphs with tree-width at most w is a minor-closed family and enjoy the
robust sparsity mentioned above.

Note that every cycle on at least three vertices contains K3 as a minor.
And it is easy to show that K3 has tree-width at least two. So Proposition 2
implies that every cycle on at least three vertices has tree-width at least 2,
and more generally, every non-forest has tree-width at least 2. Recall that
we show every cycle has tree-width at most 2. It implies that every cycle on
at least three vertices has tree-width exactly 2. And recall that we showed
that every forest has tree-width at most 1. So graphs with tree-width 1 are
exactly forests with at least one edge.

We have seen some examples for graph classes that are minor-closed and
enjoy the robust sparsity mentioned above. It is not a coincidence.

Proposition 3 For every positive integer t, every simple graph with average
degree at least 2t contains Kt as a minor.

Proof. We prove this proposition by induction on t. It obviously holds when
t = 1. We we may assume t ≥ 1 and the proposition holds when t is smaller.

Let G be a graph with average degree 2t. Let H be a minor of G such
that H has average degree at least 2t, and subject to this, |V (H)|+ |E(H)|
is minimum. Note that H exists since G is a candidate. To show G contains
Kt as a minor, it suffices to show that H contains Kt as a minor.

If there exists an edge uv such that u and v have at most 2t−1−1 common
neighbors, then the average degree of H/uv is 2|E(H/uv)|/|V (H/uv)| ≥
2(|E(H)|−1−(2t−1−1))/(|V (H)|−1) ≥ 2(2t−1|V (H)|−2t−1)/(|V (H)|−1) ≥
2t, contradicting the minimality of H. So for every edge of H, its ends have
at least 2t−1 common neighbors.

Let v be a vertex of H. Let H ′ = H[NH(v)]. For every u ∈ V (H ′),
uv ∈ E(H), so u and v has at least 2t−1 common neighbors in H, so u has
degree at least 2t−1 in H ′. So 2|E(H ′)|/|V (H ′)| ≥ 2t−1. By the induction
hypothesis, H ′ contains Kt−1 as a minor. Since V (H ′) = NH(v), H contains
Kt as a minor.

Note the class of graphs is a minor-closed family. But this class is not
interesting. We say that a set of graphs is a proper minor-closed family if it
is minor-closed and does not contain all graphs.
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Theorem 4 For every proper minor-closed family F , there exists an integer
t such that every graph in F has average degree at most t.

Proof. Since F is a proper minor-closed family, there exists a graph H 6∈ F ,
so K|V (H)| 6∈ F . So every graph in F has average degree at most 2|V (H)| by
Proposition 3.

1.2 Shallow minors

We have seen that every minor-closed family has a sparsity that is robust
with respect to deleting vertices and edges and contracting edges.

The class of graphs with bounded maximum degree does not have this
property. For example, it is known that for every integer t, there exists
a graph with maximum degree at most 3 containing Kt as a minor. So
graphs with maximum degree 3 can be made arbitrarily dense by contracting
edges. However, if G has maximum degree at most d, then contracting a
subgraph with radius at most r can only create a vertex with degree at most
d + d2 + d3 + ... + dr ≤ dr+1. So if we want to obtain a minor H of G with
average degree t, we have to contract subgraphs with radius Ω(logd t).

Let G be a graph. Let r be a nonnegative integer (or∞). We say that H
is an r-shallow minor of G if there exist a set {Xv : v ∈ V (H)} of pairwise
disjoint subsets of V (G) such that G[Xv] has radius at most r, and for every
edge xy ∈ E(H), there exists an edge of G between Xx and Xy. Note that
0-shallow minors of G are exactly subgraphs of G; ∞-shallow minors of G
are exactly minors of G.

Let f : N ∪ {0} → N ∪ {0} be a function. We say that a set F of graphs
has expansion f if every r-shallow minor of G has average degree at most
f(r) for every G ∈ F and r ∈ N ∪ {0}.

Examples:

� The set of planar graphs have expansion f , where f is the constant
function 6.

� The set of graphs with tree-width at most w has expansion f , where f
is the constant function 2w.

� The set of graphs with maximum degree at most d has expansion f ,
where f(x) = dx+1 for every nonnegative integer x.
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We say that a set of graphs has bounded expansion if there exists a function
f such that it has expansion f . Bounded expansion classes are very general.

Examples of graph classes with bounded expansion:

� Every proper minor-closed family.

� Every proper topological minor-closed family.

(For example, for any fixed surface Σ and integer k, the set of graphs
that can be drawn in Σ with at most k crossings.)

� For any positive integers d and k, the set of intersection graphs of a set
S of closed balls in Rd such that every point in Rd is contained in the
interior of at most k balls in S.

Here is an analog of Courcelle’s theorem.

Theorem 5 (Dvořák, Kral’, Thomas) For every set F of graphs with
bounded expansion, and for every graph property P that can be expressed
in FO, testing whether a graph in F satisfies P can be done in linear time.

In particular, for any fixed k, testing whether a planar graph has a stable
set of size at least k or has a dominating set with size at most k can be done
in linear time.

1.3 Hereditary properties

We will see another application of Theorem 5 in this subsection.
A graph property P is hereditary if it is closed under deleting vertices.

That is, if G satisfies P and H is obtained from G by deleting vertices, then
H satisfies P .

Examples of hereditary properties:

� “Being k-colorable”, where k is a fixed integer.

� “Having girth at least k”, where k is a fixed integer.

� “Being claw-free”.

� “Being chordal”.
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� “Being a line-graph”.

� “Being a cograph”, where a graph is a cograph if it is K1 or can be
obtained by taking disjoint union of two cographs or obtained by taking
complement of a cograph.

� “Can be drawn in Σ such that every edge contains at most k crossings”,
where Σ is a fixed surface and k is a fixed integer.

Let P be a hereditary property. A graph G is a hereditary-minimal ob-
struction with respect to P if G does not satisfy P but every proper induced
subgraph of G satisfies P . Let Forb(P ) be the set of hereditary-minimal
obstructions with respect to P .

Proposition 6 Let P be a hereditary property. Then a graph G satisfies P
if and only if G does not contain any graph H in Forb(P ) as an induced
subgraph.

Proof. (⇒) If G satisfies P and contains some graph H ∈ Forb(P ) as an
induced subgraph, then H satisfies P (since P is hereditary), a contradiction.

(⇐) Let G be a graph that does not satisfy P . Let H be an induced
subgraph of G not satisfying P , and subject to this, |V (H)| is minimal.
Note that H exists since G is a candidate. If H 6∈ Forb(P ), then some proper
induced subgraph of H does not satisfy P by the definition of Forb(P ), but
it contradicts the minimality of |V (H)|.

Some hereditary property has finitely many hereditary-minimal obstruc-
tions. For example, if P is “being claw-free”, then Forb(P ) = {K1,3} by
definition; if P is “being a line graph”, then |Forb(P )| = 9 by a theorem
of Beineke; if P is “being a cograph”, then Forb(P ) = {P4}. However,
other hereditary properties mentioned above have infinitely many hereditary-
minimal obstructions.

Corollary 7 If P is a hereditary property such that there are only finitely
many hereditary-minimal obstructions, then for every graph class F with
bounded expansion, testing whether a graph in F satisfies P can be done in
linear time.
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Proof. Recall that we showed that for every graph H, “containing H as
an induced subgraph” can be expressed in FO, so “not containing H as an
induced subgraph” can be expressed in FO. Since Forb(P ) is finite, “not
containing any graph in Fobr(P ) as an induced subgraph” can be expressed
in FO. By Proposition 6, “satisfying P” can be expressed in FO. So this
corollary follows from Theorem 5.

2 Testing minor-closed property

We have seen Courcelle’s theorem and the theorem of Dvořák, Kral’ and
Thomas about properties that can be expressed by logic expressions. They
are examples of meta-theorems. We will see other meta-theorems in this
section.

A property P is minor-closed if it is closed under taking minor. That
is, it is closed under deleting vertices, deleting edges and contracting edges.
Equivalently, if G satisfies P and H is a minor of G, then H satisfies P . Note
that every minor-closed property is hereditary.

Examples of minor-closed properties:

� “Can be drawn in Σ without crossing”, where Σ is a fixed surface.

� “Can be made planar by deleting at most k vertices”, where k is a fixed
integer.

� “Being a tree”.

� “Having tree-width at most w”, where w is a fixed integer.

� “Having a vertex-cover with size at most k”, where k is a fixed integer.

� “Can be embedded in R3 such that every cycle forms a trivial knot”.

For a minor-closed property P , a graph G is a minor-minimal obstruction
with respect to P if G does not satisfy P but every proper minor of G satisfies
P . Unlike hereditary properties, the set of minor-minimal obstructions is
always finite.

Theorem 8 (Graph Minor Theorem (Robertson, Seymour)) For ev-
ery minor-closed property P , there are only finitely many minor-minimal
obstructions with respect to P .
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By the Graph Minor Theorem, to test whether a graph G satisfies a
minor-closed property P , it suffices to test whether G contains H as a minor
or not, for finitely many graphs H. Recall that “containing H as a minor” is
a MSO1-property, so it can be tested in linear time for graphs with bounded
tree-width. But it is known that it can always be done in polynomial time.

Theorem 9 (Robertson, Seymour) There exists a function f such that
for every graph H, testing whether an input graph G contains H as a minor
can be done in f(H)|V (G)|3 time.

Corollary 10 Every minor-closed property can be test in O(n3) time.

Proof. It immediately follows from Theorems 8 and 9.

We remark that Kawarabayashi, Kobayashi and Reed improved Theorem
9 to time f(H)|V (G)|2. So the above corollary can be improved to time
O(n2).

8


